26 research outputs found

    Improve the Usability of Polar Codes: Code Construction, Performance Enhancement and Configurable Hardware

    Full text link
    Error-correcting codes (ECC) have been widely used for forward error correction (FEC) in modern communication systems to dramatically reduce the signal-to-noise ratio (SNR) needed to achieve a given bit error rate (BER). Newly invented polar codes have attracted much interest because of their capacity-achieving potential, efficient encoder and decoder implementation, and flexible architecture design space.This dissertation is aimed at improving the usability of polar codes by providing a practical code design method, new approaches to improve the performance of polar code, and a configurable hardware design that adapts to various specifications. State-of-the-art polar codes are used to achieve extremely low error rates. In this work, high-performance FPGA is used in prototyping polar decoders to catch rare-case errors for error-correcting performance verification and error analysis. To discover the polarization characteristics and error patterns of polar codes, an FPGA emulation platform for belief-propagation (BP) decoding is built by a semi-automated construction flow. The FPGA-based emulation achieves significant speedup in large-scale experiments involving trillions of data frames. The platform is a key enabler of this work. The frozen set selection of polar codes, known as bit selection, is critical to the error-correcting performance of polar codes. A simulation-based in-order bit selection method is developed to evaluate the error rate of each bit using Monte Carlo simulations. The frozen set is selected based on the bit reliability ranking. The resulting code construction exhibits up to 1 dB coding gain with respect to the conventional bit selection. To further improve the coding gain of BP decoder for low-error-rate applications, the decoding error mechanisms are studied and analyzed, and the errors are classified based on their distinct signatures. Error detection is enabled by low-cost CRC concatenation, and post-processing algorithms targeting at each type of the error is designed to mitigate the vast majority of the decoding errors. The post-processor incurs only a small implementation overhead, but it provides more than an order of magnitude improvement of the error-correcting performance. The regularity of the BP decoder structure offers many hardware architecture choices. Silicon area, power consumption, throughput and latency can be traded to reach the optimal design points for practical use cases. A comprehensive design space exploration reveals several practical architectures at different design points. The scalability of each architecture is also evaluated based on the implementation candidates. For dynamic communication channels, such as wireless channels in the upcoming 5G applications, multiple codes of different lengths and code rates are needed to t varying channel conditions. To minimize implementation cost, a universal decoder architecture is proposed to support multiple codes through hardware reuse. A 40nm length- and rate-configurable polar decoder ASIC is demonstrated to fit various communication environments and service requirements.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/140817/1/shuangsh_1.pd

    VLSI decoding architectures: flexibility, robustness and performance

    Get PDF
    Stemming from previous studies on flexible LDPC decoders, this thesis work has been mainly focused on the development of flexible turbo and LDPC decoder designs, and on the narrowing of the power, area and speed gap they might present with respect to dedicated solutions. Additional studies have been carried out within the field of increased code performance and of decoder resiliency to hardware errors. The first chapter regroups several main contributions in the design and implementation of flexible channel decoders. The first part concerns the design of a Network-on-Chip (NoC) serving as an interconnection network for a partially parallel LDPC decoder. A best-fit NoC architecture is designed and a complete multi-standard turbo/LDPC decoder is designed and implemented. Every time the code is changed, the decoder must be reconfigured. A number of variables influence the duration of the reconfiguration process, starting from the involved codes down to decoder design choices. These are taken in account in the flexible decoder designed, and novel traffic reduction and optimization methods are then implemented. In the second chapter a study on the early stopping of iterations for LDPC decoders is presented. The energy expenditure of any LDPC decoder is directly linked to the iterative nature of the decoding algorithm. We propose an innovative multi-standard early stopping criterion for LDPC decoders that observes the evolution of simple metrics and relies on on-the-fly threshold computation. Its effectiveness is evaluated against existing techniques both in terms of saved iterations and, after implementation, in terms of actual energy saving. The third chapter portrays a study on the resilience of LDPC decoders under the effect of memory errors. Given that the purpose of channel decoders is to correct errors, LDPC decoders are intrinsically characterized by a certain degree of resistance to hardware faults. This characteristic, together with the soft nature of the stored values, results in LDPC decoders being affected differently according to the meaning of the wrong bits: ad-hoc error protection techniques, like the Unequal Error Protection devised in this chapter, can consequently be applied to different bits according to their significance. In the fourth chapter the serial concatenation of LDPC and turbo codes is presented. The concatenated FEC targets very high error correction capabilities, joining the performance of turbo codes at low SNR with that of LDPC codes at high SNR, and outperforming both current deep-space FEC schemes and concatenation-based FECs. A unified decoder for the concatenated scheme is subsequently propose

    Sparse graph-based coding schemes for continuous phase modulations

    Get PDF
    The use of the continuous phase modulation (CPM) is interesting when the channel represents a strong non-linearity and in the case of limited spectral support; particularly for the uplink, where the satellite holds an amplifier per carrier, and for downlinks where the terminal equipment works very close to the saturation region. Numerous studies have been conducted on this issue but the proposed solutions use iterative CPM demodulation/decoding concatenated with convolutional or block error correcting codes. The use of LDPC codes has not yet been introduced. Particularly, no works, to our knowledge, have been done on the optimization of sparse graph-based codes adapted for the context described here. In this study, we propose to perform the asymptotic analysis and the design of turbo-CPM systems based on the optimization of sparse graph-based codes. Moreover, an analysis on the corresponding receiver will be done
    corecore