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Abstract 
In time series analysis, latent factors are often introduced to model the heterogeneous time evolution 
of the observed processes. The presence of unobserved components makes the maximum likelihood 
estimation method more difficult to apply. A Bayesian approach can sometimes be preferable since it 
permits to treat general state space models and makes easier the simulation based approach to 
parameters estimation and latent factors filtering. The paper examines economic time series models in 
a Bayesian perspective focusing, through some examples, on the extraction of the business cycle 
components. We briefly review some general univariate Bayesian dynamic models and discuss the 
simulation based techniques, such as Gibbs sampling, adaptive importance sampling and finally 
suggest the use of the particle filter, for parameter estimation and latent factor extraction. 
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1 Introduction

The analysis of dynamic phenomena is a common problem to many fields like engineering,
physics, biology, statistics and econometrics. A time varying system can be represented
through a dynamic model, defined by an observable component and an unobservable state.
The hidden state vector represents the desired information that we want to extrapolate
from the observations.
In the literature on business cycle analysis, dynamic models are used to capture two well
known features of the economic cycle: comovement and asymmetry. Asymmetry denotes
an heterogeneous dynamics of the economic variable. If the behavior of the economic time
series depends on the phase of the economic cycle, then asymmetry arises. To capture
asymmetry Goldfeld and Quandt (1973) introduced Markov Switching (MS) models for
serially uncorrelated data, while Hamilton (1989) applies MS to serially correlated time
series. In these models parameters are allowed to depend on the hidden state, represent-
ing the economic cycle. The state usually assumes two values, interpreted as positive
growth trend and negative growth trend.
All above cited approaches and in particular the original work of Hamilton (1989), have
been successively extended in many directions. Kim (1994) applies MS to dynamic linear
model, Kim and Nelson (1999) analyze general MS dynamic models and provide Bayesian
inference tools together with Markov chain Monte Carlo (MCMC) simulation techniques.
Kim and Murray (2002) and Anas and Ferrara (2002) suggest to divide the business cycle
in three phases: recession, high-growth and normal-growth. Another kind of extension
concerns the duration of the phases of the business cycle, for example Sichel (1991), Wat-
son (1994) and Diebold and Rudebusch (1996) assume that the transition probability of
the Markov chain depends on the duration of the current phase of the cycle. Finally, mul-
tivariate extensions have been suggested by Diebold and Rudebusch (1996) and Krolzig
(1997).
The seminal work of Kalman (1960) and Kalman and Bucy (1960) introduces filtering
techniques (Kalman-Bucy filter) for continuous valued, linear and Gaussian dynamic sys-
tems. Harvey (1989) extensively studies state space representation of dynamic models
for time series and treats the use of Kalman filter for states and parameters estima-
tion. Hamilton (1989) introduces a filter (Hamilton-Kitagawa filter) for discrete time
and discrete valued dynamic system with a finite number of state. Bauwens, Lubrano
and Richard (1999) compare maximum likelihood inference with Bayesian inference on
static and dynamic econometric models. Harrison and West (1997) treat the problem of
the dynamic model estimation in a Bayesian perspective. Kim and Nelson (1999) ana-
lyze Monte Carlo simulation methods for non-linear discrete valued model (MS models).
Recently, Durbin and Koopman (2001) propose an updated review on MCMC methods
for the estimation of general dynamic models, with both a Bayesian and a maximum
likelihood approach.
The main aim of this paper is to suggest the use of sequential simulation methods for
filtering and smoothing in business cycle dynamic models. These methods have been
recently developed to overcome some problems of the traditional MCMC methods. As
pointed out by Liu and Chen (1998), the Gibbs sampler is less attractive when considering
on-line data processing. Furthermore, Gibbs sampler may be inefficient when simulated
states are very sticky and the sampler has difficulties to move in the state space. In these
situations, the use of sequential Monte Carlo techniques and in particular of particle fil-

2



ter algorithms may result more efficient. Doucet, Freitas and Gordon (2001) provide the
state of the art on sequential Monte Carlo methods and discuss both applications and
theoretical convergence results for these algorithms, with special attention to particle
filters.
The paper is structured as follows. Section 2 introduces the general representation of
a dynamic model in a Bayesian framework and deals with conditionally normal linear
models. Section 3 reviews simulation based methods. In particular section 3.1 reviews
MCMC methods, section 3.2 presents an adaptive importance sampling algorithm. Sec-
tion 3.3 discusses particle filter algorithms. Finally, section 4 provides an application of
the particle filter to business cycle models and section 5 concludes.

