6,867 research outputs found

    Upscaling of enzyme enhanced CO2 capture

    Get PDF

    Geological sequestration of carbon dioxide by hydrous carbonate formation in steelmaking slag

    Get PDF
    The formation of carbonate solids from the alkaline earth oxide phases in steelmaking slag was investigated in dry and aqueous conditions as a vehicle for carbon dioxide sequestration. The goal of this research was to determine the process conditions that would increase the kinetics of the carbonate formation process under hydrous conditions, enabling direct removal of carbon dioxide from steelmaking offgas --Abstract, page iv

    Preparation, Proximate Composition and Culinary Properties of Yellow Alkaline Noodles from Wheat and Raw/Pregelatinized Gadung (Dioscorea Hispida Dennst) Composite Flours

    Get PDF
    The steady increase of wheat flour price and noodle consumptions has driven researchers to find substitutes for wheat flour in the noodle making process. In this work, yellow alkaline noodles were prepared from composite flours comprising wheat and raw/pregelatinized gadung (Dioscorea hispida Dennst) flours. The purpose of this work was to investigate the effect of composite flour compositions on the cooking properties (cooking yield, cooking loss and swelling index) of yellow alkaline noodle. In addition, the sensory test and nutrition content of the yellow alkaline noodle were also evaluated for further recommendation. The experimental results showed that a good quality yellow alkaline noodle can be prepared from composite flour containing 20% w/w raw gadung flour. The cooking yield, cooking loss and swelling index of this noodle were 10.32 g, 1.20 and 2.30, respectively. Another good quality yellow alkaline noodle can be made from composite flour containing 40% w/w pregelatinized gadung flour. This noodle had cooking yield 8.93 g, cooking loss 1.20, and swelling index of 1.88. The sensory evaluation suggested that although the color, aroma and firmness of the noodles were significantly different (p ≤ 0.05) from wheat flour noodle, but their flavor remained closely similar. The nutrition content of the noodles also satisfied the Indonesian National Standard for noodle. Therefore, it can be concluded that wheat and raw/pregelatinized gadung composite flours can be used to manufacture yellow alkaline noodle with good quality and suitable for functional food

    Development of green CO₂ capture technologies using immobilized carbonic anhydrase enzyme

