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Abstract 
 

 The research considers the flow shop scheduling problem under the Just-In-Time (JIT) philosophy. There are n jobs 

waiting to be processed through m operations of a flow shop production system. The objective is to determine the job schedule 

such that the total cost consisting of setup, earliness, and tardiness costs, is minimized. To represent the problem, the Integer 

Linear Programming (ILP) mathematical model is created. A Memetic Algorithm (MA) is developed to determine the proper 

solution. The evolutionary procedure, worked as the global search, is applied to seek for the good job sequences. In order to 

conduct the local search, an optimal timing algorithm is developed and inserted in the procedure to determine the best schedule of 

each job sequence. From the numerical experiment of 360 problems, the proposed MA can provide optimal solutions for 355 

problems. It is obvious that the MA can provide the good solution in a reasonable amount of time. 
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1. Introduction 
 

In the past several years, many researchers have 

conducted research in the production scheduling under the 

Just-In-Time (JIT) philosophy. The objective of the JIT is to 

produce and deliver products not before or after their 

committed due dates. Any jobs completed early must be held 

by manufacturer until their due dates and, hence, incur some 

costs as a result of product deterioration, storage, and insu-

rance. On the other hand, those jobs completed after their due 

dates can cause many problems such as customer penalties, 

loss of sales, or potential loss of reputation. In accordance 

with Baker and Scudder (1990), an ideal schedule is the one in 

which all jobs are finished exactly on their due dates. The 

most obvious objective of scheduling problem under the JIT 

 

policy is to minimize the deviations of job completion times 

around their due dates. It can be seen as the minimization 

problem of total sum of earliness and tardiness penalties (E/T 

scheduling problem). The E/T scheduling problem can be 

divided into several categories according to the types of 

machine system, due date, and characteristics of weight 

penalties.    

According to Pinedo (2002), the E/T scheduling 

problem of jobs having different due dates in a single machine 

production system is NP hard. Lee and Kim (1995) studied the 

job scheduling problem on single machine with common due 

date. The objective was to minimize the total generally 

weighted of earliness and tardiness penalties. The similar 

problem but with distinct due dates was discussed by Lee and 

Choi (1995). Szwarc and Mukhopadhyay (1995) proposed an 

optimal timing to find an optimal timing job starting position 

for the E/T problem with the predetermined job sequence. 

Sarper (1995) proposed the minimization problem of the sum 

of absolute deviations of job completion times around a 

common due date for the two machines flow shop. Moslehi et 
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al. (2009) studied similar problem but distinct due dates. The 

author addressed the case of minimizing the sum of maximum 

earliness and tardiness. Yoon and Ventura (2002) proposed a 

procedure for minimizing the mean weighted absolute devia-

tion of job completion times around their due dates when jobs 

are scheduled in a lot-streaming flow shop. Sufen et al. (2005) 

discussed the E/T scheduling problem of n jobs m machines 

flow shop with uncertainty of job processing times. Chandra 

et al. (2009) considered the E/T problem under a common due 

date in the flow shop production system. The similar problem 

but with distinct due date was discussed by Schaller and 

Valente (2013) and M’Hallah (2014). According to the survey 

research on E/T scheduling problems with job due window 

conducted by Janiak et al. (2015), both common and distinct 

due window problems are NP-hard. While Yeung et al. (2004) 

discussed the E/T scheduling problem with common due 

window, the cases of problem with distinct due windows were 

studied by Behnamian et al. (2009), Koulamas (1996), and 

Wan and Yen (2002). Nonetheless, as being known so far, 

there is no research conducted relevant to the E/T scheduling 

problem with flow shop machine system and job distinct due 

windows.  

In recent-years, a growing number of literatures 

suggest the application of Genetic Algorithm (GA) as one of 

those powerful metaheuristic being used to solve combina-

torial optimization problems (Cheng el al., 1995, Reeves, 

1995; Sevaux & Dauzere-Peres, 2003). According to Sevaux 

and Dauzere-Peres (2003), the main difference between the 

GA and other metaheuristics such as Tabu Search (TS) or 

Simulated Annealing (SA) is that not only GA maintains the 

population of solution rather than unique current solution but 

it allows the exploration of a larger solution space as well. 