2 Bayesian Dynamic Models

We consider a quite general formulation of a probabilistic dynamic model and review
some fundamental relations for Bayesian inference on it. This definition includes time
series models analyzed in Kalman (1960), Hamilton (1989), Harrison and West (1997)
and in Doucet, Freitas and Gordon (2001).
We denote {xt; t ∈ N}, xt ∈ X , the hidden state vectors of the system, {yt; t ∈ N0},
yt ∈ Y , the observable variables and θ ∈ Θ the parameter vector. We assume that the
state space, observation space and parameter space are X ⊂ R

nx , Y ⊂ R
ny and Θ ⊂ R

nθ ,
respectively. nx, ny and nθ represent the dimensions of the state, observable variable and
parameter vectors.
This general Bayesian state space representation accounts also for nonlinear and non-
Gaussian components and is given by an initial distribution p(x0|θ), a measurement den-
sity p(yt|xt,y1:t−1, θ) and a transition density p(xt|x0:t−1,y1:t−1, θ),

yt ∼ p(yt|xt,y1:t−1, θ) (1)

xt ∼ p(xt|x0:t−1,y1:t−1, θ) (2)

x0 ∼ p(x0|θ) , with t = 1, . . . , T (3)

where p(x0|θ) can be interpreted as the prior distribution on the initial state of the

system. By x0:t
∆
= (x0, . . . ,xt) we denote the collection of vectors up to time t, while by

x−t
∆
= (x0, . . . ,xt−1,xt+1, . . . ,xT ) we denote the collection of all the vectors without the

t-th element.
If the transition density depends on the past only through the last value of the hidden
state vector, the dynamic model is defined Markovian of the first-order, i.e.

(yt|xt) ∼ p(yt|xt,y1:t−1, θ) (4)

(xt|xt−1) ∼ p(xt|xt−1,y1:t−1, θ) (5)

x0 ∼ p(x0|θ) , with t = 1, . . . , T. (6)

To assume the first-order Markov property is not restrictive because a Markov model of
order p can always be rewritten as a first-order Markovian model.
Let us now see the three main issues necessary for inference: filtering, prediction and
smoothing.
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2.1 State Estimation

We are interested in estimating the density p(xt|y1:s, θ) when parameters are known. If
t = s the density of interest is called filtering density, if t < s it is called smoothing
density and if t > s it is called prediction density. We assume that at time t the density
p(xt−1|y1:t−1, θ) is known2. By applying the Chapman-Kolmogorov transition density, we
obtain the one-step-ahead prediction density

p(xt|y1:t−1, θ) =

∫
X

p(xt|xt−1,y1:t−1, θ)p(xt−1|y1:t−1, θ)dxt−1 (7)

When a new observation yt becomes available, using the Bayes theorem, it is possible to
update the prediction density and to filter the current state of the system. The filtering
density is:

p(xt|y1:t, θ) =
p(yt,xt|y1:t−1, θ)

p(yt|y1:t−1, θ)
=

p(yt|xt,y1:t−1, θ)p(xt|y1:t−1, θ)∫
X p(yt|xt,y1:t−1, θ)p(xt|y1:t−1, θ)dxt

(8)

where p(xt|y1:t−1, θ) is the prediction density obtained at the previous step.
At each date t, it is possible to determine the K-steps-ahead prediction density of the
state vector, conditional on the available information y1:t. It can be evaluated iteratively,
as follows:

first step p(xt+1|y1:t, θ) =
∫
X p(xt+1|xt,y1:t, θ)p(xt|y1:t, θ)dxt (9)

k-th step p(xt+k|y1:t, θ) =
∫
X p(xt+k|xt+k−1,y1:t, θ)p(xt+k−1|y1:t, θ)dxt+k−1 (10)

where p(xt+k|xt+k−1,y1:t, θ) =
∫
Yk−1 p(xt+k|xt+k−1,y1:t+k−1, θ)p(dyt+1:t+k−1|y1:t, θ)

and Yk = ⊗k
i=1Yi is the k-times Cartesian product of the state space, with k = 1, . . . , K.

Similarly, the K-steps-ahead prediction density of the observable variable yt+K condi-
tional on the available information is determined as follows:

p(yt+K |y1:t, θ) =

∫
Y

p(yt+K |xt+K ,y1:t+K−1, θ)p(dyt+1:t+K−1|y1:t, θ)p(dxt+K |y1:t, θ) (11)

With general dynamics, due to the high number of integrals that must be solved, previous
densities may be very difficult to evaluate. From a numerical point of view, simulation
methods, like MCMC algorithms or particle filters, allow us to overcome these difficulties.
From a modelling point of view to obtain analytical relations we need to introduce some
simplifying hypothesis on the dynamics of the variables. For example if we assume that
the evolution of the dynamic model does not depend on the past values of the observable
variable y1:t, then equations (4), (5) and (6) become:

(yt|xt) ∼ p(yt|xt, θ) (12)

(xt|xt−1) ∼ p(xt|xt−1, θ) (13)

x0 ∼ p(x0|θ) , with t = 1, . . . , T . (14)

2Observe that if t = 1 the density p(x0|y0, θ) = p(x0|θ) is the initial distribution of the dynamic
model.
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Figure 1: The causality structure of a Markov dynamic model with hidden states. A
indicates the variable is known, while a circle indicates a hidden variable.