    Get PDF
    Les activités anthropiques ont considérablement augmenté la quantité de gaz à effet de serre (GES) dans l'atmosphère et sont un contributeur majeur au réchauffement climatique. Le dioxyde de carbone (CO₂) est considéré le principal gaz à effet de serre qui contribue largement aux changements climatiques. Diverses technologies sont explorées à travers le monde pour la capture et la séquestration du CO₂. Les solutions à base d'amines sont considérées des solvants efficaces, mais ils sont énergivores et ont des impacts négatifs sur l'environnement. L'absorption du CO₂ à l'aide de l'enzyme anhydrase carbonique (AC) comme catalyseur (libre en solution ou immobilisé) est une technologie prometteuse qui offre une sélectivité et une efficacité élevées pour la capture du CO₂, tout en utilisant des solvants non toxiques et moins énergivores. L'AC est un biocatalyseur bien connu, doté d'une aptitude extraordinaire à absorber les molécules de CO₂ (grâce à son énorme constante catalytique (turnover number, TON)), ce qui lui confère une très grande capacité à stimuler l'hydratation du CO₂. L'immobilisation de l'AC sur des surfaces solides améliore la stabilité et la réutilisation de l'enzyme, en permettant une séparation facile des produits de la réaction sans la contamination du biocatalyseur. Dans ce contexte, cette thèse se concentre sur l'étude de l'absorption du CO₂ en utilisant l'AC immobilisée dans différents bioréacteurs. Plus précisément, les principaux objectifs sont: i) de développer un processus enzymatique amélioré en utilisant l'AC immobilisée dans une colonne à garnissage, ii) d'étudier l'absorption du CO₂ dans un contacteur à membrane avec l'enzyme immobilisée sur la surface de la membrane, et iii) de proposer un nouveau procédé enzymatique hybride dans un contacteur à membrane plane en intensifiant l'absorption du CO₂ par l'enzyme immobilisée autant sur la membrane que sur la surface de nanoparticules magnétiques (MNPs). Une nouvelle technique d'immobilisation de l'AC a été développée en combinant (i) la codéposition de Polydopamine (PDA)/Polyethyleneimine (PEI) contenant des groupes fonctionnels aminés pour fonctionnaliser les surfaces et (ii) l'immobilisation covalente de l'enzyme sur les surfaces aminées en utilisant du glutaraldéhyde. L'approche proposée est intéressante en raison de sa simplicité, de l'abondance des fonctionnalités (amine) du PEI, et de la grande capacité d'adhésion du PDA pendant le processus de fonctionnalisation de la surface, ainsi que de la stabilité et de la réutilisation de l'enzyme immobilisée par liaison covalente. Un procédé enzymatique hybride avec l'enzyme AC immobilisée sur la surface du garnissage et des MNPs dispersées dans l'absorbant liquide (eau) a été développé dans un bioréacteur constitué par une colonne gaz-liquide. L'enzyme a été immobilisée sur la surface fonctionnalisée des MNPs et du garnissage par liaisons covalentes. Même après 40 jours, l'enzyme immobilisée sur le garnissage et les MNPs a montré une remarquable stabilité, conservant, respectivement, 80 % et 84,7 % de son activité initiale. Étant donné que l'enzyme immobilisée sur les MNPs fonctionne comme une enzyme libre en solution, le processus d'hydratation du CO₂ s'est amélioré de manière significative, en particulier lorsqu'il y a une plus importante limitation de la diffusion lors du processus enzymatique avec l'enzyme immobilisée sur la surface du garnissage. L'AC immobilisée sur la surface d'une membrane plane en polypropylène (PP) par codéposition de PDA/ PEI par liaison covalente a montré la plus grande activité et a conservé la plupart de son activité initiale après 40 jours (82.3%). Un flux d'absorption de CO₂ de 0,29x10⁻³ mol/m²s a été atteint en intégrant la membrane biocatalytique dans un contacteur à membrane plane (FSMC), en utilisant l'eau comme absorbant. Un taux stable d'absorption a été obtenu pendant l'opération à plus long terme (6 heures), illustrant le potentiel de cette technologie dans des applications industrielles. La résistance au transfert de masse dans les pores de la membrane partiellement remplis de liquide a été réduite par l'hydratation catalysée du CO₂ dans ces pores en présence de l'AC immobilisée. L'absorption de CO₂ dans un contacteur à membrane plane avec de l'AC immobilisée sur la surface de la membrane a été intensifiée en incorporant également l'enzyme immobilisé sur la surface des MNPs dispersés dans la phase liquide. Le processus d'absorption du CO₂ a été amélioré grâce à la présence de MNPs biocatalytiques qui agissent comme une enzyme libre en phase liquide. L'AC a été immobilisée de manière covalente sur la surface des MNPs fonctionnalisées. L'absorption du CO₂ a été améliorée dans ce système hybride innovant de contacteur à membrane intensifié en maximisant l'utilisation du TON de cette enzyme, en particulier à des concentrations plus faibles d'enzyme sur la membrane biocatalytique. Autant la membrane que les MNPs avec l'AC immobilisée ont démontré leur réutilisabilité, en conservant leurs activités initiales même après 10 cycles d'absorption. Le contacteur à membrane intensifié a également montré un fonctionnement stable pendant plusieurs heures. En conclusion, les résultats obtenus dans cette thèse illustrent le fait que la capture du CO₂ utilisant de