21,082 research outputs found

    Cross-Layer Peer-to-Peer Track Identification and Optimization Based on Active Networking

    Get PDF
    P2P applications appear to emerge as ultimate killer applications due to their ability to construct highly dynamic overlay topologies with rapidly-varying and unpredictable traffic dynamics, which can constitute a serious challenge even for significantly over-provisioned IP networks. As a result, ISPs are facing new, severe network management problems that are not guaranteed to be addressed by statically deployed network engineering mechanisms. As a first step to a more complete solution to these problems, this paper proposes a P2P measurement, identification and optimisation architecture, designed to cope with the dynamicity and unpredictability of existing, well-known and future, unknown P2P systems. The purpose of this architecture is to provide to the ISPs an effective and scalable approach to control and optimise the traffic produced by P2P applications in their networks. This can be achieved through a combination of different application and network-level programmable techniques, leading to a crosslayer identification and optimisation process. These techniques can be applied using Active Networking platforms, which are able to quickly and easily deploy architectural components on demand. This flexibility of the optimisation architecture is essential to address the rapid development of new P2P protocols and the variation of known protocols

    The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena

    Full text link
    The Internet is the most complex system ever created in human history. Therefore, its dynamics and traffic unsurprisingly take on a rich variety of complex dynamics, self-organization, and other phenomena that have been researched for years. This paper is a review of the complex dynamics of Internet traffic. Departing from normal treatises, we will take a view from both the network engineering and physics perspectives showing the strengths and weaknesses as well as insights of both. In addition, many less covered phenomena such as traffic oscillations, large-scale effects of worm traffic, and comparisons of the Internet and biological models will be covered.Comment: 63 pages, 7 figures, 7 tables, submitted to Advances in Complex System

    A critical look at power law modelling of the Internet

    Get PDF
    This paper takes a critical look at the usefulness of power law models of the Internet. The twin focuses of the paper are Internet traffic and topology generation. The aim of the paper is twofold. Firstly it summarises the state of the art in power law modelling particularly giving attention to existing open research questions. Secondly it provides insight into the failings of such models and where progress needs to be made for power law research to feed through to actual improvements in network performance.Comment: To appear Computer Communication

    Uncovering Vulnerable Industrial Control Systems from the Internet Core

    Full text link
    Industrial control systems (ICS) are managed remotely with the help of dedicated protocols that were originally designed to work in walled gardens. Many of these protocols have been adapted to Internet transport and support wide-area communication. ICS now exchange insecure traffic on an inter-domain level, putting at risk not only common critical infrastructure but also the Internet ecosystem (e.g., DRDoS~attacks). In this paper, we uncover unprotected inter-domain ICS traffic at two central Internet vantage points, an IXP and an ISP. This traffic analysis is correlated with data from honeypots and Internet-wide scans to separate industrial from non-industrial ICS traffic. We provide an in-depth view on Internet-wide ICS communication. Our results can be used i) to create precise filters for potentially harmful non-industrial ICS traffic, and ii) to detect ICS sending unprotected inter-domain ICS traffic, being vulnerable to eavesdropping and traffic manipulation attacks

    GreedyDual-Join: Locality-Aware Buffer Management for Approximate Join Processing Over Data Streams

    Full text link
    We investigate adaptive buffer management techniques for approximate evaluation of sliding window joins over multiple data streams. In many applications, data stream processing systems have limited memory or have to deal with very high speed data streams. In both cases, computing the exact results of joins between these streams may not be feasible, mainly because the buffers used to compute the joins contain much smaller number of tuples than the tuples contained in the sliding windows. Therefore, a stream buffer management policy is needed in that case. We show that the buffer replacement policy is an important determinant of the quality of the produced results. To that end, we propose GreedyDual-Join (GDJ) an adaptive and locality-aware buffering technique for managing these buffers. GDJ exploits the temporal correlations (at both long and short time scales), which we found to be prevalent in many real data streams. We note that our algorithm is readily applicable to multiple data streams and multiple joins and requires almost no additional system resources. We report results of an experimental study using both synthetic and real-world data sets. Our results demonstrate the superiority and flexibility of our approach when contrasted to other recently proposed techniques
    • …
    corecore