The causality structure of this model is represented through the Directed Acyclic Graph
(DAG) of Fig. 1. Under the previous assumptions the filtering and prediction densities
simplify as follows:

p(xt|y1:t−1, θ) =

∫
X

p(xt|xt−1, θ)p(xt−1|y1:t−1, θ)dxt−1 (15)

p(xt|y1:t, θ) =
p(yt|xt, θ)p(xt|y1:t−1, θ)

p(yt|y0:t−1, θ)
(16)

p(xt+K |y1:t, θ) =

∫
X

p(xt+K |xt+K−1, θ)p(xt+K−1|y1:t, θ)dxt+K−1 (17)

p(yt+K |y1:t, θ) =

∫
X

p(yt+K |xt+K , θ)p(xt+K |y1:t, θ)dxt+K . (18)

We conclude this section with two important recursive relations. Both these relations
can be proved starting from the definition of joint smoothing density and assuming that
the Markov property holds. The first relation is the sequential filtering equation:

p(x0:T |y1:T , θ) = p(x0:T−1|y1:T−1, θ)
p(yT |xT , θ)p(xT |xT−1, θ)

p(yT |y1:T−1, θ)
. (19)

which is particularly useful when processing data sequentially and it is fundamental in
implementing particle filter algorithms. The second relation provides the factorization of
the smoothing density of the state vectors given the information available at time T :

p(x0:T |y1:T , θ) = p(xT |y1:T , θ)
T−1∏
t=0

p(xt|xt+1,y1:t, θ). (20)

Note that the density p(xt|xt+1,y1:t, θ), which appears in the joint smoothing density,
can be represented through the filtering and the prediction densities3:

p(xt|xt+1,y1:t, θ) =
p(xt+1|xt,y1:t, θ)p(xt|y1:t, θ)

p(xt+1|y1:t, θ)
. (21)

3For proofs see Billio, Casarin and Sartore (2004).
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This factorization of the smoothing density is also relevant when inference is carried out
through simulation methods4.
We introduce now an important class of dynamic models, which does not admit a tractable
analytical representation of the filtering, prediction and smoothing densities. These are
conditional normal linear models and are widely used in business cycle analysis (see Kim
and Nelson (1999)).

2.2 Conditionally Gaussian Linear Models

Usually, models used in business cycle analysis belong to the class of the conditionally
normal dynamic linear models, defined as follows:

yt = F (st)xt + V (st)εt εt ∼ N(0, I)

xt+1 = G(st)xt + W (st)ηt ηt ∼ N(0, I) (22)

where εt is independent of ηt and st is a sequence of random variables. Harrison and West
(1997) call this model multi-process model: in their classification if st = st−1 = s, ∀t the
model is a multi-process of the first kind, while if st is a stochastic process, the model is
a multi-process of second kind. Note that if st is a discrete time and finite state Markov
chain with known transition probabilities, the model is also called jump Markov linear
system or Markov switching linear model with parameters evolving over time.

Stochastic latent factor model with Markov switching - Economic phases can be repre-
sented through a Markov switching hidden process. Let yt be the observable variable and
xt the latent factor. The switching model is:

yt = αxt + σεεt εt ∼ N(0, 1) (23)

xt+1 = µ(st+1) + ρ xt + σηηt+1 ηt+1 ∼ N(0, 1) (24)

st ∼ Markov(P), with st ∈ {0, 1} (25)

where µ(st) = µ + νst, P is the transition matrix and εt is independent of ηt ∀t.
This kind of model can be found in Kim and Nelson (1999). The absence of analytical
filtering densities makes Bayesian simulation based inference a possible solution to the
filtering problem. Fig. 2 exhibits simulation paths of 1, 000 observations5 of the Markov
switching process, the latent factor and the observable variable, respectively.

3 Simulation Based Filtering

In the following, we focus on the Bayesian approach and on simulation based methods
for nonlinear and non-Gaussian models. First, MCMC methods are reviewed, then some

4See for example the multi-move Gibbs sampler of Carter and Köhn (1994) and the particle filter
algorithms. Only in some well known cases, these filtering densities admit an analytical form. For the
normal linear dynamic model, filtering and smoothing density are given by the Kalman filter. See also
Harrison and West (1997) for a Bayesian representation of the Kalman filter.

5We use parameters estimated in Kim and Nelson (1999) to simulate the MS model.
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Figure 2: Simulation from the Markov switching stochastic trend model given in Example
2.2. We set parameters to be α = 0.3, σε = 0.1,ρ = 0.8, µ0 = −2.5, µ1 = 0.5, ση =
0.1, p11 = 0.97, p22 = 0.99.

basic sequential Monte Carlo simulation methods are introduced. Mainly, we refer to
sequential importance sampling algorithm and to more advanced sequential Monte Carlo
algorithms called Particle Filters. Finally we investigate the problem of estimation of
the parameter vector both in a Bayesian MCMC based approach and in a sequential
data-processing approach.

3.1 The Gibbs Sampler

In previous sections we examine some estimation algorithms for filtering, predicting and
smoothing the state vector of a quite general probabilistic dynamic model. To show how
Gibbs sampling applies, we consider the following dynamic model:

(yt|xt) ∼ p(yt|xt,y1:t−1, θ) (26)

(xt|xt−1) ∼ p(xt|xt−1,y1:t−1, θ) (27)

x0 ∼ p(x0|θ) (28)

θ ∼ p(θ) , with t = 1, . . . , T. (29)