Because of those benefits discussed previously and the simpli-

city to represent each job as a gene of a chromosome in the 

solution representation, the GA has been applied by many 

researchers to seek for the good solution in the job sequencing 

problems. Some of them are Lee and Choi (1995), Lee and 

Kim (1995), Murata et al. (1996), Reeves (1995), and Sufen et 

al. (2005). The Memetic Algorithm (MA) can be considered 

as the extension model of general GA. According to Tavak-

koli-Moghaddam et al. (2009), unlike traditional GA, the 

Memetic Algorithm is population-based search approach com-

bining evolutionary procedure with local refinement strategies 

such as local neighborhood search.    

This paper considers the E/T scheduling problem of 

jobs having distinct due windows in m-operation flow shop 

production system. The mathematical model is introduced to 

represent the problem. In order to determine the starting time 

of each job when the job sequence is known, the optimal 

timing algorithm for the E/T flow shop scheduling system is 

created. The Memetic Algorithm based on evolutionary pro-

cedure with the insertion of optimal timing algorithm is 

presented to determine the good solution to the problem.  

 

 

 

2. Problem Characteristics 

 

 There are n jobs waiting to be process on m machines flow shop production system. Each job has its own earliness 

penalty, tardiness penalty, earliest due date, and latest due date. Any jobs completed before their earliest due dates incur earliness 

penalties. On the other hand, those jobs completed after their latest due dates incur tardiness penalties. All jobs are assumed to be 

available for the production at the beginning of planning horizon. The objective is to determine production schedule such that the 

sum of earliness and tardiness costs of all jobs are minimized. The following notations are used throughout the paper. 

 

n
 
 = number of jobs 

m
  

= number of machines 

ji, = index of jobs        ; nji ,...,2,1,0,   

][],[ ji = index of job positions in given sequence     ; i, j = 1,2,…,n 

k    = index of machines            ; mk ,...,2,1  

g    = index of sub-schedules       ;
 Gg ,...,2,1  

r     = index of job clusters       ; Rr ,...,2,1  

kiC ,
= completion time of job i on machine k 

iW   = length of due window of job i       ; 
iii etW   

ie    = earliest due date of job i  

it     = latest due date of job i 

iE    = earliness of job i       ;  0,max ,miii CeE   
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iT    = tardiness of job i       ;  0,max , imii tCT   

1i
OT = the time period of job i when that job completed after its earliest due date ;  0,max ,1 imii eCOT   

2i
OT = the time period of job i when that job completed before its latest due date ;  0,max ,2 miii CtOT   

i  = earliness cost of job i     

i  = tardiness cost of job i  

ji,    = setup cost of job j when it immediately processed after job i.  Here, 
j,0  refers to the setup cost of job j when it is the first job 

being process on a machine.    

kiP ,
   = processing time of job i on machine k    

TC    = total cost 

iJ      = job i of all n jobs 

0J     = a dummy job having processing time on all machines equal to zero  

][iJ    = job in ith position of the given sequence 

first
gJ  = the first job in sub-schedule g  

last
gJ  = the last job in sub-schedule g 

r  = cluster r 

riJ ,
 = job i in cluster r     ; i = F, F+1,…, E, E+1,…, W, W+1,…,T, T+1,…,L  

rFJ ,
  = the first job in cluster r 

rEJ ,
 = the last early job in cluster r  

rWJ ,
 = the last job is completed in due window and condition 0,  rWW Ct  is hold 

rTJ ,
 = the first tardy job in cluster r 

rLJ ,
  = the last job in cluster r 

 

jix ,   =          

1y      = the shift distance being calculated from early jobs in cluster r;  rii
EiF

Cey ,1 min 


 

2y     = the shift distance being calculated from jobs completed in due window with the condition 0,  rii Ct  for WEi ,...,1

are hold;
 

 rii
WiE

Cty ,
1

2 min 


 

first
GS 1

 = starting time of the job in sub-schedule G+1; 
first

GS 1
 
  

last
GC  = completion time of the last job in sub-schedule G; 

last
G

first
G CS 1

 
 

gR     = the last cluster on sub-schedule g
 

M  = large number 

The following example demonstrates the problem characteristic. 

0 otherwise 

1 if job i precedes job j 
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Example 1: 

 Given that five jobs are waiting to be processed through three operations of a flow shop production system. The data of 

each job are presented in the Table 1. 

