100,798 research outputs found

    TTDM: A Travel Time Difference Model for Next Location Prediction

    Full text link
    Next location prediction is of great importance for many location-based applications and provides essential intelligence to business and governments. In existing studies, a common approach to next location prediction is to learn the sequential transitions with massive historical trajectories based on conditional probability. Unfortunately, due to the time and space complexity, these methods (e.g., Markov models) only use the just passed locations to predict next locations, without considering all the passed locations in the trajectory. In this paper, we seek to enhance the prediction performance by considering the travel time from all the passed locations in the query trajectory to a candidate next location. In particular, we propose a novel method, called Travel Time Difference Model (TTDM), which exploits the difference between the shortest travel time and the actual travel time to predict next locations. Further, we integrate the TTDM with a Markov model via a linear interpolation to yield a joint model, which computes the probability of reaching each possible next location and returns the top-rankings as results. We have conducted extensive experiments on two real datasets: the vehicle passage record (VPR) data and the taxi trajectory data. The experimental results demonstrate significant improvements in prediction accuracy over existing solutions. For example, compared with the Markov model, the top-1 accuracy improves by 40% on the VPR data and by 15.6% on the Taxi data

    Causal discovery with Point of Sales data

    Full text link
    [ES] GfK owns the world’s largest retail panel within the tech and durable good industries. The panel consists of weekly Point of Sales (PoS) data, such as price and sales units data at store level. From PoS data and other data, GfK derives insights and indicators to generate recommendations with regards to e.g. pricing, distribution or assortment optimization of tech and durable good products. By combining PoS data and business domain knowledge, we show how causal discovery can be done by applying the method of invariant causal prediction (ICP). Causal discovery, in essence, means to learn the actual cause and effect relations between the involved variables from data. After finding such a causal structure, one can try to further specify the function classes between those identified cause-effect pairs. Such a model could then be used to predict under intervention (predict when the underlying data generating mechanism changes) and to optimize and calculate counterfactual effects, given current and past data. In our development, we combine recent achievements in causal discovery research with PoS data structure and business domain knowledge (in the form of business rules). The key delivery of this presentation is to show fundamental differences between a causal model and a machine learning model. We further explain the advantages of combining a causal model with a machine learning model and why causal information is key to provide explainable prescriptive analytics. Furthermore, we demonstrate how to apply ICP (for sequential data) to context-specific PoS data to achieve improved models for sales unit predictions. As a result, we obtain a model for sales units that is on the one hand derived from observed data and on the other hand driven by business knowledge. Such a refined prediction model could then be used to stabilize and support other machine learning models that can be used for generating prescriptive analytics.Gmeiner, P. (2020). Causal discovery with Point of Sales data. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/149590OC

    Customer purchase behavior prediction in E-commerce: a conceptual framework and research agenda

    Get PDF
    Digital retailers are experiencing an increasing number of transactions coming from their consumers online, a consequence of the convenience in buying goods via E-commerce platforms. Such interactions compose complex behavioral patterns which can be analyzed through predictive analytics to enable businesses to understand consumer needs. In this abundance of big data and possible tools to analyze them, a systematic review of the literature is missing. Therefore, this paper presents a systematic literature review of recent research dealing with customer purchase prediction in the E-commerce context. The main contributions are a novel analytical framework and a research agenda in the field. The framework reveals three main tasks in this review, namely, the prediction of customer intents, buying sessions, and purchase decisions. Those are followed by their employed predictive methodologies and are analyzed from three perspectives. Finally, the research agenda provides major existing issues for further research in the field of purchase behavior prediction online

    Learning optimization models in the presence of unknown relations

    Full text link
    In a sequential auction with multiple bidding agents, it is highly challenging to determine the ordering of the items to sell in order to maximize the revenue due to the fact that the autonomy and private information of the agents heavily influence the outcome of the auction. The main contribution of this paper is two-fold. First, we demonstrate how to apply machine learning techniques to solve the optimal ordering problem in sequential auctions. We learn regression models from historical auctions, which are subsequently used to predict the expected value of orderings for new auctions. Given the learned models, we propose two types of optimization methods: a black-box best-first search approach, and a novel white-box approach that maps learned models to integer linear programs (ILP) which can then be solved by any ILP-solver. Although the studied auction design problem is hard, our proposed optimization methods obtain good orderings with high revenues. Our second main contribution is the insight that the internal structure of regression models can be efficiently evaluated inside an ILP solver for optimization purposes. To this end, we provide efficient encodings of regression trees and linear regression models as ILP constraints. This new way of using learned models for optimization is promising. As the experimental results show, it significantly outperforms the black-box best-first search in nearly all settings.Comment: 37 pages. Working pape

    Sequential Gaussian Processes for Online Learning of Nonstationary Functions

    Full text link
    Many machine learning problems can be framed in the context of estimating functions, and often these are time-dependent functions that are estimated in real-time as observations arrive. Gaussian processes (GPs) are an attractive choice for modeling real-valued nonlinear functions due to their flexibility and uncertainty quantification. However, the typical GP regression model suffers from several drawbacks: i) Conventional GP inference scales O(N3)O(N^{3}) with respect to the number of observations; ii) updating a GP model sequentially is not trivial; and iii) covariance kernels often enforce stationarity constraints on the function, while GPs with non-stationary covariance kernels are often intractable to use in practice. To overcome these issues, we propose an online sequential Monte Carlo algorithm to fit mixtures of GPs that capture non-stationary behavior while allowing for fast, distributed inference. By formulating hyperparameter optimization as a multi-armed bandit problem, we accelerate mixing for real time inference. Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the context of prediction for simulated non-stationary data and hospital time series data

    Bayesian Inference on Dynamic Models with Latent Factors

    Get PDF
    In time series analysis, latent factors are often introduced to model the heterogeneous time evolution of the observed processes. The presence of unobserved components makes the maximum likelihood estimation method more difficult to apply. A Bayesian approach can sometimes be preferable since it permits to treat general state space models and makes easier the simulation based approach to parameters estimation and latent factors filtering. The paper examines economic time series models in a Bayesian perspective focusing, through some examples, on the extraction of the business cycle components. We briefly review some general univariate Bayesian dynamic models and discuss the simulation based techniques, such as Gibbs sampling, adaptive importance sampling and finally suggest the use of the particle filter, for parameter estimation and latent factor extraction.Bayesian Dynamic Models, Simulation Based Inference, Particle Filters, Latent Factors, Business Cycle
    • …
    corecore