The estimation problem is solved in a Bayesian perspective by evaluating the mean of
the joint posterior density of the state and parameter vectors p(x0:T , θ|y1:T ). Tanner and
Wong (1987) motivates this solution by the data augmentation principle, which consists
in considering the hidden state vectors as nuisance parameters.
If an analytical evaluation of the posterior mean is not possible, then simulation methods
and in particular MCMC apply. The most simple solution is to implement a single-move
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Gibbs sampler (see Carlin, Polson and Stoffer (1992) and Harrison and West (1997)). This
method generates the states one at a time using the Markov property of the dynamic
model and conditioning on the neighboring states.
The conditional posterior distributions of the parameter and state vectors are:

p(θ|x0:T ,y1:T ) ∝ p(θ)p(x0|θ)
T∏

t=1

p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ) (30)

p(x0:T |y1:T , θ) ∝ p(x0|θ)
T∏

t=1

p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ). (31)

The basic idea of the Gibbs sampler is to simulate sequentially from the parameter poste-
rior (parameter simulation step) in equation (30), conditionally on the state vectors, and
from the state posterior (data augmentation step) in equation (31), conditionally on the
parameter vector simulated at the previous step. When conditional distributions cannot
be directly simulated, the corresponding steps in the Gibbs algorithm can be replaced
by Metropolis-Hastings steps. The resulting algorithms are called hybrid sampling algo-
rithms and they are validated in Tierney (1994).
The single-move Gibbs sampler for the state vectors is then obtained by drawing each
state vector conditionally on the other simulated state vectors and on the simulated
parameter vector.

Algorithm 1 - Single-Move Gibbs Sampler -

(i) Simulate θ(i) through a generic Gibbs sampler;

(ii) Given θ(i) and x
(i)
0:T , simulate state vectors as follows:

1. x
(i+1)
0 ∼ p(x0|x(i)

2:T ,y1:T , θ(i+1))

2. x
(i+1)
1 ∼ p(x1|x(i+1)

0 ,x
(i)
2:T ,y1:T , θ(i+1))

3. . . .

4. x
(i+1)
T ∼ p(xT |x(i+1)

0:T−1,y1:T , θ(i+1))

The single-move algorithm can be implemented for general dynamic models. Moreover,
note that the dynamic model given in equations (26)-(29) satisfies the Markov property.
In this case the full posterior density of the state vector, given in the single-move Gibbs
sampler (see the Algorithm 1), is simply:

p(xt|x−t,y1:T , θ) ∝ p(yt|xt,y1:t−1, θ)p(xt|xt−1,y1:t−1, θ)p(xt+1|xt,y1:t, θ) (32)

and the implementation of the algorithm becomes easier. For a proof see Billio, Casarin
and Sartore (2004).
Although the simplification due to the Markov property makes the single-move Gibbs
sampler easier to implement, some problems arise. In particular, the Markovian de-
pendence between neighboring states generates correlation between outputs of the Gibbs
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sampler and origins slower convergence to the posterior distribution (see Carter and Köhn
(1994)). As consequence, if an adaptive importance sampling is carried out by running
parallel single-move Gibbs samplers, the number of replication before convergence of the
parameter estimates could be very high.
A general method to solve this autocorrelation problem in the output of the Gibbs sam-
pler is to group parameters (or states) and to simulate them simultaneously. This idea
has been independently applied by Carter and Köhn (1994) and by Frühwirth-Schnatter
(1994) to dynamic models and the resulting algorithm is the multi-move Gibbs sampler.
The main idea of this method is to generate simultaneously all the state vectors using
analytical filtering and smoothing relations. Their approach is less general than that of
Carlin, Polson and Stoffer (1992), but for linear dynamic models with Gaussian mixture
innovations in the observation equation, it is more efficient. In particular the multi-move
Gibbs sampler has a faster convergence to the posterior distribution and the posterior
moment estimates have smaller variance. These results are supported theoretically by
Liu, Wong and Kong (1994, 1995) and Müller (1992), who show that generating variables
simultaneously produces faster convergence6. Furthermore Frühwirth-Schnatter (1994)
shows how the use of the multi-move Gibbs sampler improves the convergence rate of an
adaptive importance sampling algorithm and makes a comparison with a set of parallel
single-move Gibbs samplers.
The implementation of the multi-move Gibbs sampler depends on the availability of the
analytical form of filtering and smoothing densities. We give here a general representa-
tion of the algorithm, but its implementation is strictly related to the specific dynamic
model.

Algorithm 2 - Multi-Move Gibbs Sampler -

(i) Simulate θ(i) through a generic Gibbs sampler;

(ii) Given θ(i) and x
(i)
0:T , run analytical filtering relations to estimate prediction and fil-

tering densities for each t = 0, . . . , T

1. p̂(xt|y1:t−1, θ
(i+1))

2. p̂(xt|y1:t, θ
(i+1))

(iii) Simulate state vectors by means of the recursive factorization of the smoothing density

3. x
(i+1)
T ∼ p(xT |y1:T , θ(i+1))

4. x
(i+1)
T−1 ∼ p(xT−1|x(i+1)

T ,y1:T−1, θ
(i+1))

5. . . .

