488 research outputs found

    Design and Analysis of an Estimation of Distribution Approximation Algorithm for Single Machine Scheduling in Uncertain Environments

    Full text link
    In the current work we introduce a novel estimation of distribution algorithm to tackle a hard combinatorial optimization problem, namely the single-machine scheduling problem, with uncertain delivery times. The majority of the existing research coping with optimization problems in uncertain environment aims at finding a single sufficiently robust solution so that random noise and unpredictable circumstances would have the least possible detrimental effect on the quality of the solution. The measures of robustness are usually based on various kinds of empirically designed averaging techniques. In contrast to the previous work, our algorithm aims at finding a collection of robust schedules that allow for a more informative decision making. The notion of robustness is measured quantitatively in terms of the classical mathematical notion of a norm on a vector space. We provide a theoretical insight into the relationship between the properties of the probability distribution over the uncertain delivery times and the robustness quality of the schedules produced by the algorithm after a polynomial runtime in terms of approximation ratios

    Rescheduling in job-shop problems for sustainable manufacturing systems

    Full text link
    [EN] Manufacturing industries are faced with environmental challenges, so their industrial processes must be optimized in terms of both profitability and sustainability. Since most of these processes are dynamic, the previously obtained solutions cannot be valid after disruptions. This paper focuses on recovery in dynamic job-shop scheduling problems where machines can work at different rates. Machine speed scaling is an alternative framework to the on/off control framework for production scheduling. Thus, given a disruption, the main goal is to recover the original solution by rescheduling the minimum number of tasks. To this end, a new match-up technique is developed to determine the rescheduling zone and a feasible reschedule. Then, a memetic algorithm is proposed for finding a schedule that minimizes the energy consumption within the rescheduling zone but that also maintains the makespan constraint. An extensive study is carried out to analyze the behavior of our algorithms to recover the original solution and minimize the energy reduction in different benchmarks, which are taken from the OR-Library. The energy consumption and processing time of the tasks involved in the rescheduling zone will play an important role in determining the best match-up point and the optimized rescheduling. Upon a disruption, different rescheduling solutions can be obtained, all of which comply with the requirements but that have different values of energy consumption. The results proposed in this paper may be useful for application in real industries for energy-efficient production rescheduling.This research has been supported by the Seventh Framework Programme under the research project TETRACOM-GA609491 and the Spanish Government under research projects TIN2013-46511-C2-1, TIN2015-65515-C4-1-R and TIN2016-80856-R. The authors wish to thank reviewers and editors for their positive comments to improve the quality of the paper.Salido Gregorio, MA.; Escamilla Fuster, J.; Barber Sanchís, F.; Giret Boggino, AS. (2017). Rescheduling in job-shop problems for sustainable manufacturing systems. Journal of Cleaner Production. 162(20):121-132. https://doi.org/10.1016/j.jclepro.2016.11.002S1211321622

    Bütünleşik tedarik zinciri çizelgeleme modelleri: Bir literatür taraması

    Get PDF
    Research on integration of supply chain and scheduling is relatively recent, and number of studies on this topic is increasing. This study provides a comprehensive literature survey about Integrated Supply Chain Scheduling (ISCS) models to help identify deficiencies in this area. For this purpose, it is thought that this study will contribute in terms of guiding researchers working in this field. In this study, existing literature on ISCS problems are reviewed and summarized by introducing the new classification scheme. The studies were categorized by considering the features such as the number of customers (single or multiple), product lifespan (limited or unlimited), order sizes (equal or general), vehicle characteristics (limited/sufficient and homogeneous/heterogeneous), machine configurations and number of objective function (single or multi objective). In addition, properties of mathematical models applied for problems and solution approaches are also discussed.Bütünleşik Tedarik Zinciri Çizelgeleme (BTZÇ) üzerine yapılan araştırmalar nispeten yenidir ve bu konu üzerine yapılan çalışma sayısı artmaktadır. Bu çalışma, bu alandaki eksiklikleri tespit etmeye yardımcı olmak için BTZÇ modelleri hakkında kapsamlı bir literatür araştırması sunmaktadır. Bu amaçla, bu çalışmanın bu alanda çalışan araştırmacılara rehberlik etmesi açısından katkı sağlayacağı düşünülmektedir. Bu çalışmada, BTZÇ problemleri üzerine mevcut literatür gözden geçirilmiş ve yeni sınıflandırma şeması tanıtılarak çalışmalar özetlenmiştir. Çalışmalar; tek veya çoklu müşteri sayısı, sipariş büyüklüğü tipi (eşit veya genel), ürün ömrü (sınırlı veya sınırsız), araç karakteristikleri (sınırlı/yeterli ve homojen/heterojen), makine konfigürasyonları ve amaç fonksiyonu sayısı (tek veya çok amaçlı) gibi özellikler dikkate alınarak kategorize edildi. Ayrıca problemler için uygulanan matematiksel modellerin özellikleri ve çözüm yaklaşımları da tartışılmıştır