l'anhydrase carbonique immobilisée peut offrir une stratégie rentable, verte et respectueuse de l'environnement, représentant une alternative attrayante aux technologies traditionnelles qui utilisent des absorbants à base d'amines. Avec la crise environnementale croissante, les technologies enzymatiques prennent de l'importance, ce qui suscite de plus en plus de tentatives pour les mettre en œuvre à l'échelle industrielle.Anthropogenic activities have significantly enhanced the amount of greenhouse gases (GHGs) in the atmosphere and are a major contributor to global warming. Carbon dioxide (CO₂) is a primary greenhouse gas that contributes to climate change. Various technologies are being explored across the world to tackle CO₂ capture and sequestration. Despite their efficiency, amine-based solutions have negative environmental impact and the process is energy intensive. CO₂ absorption using carbonic anhydrase (CA) enzyme as catalyst (free in solution or immobilized) is a promising technology which offers high selectivity and efficiency in CO₂ capture processes by using nontoxic and more energy efficient solvents. CA is a well-known biocatalyst endowed with an extraordinary turnover number (TON), which offers to it a very high capacity to boost CO₂ hydration. CA immobilization on solid surfaces enhances the enzyme stability, and reusability and provides the ability for easy separation of the reaction products without biocatalyst contamination. In this context, the present thesis focuses on the investigation of CO₂ absorption process using immobilized CA in different bioreactors. More specifically, the main objectives are: i) developing an enhanced enzymatic process with immobilized CA enzyme in a packed-bed column bioreactor, ii) studying the CO₂ absorption in membrane contactor with immobilized CA enzyme on membrane surface, and iii) proposing a novel hybrid enzymatic process in an intensified flat sheet membrane contactor for improving CO₂ absorption via immobilized CA enzyme on both membrane and magnetic nanoparticles (MNPs). An improved CA immobilization technique was developed in this work using two steps: (i) co-deposition of Polydopamine (PDA)/Polyethyleneimine (PEI) with amino functional groups for amine-functionalization of surfaces and (ii) covalent enzyme immobilization on the aminated surfaces using glutaraldehyde. The proposed approach is appealing because of its simplicity, abundant amine functionalities of PEI, and great adhesion capacity of PDA during surface functionalization process, as well as the stability and reusability of immobilized enzyme via covalent bonding. A hybrid enzymatic process with CA enzyme immobilized on packing surface and MNPs dispersed in the liquid absorbent (water) was developed in a gas-liquid packed-bed column bioreactor. CA was immobilized on amine functionalized surface of MNPs and packings via covalent attachments. Even after 40 days of storage in buffer solution, the immobilized CA on packing and MNPs showed remarkable stability, retaining 80% and 84.7% of its original activity, respectively. Since the enzyme immobilized on MNPs operates as a free solution-phase enzyme, the CO₂ hydration process improved significantly, specially when the diffusion limitation in the enzymatic process with immobilized CA enzyme on the packing surface was significant. CA enzyme immobilized on polypropylene (PP) flat sheet membrane surface via co-deposition of PDA/PEI through covalent bonding method showed the highest activity and preserved most of its initial activity after 40 days (82.3%). A CO₂ absorption flux of 0.29x10⁻³ mol/m²s was attained by integrating the biocatalytic membrane into a flat sheet membrane contactor (FSMC) using water as absorbent. Stable CO₂ absorption rate was obtained during a longer time operation (6 hours), illustrating its potential for industrial applications. Mass transfer resistance in partially liquid-filled membrane pores was shown to be reduced by the catalyzed CO₂ hydration in these pores in the presence of immobilized CA. CO₂ absorption in flat sheet membrane contactor with immobilized CA on membrane surface was intensified by the incorporation of immobilized CA on the surface of MNPs dispersed in the liquid phase. CO₂ absorption process was improved due to the presence of biocatalytic MNPs, which act as a free solution-phase enzyme. CA was covalently immobilized on amine-functionalized MNPs surface. The proposed innovative hybrid enzymatic process in the intensified membrane contactor improved the CO₂ absorption by maximizing the utilization of CA's large TON, specially at lower CA loadings on the biocatalytic membrane. Immobilized membrane and MNPs demonstrated their reusability and retained their initial activities even after 10 absorption cycles. The intensified membrane contactor also displayed a stable operation for several hours. In conclusion, the results achieved in our work illustrate that CO₂ capture using immobilized CA can offer a cost-effective, green, and environmentally friendly strategy, representing an attracting alternative to customary technologies using amine-based absorbents. With the growing environmental crisis, enzymatic CO₂ capture technologies are becoming more important, prompting more attempts to implement them on industrial scales