6. x
(i+1)
1 ∼ p(x1|x(i+1)

2 ,y1, θ
(i+1))

6The idea of grouping parameters (or hidden states) when simulating is now commonly used in
Bayesian inference on stochastic models with latent factors (see for example Shephard (1994) and Shep-
hard and Pitt (1997), who discuss multi-move MCMC algorithms for non-Gaussian time series models).
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The algorithm has been derived trough the recursive smoothing relation given in equation
(20). Moreover, at each simulation step the posterior density is obtained by means of the
estimated prediction and filtering densities. By applying the fundamental relation given
in equation (21) we obtain

p(xt|x(i+1)
t+1 ,y1:t, θ

(i+1)) =
p(x

(i+1)
t+1 |xt, θ

(i+1))p̂(xt|y1:t, θ
(i+1))

p̂(x
(i+1)
t+1 |y1:t, θ(i+1))

(33)

We stress once more that the multi-move Gibbs sampler does not easily apply to nonlinear
and non-Gaussian models. Thus in a MCMC approach, the single-move Gibbs sampler
remains the only numerical solution to the estimation problem.
A sequential sampling approach represents another possible solution to this problem and
sequential Monte Carlo algorithms allow us to make inference on general dynamic models.

3.2 Adaptive Importance Sampling

The adaptive sequential importance sampling scheme is a sequential stochastic simula-
tion method which adapts progressively to the posterior distribution. It also uses the
information contained in the samples, which are simulated at the previous steps. The
adaptation mechanism is based on the discrete posterior approximation and on the ker-
nel density reconstruction of the prior and posterior densities. West (1992) proposed this
technique to estimate parameters of static models. West (1993) and West and Harrison
(1997) successively extended the method to estimate parameters and states of dynamic
models.
The first key idea is to use importance sampling (see Casella and Robert (1999)) to ob-
tain a weighted random grid of evaluation points in the state space. Let {xi

t, w
i
t}nt

t=1 be
a sample drawn from the posterior p(xt|y1:t, θ) through an importance density gt. The
prediction density, given in equation (15), can be approximated as follows:

p(xt+1|y1:t, θ) ≈
nt∑
i=1

wi
tp(xt+1|xi

t, θ) (34)

Algorithm 3 - Adaptive Sequential Importance Sampling -

Given a weighted random sample {xi
t, w

i
t}nt

t=1, for i = 1, . . . , nt,

1. Simulate x̃i
t+1 ∼ p(xt+1|xi

t, θ)

2. Calculate mt =
∑nt

i=1 wi
tx̃

i
t+1, Vt =

∑nt

i=1 wi
t(x̃

i
t+1 − mt)

′(x̃i
t+1 − mt)

3. Generate from the Gaussian kernel xi
t+1 ∼

∑nt

i=1 wi
tN(xt+1|(mta + xi

t(1 − a)), h2Vt)

4. Update the weights wi
t+1 ∝ wi

t
p(yt+1|xi

t+1)p(xi
t+1|xi

t)

N(xi
t+1|(mta+(1−a)xi

t),h
2Vt)
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The second key idea is to propagate points of the stochastic grid by means of the transition
density and to build a smoothed approximation of the prior density. This approximation
is obtained through a kernel density estimation. West (1993) suggested to use Gaussian
or Student-t kernels due to their flexibility in approximating other densities. For example,
the Gaussian kernel reconstruction is:

p(xt+1|y1:t, θ) ≈
nt∑
i=1

wi
tN(xt+1|mta + xi

t(1 − a), h2Vt) (35)

The final step of the algorithm consists in updating the prior density and in producing
a random sample, {xi

t+1, w
i
t+1}nt+1

i=1 , from the resulting posterior density. The sample is
obtained by using the kernel density estimate as importance density.
The main advantage of this algorithm relies in the smoothed reconstruction of the prior
density. This kernel density estimate of the prior allows to obtain adaptive importance
densities and to avoid the information loss, which comes from cumulating numerical ap-
proximation over time. However, adaptive importance sampling requires the calibration
of parameters a and h, which determine the behavior of the kernel density estimate.
The choice of these shrinkage parameters influences the convergence of the algorithm and
heavily depends on the complexity of the model.
Adaptive importance sampling belongs to a more general class of sequential simulation
algorithms, called particle filters, which will be reviewed in the next section.

3.3 Particle Filters

In the following we focus on Particle filters, also referred in the literature as Bootstrap
filters, Interacting particle filters, Condensation algorithms or Monte Carlo filters and on
the estimation of the states7.
Assume that the parameter vector, θ is known. At each step t + 1, as a new observation
yt+1 becomes available, we are interested in predicting and filtering the hidden variables
and the parameters. In particular, we want to approximate the prediction and filtering
densities given in equations (15) and (16) by means of sequential Monte Carlo methods.
Assume that a weighted sample {xi

t, w
i
t}N

i=1 has been drawn from the filtering density at
time t,

p̂(xt|y1:t, θ) =
N∑

i=1

wi
tδ{xi

t}(dxt) (36)

Each simulated value xi
t is called particle and the particles set, {xi

t, w
i
t}N

i=1, can be viewed
as a random discretization of the state space X , with associated weights wi

t. It is possible
to approximate, by means of this particle set, the prediction density given in equation
(15) as follows:

p(xt+1|y1:t, θ) =

∫
X

p(xt+1|xt, θ)p(xt|y1:t, θ)dxt �
N∑

i=1

wi
tp(xt+1|xi

t, θ) (37)

7See also Doucet, Freitas and Gordon (2001) for an updated review on particle filter techniques, their
applications and the main convergence results.
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Figure 3: Evolution of the particle set in the Sequential Importance Sampling algorithm.