 

           Table 1.     Data for Example 1. 

iJ  
Setup cost in dollars/setup (

ji, ) Earliness cost in 

dollars/day (
i

 ) 

Tardiness cost in 

dollars/day (
i
) 

Processing times 

(days)
 

Due 

windows 

j=1 j=2 j=3 j=4 j=5 1,iP  2,iP  3,iP
 i

e  i
t  

       
 

   
  i=0 2 2 3 5 2 0 0 0 0 0 0 0 

i=1 0
 

1 3 4 4 2
 

4 10 8 5 29 31 

i=2 2 0
 

1 3 3 3 6 9 7 8 43 46 

i=3 1 2 0
 

2 2 1 3 7 5 10 32 34 
i=4 3 1 2 0

 
5 2 4 10 9 10 59 61 

i=5 1 2 1 3 0
 

2 5 6 9 10 55 58 
     

 
       

 

 The Gantt chart in the Figure 1 represents one possible production schedule of the problem (this schedule may not be 

the optimal). Here, the research assumes that all jobs are processed with the same sequence on all machines. 

 

 
 

Figure 1. One possible production schedule. 

 

The cost associated with schedule in Figure 1 can be calculated as follows: 

Setup Cost: The total setup cost incurred from the sequence can be calculated as 
4,55,22,33,11,0   = 2+3+2+3+3 

= $13.   

Earliness cost: Job 1, 2, and 5 are early for 6, 2, and 3 days, respectively. The earliness cost can be calculated as

552211 EEE   = 2(6)+3(2)+2(3) = $24 

Tardiness cost: Only job 4 is tardy. The tardy cost is 
44T = 4(1) = $4.  

Note that job 3 has no penalty since it is completed within the due window.  

The total cost; TC = 13+24+4 = $41.  

 

2.1 Integer linear programming 
  

 

The mathematical model based on Integer Linear Programming (ILP) was developed and can be shown as follows:  

 

Objective Function 

  ji

n

i

n

ij
j

ji

n

i

iiii xTETC minimize ,

0 1

,

1







 
 

4

1 3 2 5 4

1 3 2 5 4

1 3 2 5

Machine 1

                    

Machine 2

Machine 3
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Constraints 

1
1

,0 


n

j

jx
                      (1) 

,

0

1                                 ; 1, 2, ,
n

i j

i
i j

x           j ... n



 
                   (2) 

n...i          x
n

ij
j

ji ,,2 ,1 ;                               1
1

, 



                    (3) 

,1 ,1                                         ; 1, 2,...,i iC P i n                             (4) 

 , , , ,1         ; , ( ) 1,..., ; 1,...,j k i k i j j kC C M x P i j i j n k m                        (5) 

, , 1 ,                                 ; 1, 2,..., ; 2,...,i k i k i kC C P i n k m                      (6) 

nieOTEC iiimi 2,..., 1,;                        
1,                         (7) 

nitOTTC iiimi 2,..., 1,;                         
2,                          (8) 

 

The objective function represents the sum of total cost including setup, earliness and tardiness costs of all jobs. 

Constraint (1) identifies the first job of the sequence. Constraint (2) ensures that each job can have at most one immediately 

preceding job. According to constraint (3), there is at most one job can be immediately processed after job i. Constraint (4) 

guarantees that the first job being process on the first machine cannot start before the time of zero. Constraint (5) ensures that any 

two adjacent jobs on the same machine are processed continuously without overlapping. Constraint (6) requires that any 

operations of a job cannot be overlapped. Constraints (7) and (8) are to determine earliness and tardiness of job i. 

In order to determine the problem solution, the Memetic Algorithm is proposed. The evolutionary procedure is applied 

to search for the good job sequence. In order to determine the optimal schedule for each job sequence, the optimal timing 

algorithm is constructed and inserted into the evolutionary procedure. 

 

3. Problem Properties 

 

Define the initial schedule as the schedule in which all jobs in the given sequence are started on each machine as soon 

as possible. Note that in the optimal schedule, each job cannot be processed before its starting times in the initial schedule. 

 

Property 1: If there is no idle time between any two consecutive jobs 
][iJ  and

]1[ iJ  in the initial schedule, the optimal schedule 

can have idle time between 
][iJ and 

]1[ iJ  only when 
miii Pet ],1[][]1[   . 

 

Explanation: Given that, in an initial schedule, there is no idle time between jobs 
][iJ  and 

]1[ iJ  on the last machine. In the 

optimal schedule, if job 
][iJ  is not early  ][],[ imi eC   and job 

]1[ iJ  is not tardy  ]1[],1[   imi tC , since
mimi CC ],[],1[ 

, the term 

][]1[ ii et 
 must be greater than 

mimi CC ],[],1[ 
, which can be written as shown in (9).  

