368 research outputs found

    Computer-Assisted Characterization of Prostate Cancer on Magnetic Resonance Imaging

    Get PDF
    Prostate cancer (PCa) is one of the most prevalent cancers among men. Early diagnosis can improve survival and reduce treatment costs. Current inter-radiologist variability for detection of PCa is high. The use of multi-parametric magnetic resonance imaging (mpMRI) with machine learning algorithms has been investigated both for improving PCa detection and for PCa diagnosis. Widespread clinical implementation of computer-assisted PCa lesion characterization remains elusive; critically needed is a model that is validated against a histologic reference standard that is densely sampled in an unbiased fashion. We address this using our technique for highly accurate fusion of mpMRI with whole-mount digitized histology of the surgical specimen. In this thesis, we present models for characterization of malignant, benign and confounding tissue and aggressiveness of PCa. Further validation on a larger dataset could enable improved characterization performance, improving survival rates and enabling a more personalized treatment plan

    Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review

    No full text
    International audienceProstate cancer is the second most diagnosed cancer of men all over the world. In the last decades, new imaging techniques based on Magnetic Resonance Imaging (MRI) have been developed improving diagnosis.In practise, diagnosis can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. In this regard, computer-aided detection and computer-aided diagnosis systemshave been designed to help radiologists in their clinical practice. Research on computer-aided systems specifically focused for prostate cancer is a young technology and has been part of a dynamic field ofresearch for the last ten years. This survey aims to provide a comprehensive review of the state of the art in this lapse of time, focusing on the different stages composing the work-flow of a computer-aidedsystem. We also provide a comparison between studies and a discussion about the potential avenues for future research. In addition, this paper presents a new public online dataset which is made available to theresearch community with the aim of providing a common evaluation framework to overcome some of the current limitations identified in this survey

    Emerging methods for prostate cancer imaging: evaluating cancer structure and metabolic alterations more clearly

    Get PDF
    Imaging plays a fundamental role in all aspects of the cancer management pathway. However, conventional imaging techniques are largely reliant on morphological and size descriptors that have well-known limitations, particularly when considering targeted-therapy response monitoring. Thus, new imaging methods have been developed to characterise cancer and are now routinely implemented, such as diffusion-weighted imaging, dynamic contrast enhancement, positron emission technology (PET) and magnetic resonance spectroscopy. However, despite the improvement these techniques have enabled, limitations still remain. Novel imaging methods are now emerging, intent on further interrogating cancers. These techniques are at different stages of maturity along the biomarker pathway and aim to further evaluate the cancer microstructure (vascular, extracellular and restricted diffusion for cytometry in tumours) magnetic resonance imaging (MRI), luminal water fraction imaging] as well as the metabolic alterations associated with cancers (novel PET tracers, hyperpolarised MRI). Finally, the use of machine learning has shown powerful potential applications. By using prostate cancer as an exemplar, this Review aims to showcase these potentially potent imaging techniques and what stage we are at in their application to conventional clinical practice

    Prostate Cancer Diagnosis using Magnetic Resonance Imaging - a Machine Learning Approach

    Get PDF

    Fast and robust hybrid framework for infant brain classification from structural MRI : a case study for early diagnosis of autism.

    Get PDF
    The ultimate goal of this work is to develop a computer-aided diagnosis (CAD) system for early autism diagnosis from infant structural magnetic resonance imaging (MRI). The vital step to achieve this goal is to get accurate segmentation of the different brain structures: whitematter, graymatter, and cerebrospinal fluid, which will be the main focus of this thesis. The proposed brain classification approach consists of two major steps. First, the brain is extracted based on the integration of a stochastic model that serves to learn the visual appearance of the brain texture, and a geometric model that preserves the brain geometry during the extraction process. Secondly, the brain tissues are segmented based on shape priors, built using a subset of co-aligned training images, that is adapted during the segmentation process using first- and second-order visual appearance features of infant MRIs. The accuracy of the presented segmentation approach has been tested on 300 infant subjects and evaluated blindly on 15 adult subjects. The experimental results have been evaluated by the MICCAI MR Brain Image Segmentation (MRBrainS13) challenge organizers using three metrics: Dice coefficient, 95-percentile Hausdorff distance, and absolute volume difference. The proposed method has been ranked the first in terms of performance and speed

    Development and validation of novel and quantitative MRI methods for cancer evaluation

    Get PDF
    Quantitative imaging biomarkers (QIB) offer the opportunity to further the evaluation of cancer at presentation as well as predict response to anti-cancer therapies before and early during treatment with the ultimate goal of truly personalised medical care and the mitigation of futile, often detrimental, therapy. Few QIBs are successfully translated into clinical practice and there is increasing recognition that rigorous methodologies and standardisation of research pipelines and techniques are required to move a theoretically useful biomarker into the clinic. To this end, I have aimed to give an overview of what I believe to be some of key elements within the research field beginning with the concept of imaging biomarkers, introducing concepts in development and validation, before providing a summary of the current and future utility of a range of quantitative MR imaging biomarkers techniques within the oncological imaging field. The original, prospective, research moves from the technical and analytical validation of a novel QIB use (T1 mapping in cancer), first in vivo qualification of this biomarker in cancer patient response assessment and prediction (sarcoma and breast cancer as well as prostate cancer separately), and then moving on to application of more established QIBs in cancer evaluation (R2*/BOLD imaging in head and neck cancer) as well as how existing MR data can be post-processed to improved cancer evaluation (further metrics derived from diffusion weighted imaging in head and neck cancer and textural analysis of existing clinical MR images utility in prostate cancer detection)

    A novel diffusion tensor imaging-based computer-aided diagnostic system for early diagnosis of autism.

    Get PDF
    Autism spectrum disorders (ASDs) denote a significant growing public health concern. Currently, one in 68 children has been diagnosed with ASDs in the United States, and most children are diagnosed after the age of four, despite the fact that ASDs can be identified as early as age two. The ultimate goal of this thesis is to develop a computer-aided diagnosis (CAD) system for the accurate and early diagnosis of ASDs using diffusion tensor imaging (DTI). This CAD system consists of three main steps. First, the brain tissues are segmented based on three image descriptors: a visual appearance model that has the ability to model a large dimensional feature space, a shape model that is adapted during the segmentation process using first- and second-order visual appearance features, and a spatially invariant second-order homogeneity descriptor. Secondly, discriminatory features are extracted from the segmented brains. Cortex shape variability is assessed using shape construction methods, and white matter integrity is further examined through connectivity analysis. Finally, the diagnostic capabilities of these extracted features are investigated. The accuracy of the presented CAD system has been tested on 25 infants with a high risk of developing ASDs. The preliminary diagnostic results are promising in identifying autistic from control patients
    corecore