which is called empirical prediction density and is denoted by p̂(xt+1|y1:t, θ). By applying
the Chapman-Kolmogorov equation, it is also possible to obtain an approximation of the
filtering density given in equation (16),

p(xt+1|y1:t+1, θ) ∝ p(yt+1|xt+1, θ)p(xt+1|y1:t, θ) �
N∑

i=1

p(yt+1|xt+1, θ)p(xt+1|xi
t, θ)w

i
t (38)

which is called empirical filtering density and is denoted by p̂(xt+1|y1:t+1, θ).
Assume now that the quantity E(f(xt+1)|y1:t+1) is of interest. It can be evaluated nu-
merically by a Monte Carlo sample {xi

t+1, w
i
t+1}N

i=1, drawn from the filtering distribution

E(f(xt+1)|y1:t+1) �
1
N

∑N
i=1 f(xi

t+1)w
i
t+1

1
N

∑N
i=1 wi

t+1

. (39)

A simple way to obtain a weighted sample from the filtering density at time t + 1 is to
apply importance sampling to the empirical filtering density given in equation (38). This
step corresponds to propagate the initial particle set (see figure 3) through the importance
density q(xt+1|xi

t,yt+1, θ). Moreover, if we propagate each particle through the transition
density p(xt|xi

t−1, θ), then the particle weights update as follows:

wi
t+1 ∝

p(yt+1|xt+1, θ)p(xt+1|y1:t, θ)w
i
t

q(xt+1|xi
t,yt+1, θ)

= wi
t p(yt+1|xi

t+1, θ) (40)

This is the natural choice for the importance density, because the transition density rep-
resents a sort of prior at time t for the state xt+1. However, as underlined in Pitt and
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Shephard (1999), this strategy is sensitive to outliers8. The basic particle filter developed
through the previous equations is called Sequential Importance Sampling (SIS). In Algo-
rithm 4, we give a pseudo-code representation of this method.
Sequential importance sampling permits to obtain recursive updating of the particle
weights and is based on the sequential decomposition of the joint filtering density and on
a particular choice of the importance density. To highlight these aspects, we consider the
smoothing density p(x0:t+1|y1:t+1, θ) of the state vectors and approximate it as follows:

p(x0:t+1|y1:t+1, θ) �
N∑

i=1

w̃i
t+1δ{xi

0:t+1}(dx0:t+1) (41)

by simulating {xi
0:t+1}N

i=1 from a proposal distribution q(x0:t|y1:t, θ) and by correcting the
weights of the resulting empirical density. The correction step comes from an importance
sampling argument, thus the unnormalized particle weights9 are defined as follows:

wi
t+1

∆
=

p(xi
0:t+1|y1:t+1, θ)

q(xi
0:t+1|y1:t+1, θ)

. (42)

The key idea used in the SIS algorithm consists in obtaining a recursive relation for
the weights updating. This property makes them particulary appealing for on-line ap-
plications. Assume that the dynamic model of interest is the one described in equa-
tions (12), (13) and (14) and choose the importance density to factorize as follows:
q(x0:t+1|y1:t+1, θ) = q(x0:t|y1:t, θ)q(xt+1|x0:t,y1:t+1, θ), then the weights can be rewritten
in the following recursive form:

wi
t+1 = wi

t

p(yt+1|xi
t+1, θ)p(xi

t+1|xi
t, θ)

q(xi
t+1|xi

t+1,yt+1, θ)
(43)

This relation is a direct consequence of the Bayes rule and the Markov property of the
system.

Algorithm 4 - SIS Particle Filter - Given the initial set of particles {xi
t, w

i
t}N

i=1, for
i = 1, . . . , N :

1. Simulate xi
t+1 ∼ q(xt+1|xi

t,yt+1, θ)

2. Update the weights: wi
t+1 ∝ wi

t

p(yt+1|xi
t+1,θ) p(xt+1|xi

t;θ)

q(xt+1|xi
t,yt+1,θ)

8See also Crisan and Doucet (2000), for a discussion on the choice of the importance densities.
They focused on the properties of the importance density, which are necessary conditions for the a.s.
convergence of the sequential Monte Carlo algorithm.

9Note that importance sampling requires to know the importance and the target distributions up to
a proportionality constant, thus the unnormalized weights may not sum to one. However normalized
importance sampling weights can be easily obtained as follows

w̃i
t =

wi
t∑N

j=1 wj
t

i = 1, . . . , N and t = 1, . . . , T.

The normalization procedure causes the loss of the unbiasness property.
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It is well known in the literature (see for example Arulampalam et al. (2001)), that
basic SIS algorithms have a degeneracy problem. After some iterations the empirical
distribution degenerates into a single particle, because the variance of the importance
weights is non-decreasing over time (see Doucet et al. (2000)). In order to solve this
degeneracy problem, the Sampling Importance Resampling (SIR) algorithm has been
introduced by Gordon et al. (1993). This algorithm belongs to a wider class of bootstrap
filters, which use a re-sampling step to generate a new set of particles with uniform
weights. This step introduces diversity in the particle set, avoiding degeneracy.

Algorithm 5 - SIR Particle Filter - Given the initial set of particles {xi
t, w

i
t}N

i=1, for
i = 1, . . . , N :

1. Simulate xi
t+1 ∼ q(xt+1|xi

t,yt+1, θ)

2. Update the weights: w̃i
t+1 ∝ p(yt+1|xi

t+1, θ)

3. Normalize the weights: w̄i
t+1 = w̃i

t+1 (
∑N

j=1 w̃j
t+1)

−1, for i = 1, . . . , N .