 

mimiii CCet ],[],1[][]1[  
                 (9) 
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When there is idle time between jobs 
][iJ  and 

]1[ iJ , the amount of 
mimi CC ],[],1[ 

 is greater than
miP ],1[ 

. The 

condition can be written as follows. 
 

mimimi PCC ],1[],[],1[                        (10) 

 

The inequality (11) is constructed from inequalities (9) and (10) 

miii Pet ],1[][]1[                          (11) 

From the initial schedule, given that two consecutive jobs are placed in the same cluster with the following conditions.  

 
 

miii Pet ],1[][]1[                      (12) 

 

0],[],1[  mimi CS                                 (13) 

 

Property 2: In the optimal schedule, jobs belong to the same cluster must be processed without interruption.  

 Explanation: Inequality (12) and equation (13) identify the property.  

 

Property 3: In the optimal schedule, for each cluster, those early jobs must be processed before those tardy jobs. 

 Explanation: Given that, on the last machine, jobs 
][iJ  and 

]1[ iJ  are grouped in the same cluster, the following 

equation can be created by adding the term 
mimi PS ],[],[  on both sides of the inequality (12). 

 

 mimiimimimii PSePPSt ],[],[][],1[],[],[]1[  
                           (14) 

 

The inequality (15), reduced from inequality (14), confirms that the early job must be processed before the tardy job. 

 

miimii CeCt ],[][],1[]1[  
                          (15) 

 

Property 4: In the optimal schedule, for each cluster, those early jobs must be processed before those on-time jobs. 

Explanation: Since 
]1[]1[   ii te , the term 

mii Ce ],1[]1[    is less than 
mii Ct ],1[]1[   . Applying this relationship to the 

inequality (15), the result can be shown as follows which concludes to the property. 

 

miimiimii CeCtCe ],[][],1[]1[],1[]1[  
                       (16) 

 

Property 5: In the optimal schedule, for each cluster, those on-time jobs must be processed before those tardy jobs. 

Explanation: Since 
][][ ii te  , the term 

mii Ce ],[][   is less than 
mii Ct ],[][  . Applying this relationship to the 

inequality (15), the result can be shown as follows which concludes to the property.
 

 

  miimiimii CtCeCt ],[][],[][],1[]1[  
                       (17) 

 

Property 6: In the optimal schedule, if two consecutive jobs of the same cluster are early, then 
]1[][  ii EE .  
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Explanation: If two consecutive early jobs are grouped in the same cluster, the condition 
miii Pet ],1[],[]1[    must be 

hold. The result is shown in the following inequality (18). 
 

miii Pee ],1[][]1[        (18) 

 

The following inequality is created by adding the term 
mimi PS ],[],[   on both sides of the inequality (18). 

 

mimiimimimii PSePPSe ],[],[][],1[],[],[]1[                             
(19) 

 

The inequality (19) can be reduced to the inequality (20). Since both jobs are early, the two terms on both sides are 

positive and therefore the earliness of 
][iJ  is greater than the earliness of 

]1[ iJ .  

 

miimii CeCe ],[][],1[]1[  
                           (20) 

 

Property 7: In the optimal schedule, if two consecutive jobs of the same cluster are tardy, then 
][]1[ ii TT 
. 

Explanation: If two consecutive tardy jobs are grouped in the same cluster, the condition 
miii Pet ],1[],[]1[    must 

be hold, which results in the following inequality (21). 

 

    miii Ptt ],1[][]1[                                           (21) 

 

The following inequality is created by adding the term 
mimi PS ],[],[   on both sides of the inequality (21). 

 

mimiimimimii PStPPSt ],[],[][],1[],[],[]1[  
                             (22) 

 

The inequality (22) can be reduced to the inequality (23). Here, both jobs are late; the two terms on both sides are 

negative. Since, the tardiness is the absolute value of lateness, the tardiness of 
]1[ iJ  is greater than 

][iJ .  

 

    miimii CtCt ],[][],1[]1[  
                 (23) 

 

4. Optimal Timing Algorithm  

 

The function of Optimal Timing Algorithm (OPT) is to determine the optimal starting time of each job for a given 

sequence. The concept of the algorithm starts from constructing the initial schedule and, then, dividing jobs into clusters before 

grouping several clusters into sub-schedule. The final step of the algorithm is to shift each job cluster to the right side until the 

sum of earliness and tardiness costs of all jobs is lowest. The concept of OPT procedure introduced in this study can be explained 

as follows. 