    DTU Chemical Engineering:Annual Report 2011

    Get PDF

    Optimized modeling of membrane gas phase separation processes

    Get PDF
    Le schéma traditionnel d'utilisation de l'énergie est désormais considéré comme un problème sérieux en raison de sa relation directe avec le changement climatique. Actuellement, notre dépendance vis-à-vis des combustibles fossiles augmente de façon spectaculaire, ce qui peut être attribué à la croissance de la population mondiale et à la forte demande d'énergie pour le développement économique. Ce modèle semble être préférable uniquement pour une économie florissante, mais ses perspectives pour les générations futures seront sans aucun doute décevantes. Dans ce scénario, un volume gigantesque de CO₂ produit par la combustion des combustibles fossiles dans les industries chimiques, les cimenteries et les centrales électriques, est rejeté de manière irresponsable dans l'atmosphère. Il ne fait aucun doute qu'une telle exploitation des combustibles fossiles nous conduit à des catastrophes environnementales sans précédent en ce qui concerne l'émission de CO₂, qui est le principal contributeur aux gaz à effet de serre (GES). L'une des solutions disponibles pour faire face à cette situation critique est de moderniser les centrales existantes qui émettent du CO₂ avec des technologies de capture et de stockage du carbone (CSC) afin de lutter systématiquement contre le changement climatique. Toutefois, les technologies actuelles de CSC présentent encore des problèmes techniques et des limites opérationnelles qui entraînent un surcoût pour les dépenses d'une usine et une augmentation de sa consommation d'énergie. La technologie membranaire est actuellement considérée comme une méthode de séparation prometteuse pour la séparation des gaz en raison de la simplicité de son procédé et de son mécanisme écologique. Par rapport aux autres méthodes de séparation, cette technologie est encore en cours de développement. Actuellement, la recherche se concentre sur l'amélioration des caractéristiques des membranes afin de faire face à un compromis bien connu entre la perméabilité et la sélectivité décrit par les graphiques de Robeson. Cette approche pourrait viser à commercialiser cette technologie plus efficacement dans le domaine de la séparation des gaz, tandis qu'une technologie d'absorption à base d'amines sera encore utilisée de manière dominante à cette fin pendant plusieurs années. Malgré cela, il est également nécessaire d'évaluer la performance des membranes fabriquées pour la séparation de différents mélanges de gaz avant de les utiliser pour des projets industriels réalistes. Pour ce faire, un outil de simulation est nécessaire pour prédire la composition des composants gazeux dans les flux de produits du rétentat et du perméat dans différentes conditions de fonctionnement. Ainsi, au chapitre 1, un modèle fiable est développé pour la simulation de la séparation des gaz à l'aide de modules de membranes à fibres creuses. Ensuite, ce modèle permet d'identifier les propriétés requises de la membrane, ce qui permet d'obtenir des performances intéressantes pour le module. Un procédé membranaire à plusieurs étapes est nécessaire pour atteindre les spécifications du produit qui sont une pureté et une récupération élevées du CO₂ dans le cas de projets de capture du CO₂. Dans ce cas, au chapitre 2, un modèle d'optimisation est proposé pour déterminer les valeurs optimales des paramètres de fonctionnement pour chaque étape et surtout pour déterminer une disposition optimisée à différents taux de récupération tout en minimisant le coût de la capture du CO₂. Dans le chapitre 3, nous comparons les performances de séparation de la technologie membranaire et du procédé d'absorption enzymatique en effectuant plusieurs analyses technico-économiques. Cette approche vise à démontrer la viabilité technique et l'efficacité économique de ces méthodes pour la modernisation d'une centrale électrique de 600 MWe par rapport aux procédés traditionnels d'absorption à base d'amines. Enfin, au chapitre 4, un système hybride est présenté en combinant les procédés d'absorption membranaire et enzymatique pour capturer le CO₂ des gaz de combustion d'une centrale électrique de 600 MWe. Ce système hybride est ensuite évalué pour révéler la faisabilité du procédé et pour