4. Simulate {xi
t+1}N

i=1 from the empirical density {xi
t, w̄

i
t}N

i=1

5. Assign wi
t+1 = 1/N , for i = 1, . . . , N .

Note that in the SIR particle filter, we assumed q(xt+1|xi
t,yt+1, θ) = p(xt+1|xi

t, θ). More-
over, due to the resampling step, the weights are uniformly distributed over the particle
set: wi

t = 1/N . Thus, the weights updating relation becomes: w̃i
t+1 ∝ wi

t p(yt+1|xi
t+1, θ) ∝

p(yt+1|xi
t+1, θ).

However, the basic SIR algorithm produces a progressive impoverishment of the infor-
mation contained in the particle set, because of the resampling step and of the fact that
particles do not change over the filter iterations. Many solutions have been proposed in
literature. We recall the Regularised Particle Filter proposed by Musso et al. (2001),
which is based on a discretisation of the continuous state space. Gilks and Berzuini
(2001) propose the SIR-Move algorithm, which moves particles after the re-sampling
step. Thus, particle value changes and the impoverishment is partially avoided. Finally,
Pitt and Shephard (1999) introduce the Auxiliary Particle Filter (APF) and apply it to
a Gaussian ARCH-type stochastic volatility model. They find that the auxiliary particle
filter works well and that the sensibility to outliers is lower than in the basic filters.
In order to avoid re-sampling, the APF algorithm uses an auxiliary variable to select most
representative particles and to mutate them through a simulation step. Then, weights
of the regenerated particles are updated through an importance sampling argument. In
this way particles with low probability do not survive to the selection and the informa-
tion contained in the particle set is not wasted. In particular, the auxiliary variable µi

t

contains and resumes the information on the previous particle set and it is used in the
selection step to sample the random particle index. Note that the empirical filtering den-
sity given in equation (38) is a mixture of distributions, which can be reparameterised by
introducing an auxiliary variable i ∈ {1, . . . , N}, which indicates the component of the
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mixture. The joint distribution of the hidden state and of the index i is then:

p(xt+1, i|y1:t+1, θ) =
p(yt+1|y1:t,xt+1, i)

p(yt+1|y1:t, θ)
p(xt+1, i|y1:t, θ) = (44)

=
p(yt+1|xt+1, θ)

p(yt+1|y1:t, θ)
p(xt+1|xi

t, θ)w
i
t.

The basic idea of the APF is to refresh the particle set while reducing the loss of in-
formation due to this operation. Thus, the algorithm generates a new set of particles
by jointly simulating the particle index i (selection step) and the selected particle value
xt+1 (mutation step) from the reparameterised empirical filtering density, according to
the following importance density:

q(xj
t+1, i

j|y1:t+1, θ) = q(xj
t+1|y1:t+1, θ)q(i

j|y1:t+1, θ)

= p(xj
t+1|xij , θ)(p(yt+1|µij

t+1, θ)w
ij

t ) (45)

for j = 1, . . . , N . Note that the index is sampled using weights which are proportional
to the observation density conditional on a summary statistics of the initial particle set.
In this way, less informative particles are discarded. The information contained in each
particle is evaluated with respect to both the observable variable and the initial particle
set. By following the usual importance sampling argument, the updating relation for the
particle weights is:

wj
t+1

∆
=

p(xj
t+1, i

j|y1:t+1, θ)

q(xj
t+1, i

j|y1:t+1, θ)
=

p(xj
t+1|xij , θ)p(yt+1|xj

t+1, θ)w
ij

t

p(xj
t+1|xij , θ)p(yt+1|µij

t+1, θ)w
ij
t

=
p(yt+1|xj

t+1, θ)

p(yt+1|µij
t+1, θ)

(46)

Algorithm 6 - Auxiliary Particle Filter - Given the initial set of particles {xj
t , w

j
t}N

j=1,
for j = 1, . . . , N ,

1. Calculate µj
t+1 = E(xt+1|xj

t , θ)

2. Simulate ij ∼ q(i|y1:t+1, θ) ∝ wi
t p(yt+1|µi

t+1, θ) with i ∈ {1, . . . , N}
3. Simulate xj

t+1 ∼ p(xt+1|xij

t , θ)

4. Update particles weights: w̃j
t+1 ∝ p(yt+1|xj

t+1,θ)

p(yt+1|µij
t+1,θ)

.

5. Normalize the weights: wi
t+1 = w̃i

t+1 (
∑N

j=1 w̃j
t+1)

−1, for i = 1, . . . , N .