On the last machine, any two jobs are assigned to the same cluster when the conditions (12) and (13) are hold. Jobs in 

the same cluster should be processed continuously without idle time. Since earliness and tardiness of each job are determined by 

comparing the job completion time on the last machine with its due window, only starting, processing, and completion times of 

job on the last machine are considered. Applying the clustering method to the initial schedule in the Figure 1, there are three 

clusters as shown in the Figure 2. 
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Figure 2. Results obtained from clustering method. 

 

After all clusters are determined, they must be grouped into sub-schedule. The clusters 
r  and 

1r  will be in the 

same sub-schedule if the equation (24) is hold.  

  

1,,  rFrL SC                       (24) 

 

For any cluster  rLrWrWrErErFrFr JJJJJJJ ,,1,,1,,1, ,...,,,...,,,...,,  , the equation (25) is applied to determine 

whether or not the cluster should be shifted to the right. 

 

 
 
 


E

Fi

L

Wi

ririr
1

,,)(                             (25) 

 

If 0)(  r , the cluster r should not be moved because it will only increase the total cost. On the other hand, if

0)(  r , the cluster r  should be shifted to the right side. Therefore, the total cost can be reduced by the product of )(r  and 

shift distance )(rE . Here, the shift distance can be calculated using the equation (26) 

 

       last
g

first
g CSyyrE  121 ,,min)(                                      (26)

 

 

If cluster r does not have any jobs of condition
irii tCe  ,
, then 

  

2y                                                              (27) 

 

If there are no early jobs in the cluster r , this cluster should not be shifted to the right. In this case, the following 

conditions are hold. 

 





L

Wi

rir
1

,)(                                      (28) 

 

1y                                 (29) 

Suppose that all jobs belong to the cluster r  are completed within their due windows and ended before their latest 

due dates ( 0,  rii Ct ), then  

1 3 2 5 4

1 3 2 5 4

1 3 2 5 4

Machine 1

Machine 2

Machine 3

   {J1,J3}

Machine 1

Machine 2

Machine 3

Machine 1

                    

Machine 2

Machine 3

   {J2}    {J5,J4}
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    0)(  r                    (30) 

 

1y                      (31) 

 If all jobs in cluster r are tardy jobs, then 





L

Wi

rir
1

,)( 
                           (32) 

 

1y                                         (33) 

 

 2y                                          (34) 

 

The optimal timing procedure constructed in the research can be summarized as follows:
 

Step 0: Re-index each job according to its position in given sequence. Then, determine the initial schedule by starting each 

job on each machine as soon as possible. 

Step 1: Divide n jobs on last machine into clusters, if inequality (12) and equation (13) are valid, jobs
][iJ  and 

]1[ iJ are 

grouped in the same cluster. 

Step 2: Group each cluster into sub-schedule according to equation (24). 

Step 3:  Set g=0. 

Step 4: Set g=g+1, if g>G, go to step 9. Otherwise, calculate )(r and )(rE for each cluster in sub-schedule g and go to step 5. 

Step 5:  Determine the minimal h such that 0)(
1




h

r

r . 

Step 5.1:  if h exists and h=Rg, go to step 4. Otherwise, consider step 5.2.   

Step 5.2:  if h exists and h ≠ Rg, go to step 6. Otherwise, consider step 5.3. 

Step 5.3:  if h does not exist, then go to step 7. 

Step 6:  The first h clusters must not be moved. Remove the first h clusters from consideration, go to step 5 to evaluate the 

remaining clusters. 

Step 7:  Consider ( )1 gRr  , determine the smallest )(rE and, then, shift clusters in the sub-schedule g to the right at the 

distance equals to the smallest )(rE . Go to step 8. 

Step 8:  If first
g

last
g SC 1 , update )(r and )(rE , go to step 5. Else, if first

g
last
g SC 1 , combine sub-schedule g with sub-schedule 

g+1 and go to step 4. 

Step 9:  Stop. 

 

So far, only the operations of jobs on the last machine have been considered. For each job, the starting time of the 

remaining operations (machines m-1 to 1) can be determined using the following equations. 