    Using real-time information to reschedule jobs in a flowshop with variable processing times

    Get PDF
    Versión revisada. Embargo 36 mesesIn a time where detailed, instantaneous and accurate information on shop-floor status is becoming available in many manufacturing companies due to Information Technologies initiatives such as Smart Factory or Industry 4.0, a question arises regarding when and how this data can be used to improve scheduling decisions. While it is acknowledged that a continuous rescheduling based on the updated information may be beneficial as it serves to adapt the schedule to unplanned events, this rather general intuition has not been supported by a thorough experimentation, particularly for multi-stage manufacturing systems where such continuous rescheduling may introduce a high degree of nervousness in the system and deteriorates its performance. In order to study this research problem, in this paper we investigate how real-time information on the completion times of the jobs in a flowshop with variable processing times can be used to reschedule the jobs. In an exhaustive computational experience, we show that rescheduling policies pay off as long as the variability of the processing times is not very high, and only if the initially generated schedule is of good quality. Furthermore, we propose several rescheduling policies to improve the performance of continuous rescheduling while greatly reducing the frequency of rescheduling. One of these policies, based on the concept of critical path of a flowshop, outperforms the rest of policies for a wide range of scenarios.Ministerio de Ciencia e Innovación DPI2016-80750-

    A memetic algorithm to minimize the total sum of earliness tardiness and sequence dependent setup costs for flow shop scheduling problems with job distinct due windows

    Get PDF
    The research considers the flow shop scheduling problem under the Just-In-Time (JIT) philosophy. There are n jobs waiting to be processed through m operations of a flow shop production system. The objective is to determine the job schedule such that the total cost consisting of setup, earliness, and tardiness costs, is minimized. To represent the problem, the Integer Linear Programming (ILP) mathematical model is created. A Memetic Algorithm (MA) is developed to determine the proper solution. The evolutionary procedure, worked as the global search, is applied to seek for the good job sequences. In order to conduct the local search, an optimal timing algorithm is developed and inserted in the procedure to determine the best schedule of each job sequence. From the numerical experiment of 360 problems, the proposed MA can provide optimal solutions for 355 problems. It is obvious that the MA can provide the good solution in a reasonable amount of time

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    A Memetic Algorithm with Reinforcement Learning for Sociotechnical Production Scheduling

    Get PDF
    The following interdisciplinary article presents a memetic algorithm with applying deep reinforcement learning (DRL) for solving practically oriented dual resource constrained flexible job shop scheduling problems (DRC-FJSSP). From research projects in industry, we recognize the need to consider flexible machines, flexible human workers, worker capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material (BOM) manufacturing, sequence-dependent setup times and (partially) automated tasks in human-machine-collaboration. In recent years, there has been extensive research on metaheuristics and DRL techniques but focused on simple scheduling environments. However, there are few approaches combining metaheuristics and DRL to generate schedules more reliably and efficiently. In this paper, we first formulate a DRC-FJSSP to map complex industry requirements beyond traditional job shop models. Then we propose a scheduling framework integrating a discrete event simulation (DES) for schedule evaluation, considering parallel computing and multicriteria optimization. Here, a memetic algorithm is enriched with DRL to improve sequencing and assignment decisions. Through numerical experiments with real-world production data, we confirm that the framework generates feasible schedules efficiently and reliably for a balanced optimization of makespan (MS) and total tardiness (TT). Utilizing DRL instead of random metaheuristic operations leads to better results in fewer algorithm iterations and outperforms traditional approaches in such complex environments.Comment: This article has been accepted by IEEE Access on June 30, 202
    corecore