102 research outputs found

    High performance stride-based network payload inspection

    Get PDF
    There are two main drivers for network payload inspection: malicious data, attacks, virus detection in Network Intrusion Detection System (NIDS) and content detection in Data Leakage Prevention System (DLPS) or Copyright Infringement Detection System (CIDS). Network attacks are getting more and more prevalent. Traditional network firewalls can only check the packet header, but fail to detect attacks hidden in the packet payload. Therefore, the NIDS with Deep Packet Inspection (DPI) function has been developed and widely deployed. By checking each byte of a packet against the pattern set, which is called pattern matching, NIDS is able to detect the attack codes hidden in the payload. The pattern set is usually organized as a Deterministic Finite Automata (DFA). The processing time of DFA is proportional to the length of the input string, but the memory cost of a DFA is quite large. Meanwhile, the link bandwidth and the traffic of the Internet are rapidly increasing, the size of the attack signature database is also growing larger and larger due to the diversification of the attacks. Consequently, there is a strong demand for high performance and low storage cost NIDS. Traditional softwarebased and hardware-based pattern matching algorithms are have difficulty satisfying the processing speed requirement, thus high performance network payload inspection methods are needed to enable deep packet inspection at line rate. In this thesis, Stride Finite Automata (StriFA), a novel finite automata family to accelerate both string matching and regular expression matching, is presented. Compared with the conventional finite automata, which scan the entire traffic stream to locate malicious information, the StriFA only needs to scan samples of the traffic stream to find the suspicious information, thus increasing the matching speed and reducing memory requirements. Technologies such as instant messaging software (Skype, MSN) or BitTorrent file sharing methods, allow convenient sharing of information between managers, employees, customers, and partners. This, however, leads to two kinds of major security risks when exchanging data between different people: firstly, leakage of sensitive data from a company and, secondly, distribution of copyright infringing products in Peer to Peer (P2P) networks. Traditional DFA-based DPI solutions cannot be used for inspection of file distribution in P2P networks due to the potential out-of-order manner of the data delivery. To address this problem, a hybrid finite automaton called Skip-Stride-Neighbor Finite Automaton (S2NFA) is proposed to solve this problem. It combines benefits of the following three structures: 1) Skip-FA, which is used to solve the out-of-order data scanning problem; 2) Stride-DFA, which is introduced to reduce the memory usage of Skip-FA; 3) Neighbor-DFA which is based on the characteristics of Stride-DFA to get a low false positive rate at the additional cost of a small increase in memory consumption

    Strengthening measurements from the edges: application-level packet loss rate estimation

    Get PDF
    Network users know much less than ISPs, Internet exchanges and content providers about what happens inside the network. Consequently users cannot either easily detect network neutrality violations or readily exercise their market power by knowledgeably switching ISPs. This paper contributes to the ongoing efforts to empower users by proposing two models to estimate -- via application-level measurements -- a key network indicator, i.e., the packet loss rate (PLR) experienced by FTP-like TCP downloads. Controlled, testbed, and large-scale experiments show that the Inverse Mathis model is simpler and more consistent across the whole PLR range, but less accurate than the more advanced Likely Rexmit model for landline connections and moderate PL

    Hardware acceleration for power efficient deep packet inspection

    Get PDF
    The rapid growth of the Internet leads to a massive spread of malicious attacks like viruses and malwares, making the safety of online activity a major concern. The use of Network Intrusion Detection Systems (NIDS) is an effective method to safeguard the Internet. One key procedure in NIDS is Deep Packet Inspection (DPI). DPI can examine the contents of a packet and take actions on the packets based on predefined rules. In this thesis, DPI is mainly discussed in the context of security applications. However, DPI can also be used for bandwidth management and network surveillance. DPI inspects the whole packet payload, and due to this and the complexity of the inspection rules, DPI algorithms consume significant amounts of resources including time, memory and energy. The aim of this thesis is to design hardware accelerated methods for memory and energy efficient high-speed DPI. The patterns in packet payloads, especially complex patterns, can be efficiently represented by regular expressions, which can be translated by the use of Deterministic Finite Automata (DFA). DFA algorithms are fast but consume very large amounts of memory with certain kinds of regular expressions. In this thesis, memory efficient algorithms are proposed based on the transition compressions of the DFAs. In this work, Bloom filters are used to implement DPI on an FPGA for hardware acceleration with the design of a parallel architecture. Furthermore, devoted at a balance of power and performance, an energy efficient adaptive Bloom filter is designed with the capability of adjusting the number of active hash functions according to current workload. In addition, a method is given for implementation on both two-stage and multi-stage platforms. Nevertheless, false positive rates still prevents the Bloom filter from extensive utilization; a cache-based counting Bloom filter is presented in this work to get rid of the false positives for fast and precise matching. Finally, in future work, in order to estimate the effect of power savings, models will be built for routers and DPI, which will also analyze the latency impact of dynamic frequency adaption to current traffic. Besides, a low power DPI system will be designed with a single or multiple DPI engines. Results and evaluation of the low power DPI model and system will be produced in future

    Security Applications of GPUs

    Get PDF
    Despite the recent advances in software security hardening techniques, vulnerabilities can always be exploited if the attackers are really determined. Regardless the protection enabled, successful exploitation can always be achieved, even though admittedly, today, it is much harder than it was in the past. Since securing software is still under ongoing research, the community investigates detection methods in order to protect software. Three of the most promising such methods are monitoring the (i) network, (ii) the filesystem, and (iii) the host memory, for possible exploitation. Whenever a malicious operation is detected then the monitor should be able to terminate it and/or alert the administrator. In this chapter, we explore how to utilize the highly parallel capabilities of modern commodity graphics processing units (GPUs) in order to improve the performance of different security tools operating at the network, storage, and memory level, and how they can offload the CPU whenever possible. Our results show that modern GPUs can be very efficient and highly effective at accelerating the pattern matching operations of network intrusion detection systems and antivirus tools, as well as for monitoring the integrity of the base computing systems

    MULTI-GIGABIT PATTERN FOR DATA IN NETWORK SECURITY

    Get PDF
    In the current scenario network security is emerging the world. Matching large sets of patterns against an incoming stream of data is a fundamental task in several fields such as network security or computational biology. High-speed network intrusion detection systems (IDS) rely on efficient pattern matching techniques to analyze the packet payload and make decisions on the significance of the packet body. However, matching the streaming payload bytes against thousands of patterns at multi-gigabit rates is computationally intensive. Various techniques have been proposed in past but the performance of the system is reducing because of multi-gigabit rates.Pattern matching is a significant issue in intrusion detection systems, but by no means the only one. Handling multi-content rules, reordering, and reassembling incoming packets are also significant for system performance. We present two pattern matching techniques to compare incoming packets against intrusion detection search patterns. The first approach, decoded partial CAM (DpCAM), pre-decodes incoming characters, aligns the decoded data, and performs logical AND on them to produce the match signal for each pattern. The second approach, perfect hashing memory (PHmem), uses perfect hashing to determine a unique memory location that contains the search pattern and a comparison between incoming data and memory output to determine the match. The suggested methods have implemented in vhdl coding and we use Xilinx for synthesis

    High Performance Network Security Using NIDS Approach

    Full text link
    corecore