 

 1,,1, ,min  kikiki SSC  ;i = 1,2…,n-1 ; k = 1,2…,m-1                                  (35) 

 

              1,,  knkn SC              ;k = 1,2,…,m-1                     (36) 

 The calculation of the optimal timing algorithm for the problem discussed in the Example 1 is demonstrated in the 

Example 2.  
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Example 2: 

In the Example 1, the given job sequence is 
1J  3J 

2J  5J  4J . The optimal starting time of each job in this 

sequence can be determined using the optimal timing algorithm explained previously as follows:  

Step 0: The initial schedule is shown in Figure 1. Note that by re-indexing jobs according to their positions, jobs 
5231 ,,, JJJJ  and 

4J  
can be called ,,,, ]4[]3[]2[]1[ JJJJ and

]5[J , respectively.  

Step 1: Apply inequality (12) and equation (13) to divide five jobs into clusters. The job members of each cluster are shown as 

follows: 

Cluster 1: 
]2[]1[ , JJ  

Cluster 2: 
]3[J  

Cluster 3: ]5[]4[ , JJ  

Step 2: Group each cluster into sub-schedule according to equation (24) 

Sub-schedule 1: Cluster 1, Cluster 2 

Sub-schedule 2: Cluster 3 

Step 3: Set g=0. 

Step 4: Set g=0+1, consider the first sub-schedule. 

   11 ,1 ,6min)1(,2)1( ]1[  E  

   11 , ,2min)2(,3)2( ]3[  E  

Step 5: 0)2()1( ,0)1(  . 

Step 5.3: The minimal h does not exist, go to step 7.

 Step 7: Shift cluster 1 and 2 by   1)2( ),1(min EE , go to step 8 

Step 8: 4221 
firstlast SC , combine sub-schedule 1 with sub-schedule 2. The second sub-schedule is now composed of clusters 

1, 2, and 3. Go to step 4. 

Step 4: Set g = 1+1 = 2, consider the second sub-schedule. 

 132)1( ]2[]1[   ,   5 , ,5min)1( E  

 3)2( ]3[   ,   1 , ,1min)2( E  

 242)3( ]5[]4[   ,   3 , ,3min)3( E  

Step 5: 0)1(  .  

Step 5.2: The minimal h=1, go to step 6 

Step 6: The first cluster does not move. Delete the first cluster from the consideration and go to step 5. 

Step 5: 0)2(  , 0)3()2(  .  

Step 5.3: The minimal h does not exist, go to step 7. 

Step 7: Shift cluster 2 and 3 by   1)3( ),2(min EE , go to step 8 

Step 8: )63( 32 
firstlast SC , update )2( , )3( , )2(E , )3(E . Go to step 5. 

 0)2(  ,   3,3,min)2( E  

 242)3( ]5[]4[   ,   2 , ,2min)3( E  

Step 5: 0)2(  . 
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Step 5.2: The minimal h=2, go to step 6. 

Step 6: The second cluster does not move. Delete the second cluster from the consideration and go to step 5. 

Step 5: 0)3(  . 

 Step 5.1: The minimal h=Rg=3, go to step 4. 

Step 4: Set g=2+1=3, g>G (3>2), go to step 9. 

Step 9: Stop.  

The result obtained from the procedures is shown in the Figure 3 below. 

 

 

Figure 3. Results from the optimal timing algorithm. 

 

From the Figure 3, jobs 1 and 5 are early while job 4 is tardy. The total cost associated with final schedule can be 

calculated as (setup cost = $13) + (earliness cost = $14) + (tardiness cost = $8) = $35. 

 

5. Memetic Algorithm 

 

The Memetic Algorithm is proposed to determine the good solution to the problem in a reasonable amount of time. In 

this research, the evolutionary procedure is applied to determine the good job sequence, which can be considered as the global 

search. For the local search, the optimal timing algorithm presented in the previous section is inserted in the evolutionary 

procedure. The function of OPT is to determine the best starting position of each job for the given job sequence. The Memetic 

procedure is illustrated in the Figure 4. 

 

Figure 4. MA procedure. 

 

4

4

1 3 2 5

4

1 3 2 5

1 3 2 5Machine 1

                    

Machine 2

Machine 3
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5.1 Representation and initialization 

 

In the representation, a chromosome can be considered as a sequence of jobs. Each gene is an integer number represented 

a job in the sequence. For the illustration, a chromosome of [1 3 2 5 4] represents the production sequence of J1J3J2J5J4. 