We conclude this section with a brief discussion of the problem of parameter estimation,
for dynamic models with hidden variables, in a sequential data-processing approach. Note
that following the engineering literature, a common way to solve the parameter estimation
problem is to treat parameters θ as hidden state of the system (see Berzuini et al. (1997)).
The model is restated assuming time dependent parameter vectors θt, and imposing the
constraint: θt = θt−1 on its dynamic.
In principle, parameter estimate and state filtering can be treated separately (see Storvik
(2002)). In many applications of particle filter techniques, parameters are treated as
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known and MCMC parameter estimates are used instead of the true parameter values.
But in this way parameter estimate are not continuously updated as the hidden states.
MCMC is typically a off-line approach, then it does not allow the sequential updating of
parameter estimates, as new observations arrive. Moreover, when applied sequentially,
MCMC estimation method is more time consuming than particle filter algorithms.
One of the main issue in research on particle filter is the inclusion of the parameter
estimation procedure in the state filtering algorithm. See for example Berzuini et al.
(1997) and Storvik (2002) for a general discussion of the problem, Liu and West (2001)
for the joint application of adaptive importance sampling for parameter estimation and
APF for hidden state filtering. See also Casarin (2004a), (2004b) for an updated review
and an application to heavy tail stochastic volatility models.

4 An Application to Business Cycle Models

The aim of this section is to show how particle filter algorithms apply to a widely used
class of business cycle models: Markov switching stochastic latent factor models. We
apply APF algorithm to synthetic data in order to verify the efficiency of the algorithm
and to detect possible degeneracy of the APF algorithm.
We refer to the model of Example 2.2 and apply the algorithm of to Liu and West (2001).
This algorithm combines adaptive importance sampling for sequential estimation of the
parameter vector with the auxiliary particle filter for filtering and predicting the hidden
state. Observe that the latent structure of the MS model in the example exhibits two
levels. The first one is given by the stochastic latent factor xt and the second one is given
by the regime switching process st.
We adapt the algorithm of Liu and West (2001) and obtain the following particle filter
algorithm.

Algorithm 7 Given an initial set of particles {xi
t, s

i
t, θ

i
t, w

i
t}N

i=1,

1. Compute Vt =
∑N

i=1(θ
i
t − θ̄t)(θ

i
t − θ̄t)

′wi
t and θ̄t =

∑N
i=1 θi

tw
i
t

2. For i = 1, . . . , N and with a and b well chosen tuning parameters, calculate the
following summarizing constant:

(a) S̃i
t+1 = arg max

l∈1,2
P(st+1 = l|st = si

t)

(b) X̃ i
t+1 = µi

t + νi
t S̃

i
t+1 + ρi

tx
i
t

(c) θ̃i
t = aθi

t + (1 − a)θ̄t, where θ̃ = (α̃, σ̃ε, ρ̃, µ̃, ν̃, σ̃η, p̃11, p̃22)

3. For i = 1, . . . , N :

(a) Simulate ki ∝ q(k|y1:t+1, θ) = N(yt+1|α̃k
t X̃

k
t+1, σ̃

k
ε t)w

k
t , with k ∈ {1, . . . , N}

(b) Simulate θi
t+1 from N(θ̃ki

t , b2Vt)

(c) Simulate si
t+1 ∈ {1, 2} from P(si

t+1 = i|ski

t )
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(d) Simulate xi
t+1 from N(µi

t+1 + νi
t+1s

i
t+1 + ρi

t+1x
ki

t , σi
η t+1)

4. Update weights w̃i
t+1 ∝ N(yt+1|αi

t+1x
i
t+1, σ

i
ε t+1)/N(yt+1|α̃ki

t X̃ki

t+1, σ̃
ki

ε t)

5. Normalize weights wi
t+1 = w̃i

t+1 (
∑N

i=1 w̃i
t+1)

−1, for i = 1, . . . , N .

The tuning parameters a and b are equal to 3δ−1
2δ

and
√

1 − a2 respectively, where we
chose δ = 0.99 as suggested in West (1993).
Figure 4 shows on-line estimation of parameters α, σε, ρ, µ0, µ1, ση, p11, p22 obtained
by running APF algorithm on the synthetic dataset exhibited in figure 2. We use a
set of N = 1000 particles to obtain the empirical filtering and prediction densities. All
computations have been carried out on a Pentium IV 2.4 Ghz, and the APF algorithm has
been implemented in GAUSS 4.0. Figure 5 shows on-line estimation of the latent factor
xt. To detect the absence of degeneracy in the output of the APF algorithm we evaluate
at each step the Survival Rate: it is the number of particles survived to the selection step
over the total number of particles. Particle set degenerates when persistently exhibiting
a high number of dead particles from a generation to the subsequent one. Survival rate
is calculated as follows:

SRt = {N −
N∑

i=1

I{0}(Card(Ii,t))}N−1 (47)

where Ii,t = {j ∈ {1, . . . , N}|ijt = i} is the set of all random index values, which select
at time t the i-th particle. If at time t the particle k does not survive then the set Ik,t

becomes empty. Figure 5 shows the survival rate at each time step. The rate does not
decrease thus we conclude that the APF algorithm does not degenerate in our simulation
study.

5 Conclusion

We describe the Bayesian approach to general dynamic models analysis. We briefly
review the literature on the business cycle modelling, focusing on the Bayesian approach
and recognizing the importance of simulation based methods. To better understand
the usefulness of simulation based methods in business cycle analysis, we analyze the
problems of state filtering and parameter estimation for a quite general class of dynamic
models used in time series analysis and exhibit general filtering, predicting and smoothing
relations. Furthermore, we focus on Bayesian simulation based inference, suggest the
use of sequential simulation techniques to make inference on business cycle models and
provide an application on synthetic data.
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