étudier les performances de séparation en partageant la capture partielle du CO₂ entre ces deux unités de séparation. Dans l'ensemble, cette thèse de doctorat contribue à tirer parti de la fusion de la technologie membranaire avec d'autres méthodes de séparation conventionnelles telles que le procédé d'absorption enzymatique pour faciliter plus rapidement son intégration industrielle et sa commercialisation sur le marché de la séparation des gaz.The traditional pattern of energy use is now regarded as a serious problem due to its direct relationship to the climate change. Currently, our dependency on fossil fuels is dramatically increasing which can be attributed to the world population growth and heavy energy demand for economic development. This model appears to be preferable only for flourishing economy but undoubtedly its outlook for the future generations will be disappointing. Under this scenario, a gigantic volume of CO₂ produced by burning the fossil fuels in chemical industries, cement manufactures, and power plants, is recklessly released in the atmosphere. Undoubtedly, such exploitation of the fossil fuels is bringing us further to unprecedented environmental disasters pertaining to the emission of CO₂ which is the major contributor to the greenhouse gases (GHGs). One of the available solutions to deal with this critical situation is to retrofit existing CO₂ emitter plants with carbon capture and storage (CCS) technologies in order to systematically combat with the climate change. However, the current CCS technologies still have technical issues and operational limitations resulting in incurring extra cost to a plant’s expenditures and increasing its energy consumption. Membrane technology is currently regarded as a promising separation method for gas separation due to its process simplicity and eco-friendly mechanism. In comparison to other separation methods, this technology is still under progress. Currently, the research focus is on the enhancement of membrane characteristics in order to deal with a well-known trade-off between permeability and selectivity described by Robeson plots. This approach might aim at commercializing this technology more efficiently in the gas separation area while an amine-based absorption technology will still be dominantly utilized for this purpose for several years. Despite this, it is also needed to evaluate the performance of fabricated membranes for the separation of different gas mixtures prior to utilizing for realistic industrial projects. To do so, a simulation tool is required to predict the composition of gas components in retentate and permeate product streams under different operating conditions. Thus, in Chapter 1, a reliable model is developed for the simulation of gas separation using hollow fiber membrane modules. Later, this model allows identifying the required membrane properties hence, resulting in module performances of interest. A multi-stage membrane process is required to hit product specifications which are high CO₂ purity and recovery in the case of CO₂ capture projects. In this case, an optimization model is proposed in Chapter 2 to determine the optimal values of operating parameters for each stage and more importantly to determine an optimized layout at different recovery rates while CO₂ capture cost is minimized. In Chapter 3, we compare the separation performance of membrane technology and the enzymatic-absorption process through performing several techno-economic analyses. This approach aims at demonstrating the technical viability and economic efficiency of these methods for retrofitting to a 600 MWe power plant compared to traditional amine-based absorption processes. Finally, a hybrid system is introduced in Chapter 4 by combining membrane and enzymatic-absorption processes to capture CO₂ from flue-gas of a 600 MWe power plant. This hybrid system is then assessed to reveal the process feasibility and to investigate separation performance through sharing partial CO₂ capture between these two separation units. Overall, this PhD thesis contributes to leverage the merge of membrane technology with other conventional separation methods such as the enzymatic-absorption process to more rapidly facilitate its industrial integration and commercialization in the gas separation market
    corecore