Note that all machines have the same production sequence and the optimal timing algorithm can be applied to each production 

sequence in order to generate the best schedule. The chromosomes in the initial population are generated until the number of 

chromosomes equals to the initial population size. 

 

5.2 Crossover procedure (Uniform order based crossover) 

 

According to Lee and Choi (1995), the uniform order based crossover is considered to be best fit for job sequencing 

problems. Therefore, this method is selected as the crossover operator in the research.  

 

5.3 Mutation procedure (Swapping mutation) 

 

Each offspring created from the crossover operator is evaluated to see if the mutation should occur. The swapping 

mutation is used here. The method is to, first, randomly select two genes from a chromosome and, then, exchange their positions. 

 

5.4 Evaluation 

 

The purpose of evaluation is to determine quality and fitness value of each chromosome. The total cost of each 

chromosome (TCi), represented the chromosome quality, can be calculated according to the objective function mentioned in the 

session 2.1. The chromosome fitness value (fi) is determined using the equation 37. This value can be considered as the 

probability that each chromosome will be selected as a member of the next generation. Here, those good chromosomes with low 

total costs have greater chances to be selected. 

 i
i

TC
f

1
                                    (37) 

5.5 Selection 

 

Similar to the work of Cheng et al. (1995), two selection operations, elitist and roulette wheel, are applied to perform 

the reproduction step of evolutionary procedures. The elitist is implemented to preserve the best chromosome in the enlarge 

population (parents + off-springs) of current generation for the population of next generation. The roulette wheel is, then, applied 

to select the remaining chromosomes to be the members of the next generation in such a way that a fitter chromosome has greater 

chance to be selected.  

 

6. Computational Results 

 

This section is to evaluate the performance of Memetic Algorithm discussed previously. The solution obtained from the 

Memetic Algorithm is compared with the optimal solution yielded from Integer Linear Programming (small size problems) and 

the Branch and Bound method (small and large size problems). All three approaches are coded with the MATLAB R2014b and 

compiled with the Intel(R) Core(TM) i7 CPU processor 3.07 GHz RAM 7.88 GB. In the Branch and Bound (B&B), the partial 



      A. Chaimanee & W. Supithak / Songklanakarin J. Sci. Technol. 40 (5), 1203-1218, 2018                1215 

 

job schedules are created by applying the optimal timing algorithm to partial job sequences. The remaining partial job sequences 

after applying the concept of Branch and Bound to the Example 1, using the solution obtained from the MA as an upper bound, 

are demonstrated in the Figure 5. The deviation percentage value (%Dev) applied to evaluate the MA performance can be 

calculated as:   

    Opt

OptMA

TC

TCTC
Dev

100)(
)(%




                 (38) 

 

where  
MATC is the total cost obtained from the MA. 

            OptTC  is the optimal total cost obtained from the ILP (small size problems) and the B&B (small and large size problems). 

 

 

 

Figure 5. Branch and Bound structure for Example 1. 
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Table 2 presents the details of problem setup. To 

determine the proper probabilities of crossover (pc) and 

mutation (pm), forty trial problems were evaluated. The 

experiment suggests that the combination of pc=0.8 and 

pm=0.1 should be selected. In comparison to the other, this 

combination yields the best result for thirty four out of forty 

problems. Three stopping criteria are applied in the MA. The 

first criterion stops the search when total cost of the best 

chromosome in a generation equals to zero. The second 

criterion terminates the MA when the total cost reduction 

percentage is smaller than 0.01 after 200 consecutive 

generations. The last criterion finishes the search when the 

number of generations reaches 1,000.  

In the experiment, the influences of number of jobs 

(3 levels), number of machines (2 levels), and ratio of 

tardiness to earliness penalties (4 levels) on the MA 

performance are evaluated. Note that there are totally twenty 

four treatments with fifteen replications in each treatment. The 

summary results from twenty four treatment combinations are 

shown in Table 3. 

  

                     Table 2.     Details of problem setup. 

Characteristics Values 
  

Number of jobs (n)  5, 10, 12 

Number of machines (m) 3, 5 
Processing time (Pi,k)  Discrete uniform [1,10] 

Due dates  Discrete uniform [ 
 



n

i

m

k

ki

m

k

ki
i

mPP
1 1

,, )/)5.1(),(min ]
 

Deviation of Due dates Discrete uniform [1,3]
 

Earliest due dates (ei)  Due dates - Deviation of Due dates 
Latest due dates (ti) Due dates + Deviation of Due dates 

Earliness cost (
i ) Discrete uniform [1,5] 

Tardiness cost (
i )  

i5.0 , 
i0.1 , 

i5.1 , 
i0.2  

Setup cost (
ji, ) Discrete uniform [0,5]

 
  

 

      Table 3.     Average deviation percentage and average computational time of each treatment (15 replications of each treatment).  

Treatments 

)/,,( mn  

Number of 

optimal solution 
found 

Average Deviation  

Percentage Value from 15 
problems 

 Average Computational Time (sec.) 

MA Branch and Bound ILP 

      

(5,3,0.5) 15 0.00 10.51 0.04 9.39 

(5,3,1.0) 15 0.00 9.56 0.04 10.08 
(5,3,1.5) 15 0.00 10.59 0.03 8.55 

(5,3,2.0) 15 0.00 9.76 0.03 10.58 

(5,5,0.5) 15 0.00 9.78 0.05 21.31 
(5,5,1.0) 15 0.00 10.13 0.05 23.36 

(5,5,1.5) 15 0.00 9.69 0.05 23.04 

(5,5,2.0) 15 0.00 9.49 0.06  21.17 

(10,3,0.5) 15 0.00 26.97 65.34 N/A 

(10,3,1.0) 15 0.00 22.54 391.08 N/A 

(10,3,1.5) 15 0.00 22.42 429.82 N/A 
(10,3,2.0) 15 0.00 21.29 126.33 N/A 

(10,5,0.5) 14 0.02 22.01 783.62 N/A 

(10,5,1.0) 14 0.02 20.66 952.54 N/A 
(10,5,1.5) 15 0.00 20.38 1320.30 N/A 

(10,5,2.0) 15 0.00 19.62 2780.94 N/A 

(12,3,0.5) 14 0.48 39.54 1379.84 N/A 
(12,3,1.0) 15 0.00 38.13 1471.08 N/A 

(12,3,1.5) 15 0.00 30.63 5503.93 N/A 

(12,3,2.0) 15 0.00 32.07 4902.84 N/A 
(12,5,0.5) 15 0.00 27.40 9684.52 N/A 

(12,5,1.0) 15 0.00 26.89 10973.95 N/A 

(12,5,1.5) 15 0.00 29.06 10565.61 N/A 
(12,5,2.0) 13 0.41 27.40 19352.21 N/A 

      

 

*Note that the deviation percentage value demonstrates the percentage of difference between the solution obtained from the MA and  
  the optimal solutions yielded from ILP and B&B. 
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From the study result, the MA yields optimal 

solution for 355 out of 360 problems. The treatments of (10, 5, 

0.5), (10, 5, 1.0) ,and (12, 3, 0.5) provide the optimal solution 

for 14 out of 15 replications and the treatment of (12, 5, 2.0) 

found the optimal solution for 13 out of 15 replications. On 

average, the maximum deviation percentage, occurring in the 

treatment of (12, 3, 0.5), is 0.48 percent. The maximum 

computational time of the MA and the Branch and Bound 

method are 39.54 and 19,352.21 seconds, respectively. It is 

obvious that when the problem size is getting larger, the 

computational time of Branch and Bound increases 

dramatically. This result emphasizes that the MA heuristic is 

appropriate to be applied to those medium and large size 

problems. 

 

7. Conclusions 

 

The research addresses the flow shop scheduling 

problem with jobs having different due windows under the 

just in time philosophy. The objective is to minimize total 

cost composing of setup, earliness, and tardiness costs. The 

mathematical model is developed to represent the problem. 

The Memetic Algorithm with the insertion of optimal timing 

algorithm has been created to determine the good solution in a 

reasonable amount of time. According to the method 

proposed, the function of evolutionary procedure is to search 

for the good production sequences. The optimal timing 

algorithm is, then, applied to determine the optimal schedule 

of each production sequence. For performance evaluation, the 

solutions obtained from MA heuristic is compared with the 

optimal solutions yielded from the Branch and Bound 

method. From the study result of 360 problems, the MA 

heuristic provides the optimal solutions for 355 problems. On 

average, the maximum computational time of the MA and the 

Branch and Bound are 39.54 and 19,352.21 seconds, 

respectively. This result emphasizes the benefit of applying 

MA heuristic to solve the problem of medium and large sizes.  
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