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ABSTRACT 

The formation of carbonate solids from the alkaline earth oxide phases in 

steelmaking slag was investigated in dry and aqueous conditions as a vehicle for carbon 

dioxide sequestration. The goal of this research was to determine the process conditions 

that would increase the kinetics of the carbonate formation process under hydrous 

conditions, enabling direct removal of carbon dioxide from steelmaking offgas. 

The rate controlling mechanisms of leaching and carbonation in industrial slags 

exposed to carbon dioxide were investigated using a thermogravimetric reactor, batch 

aqueous reactor, and a two-stage aqueous reactor. In addition, detailed chemical and 

physical slag properties at the macro- and micro-scale levels were measured using XRF, 

XRD, SEM/EDS, TGA, and grindability methods.  

The carbonate formation rate is primarily governed by particle size. Slag grinding 

will increase the reaction surface area, and is itself carbon dioxide sequestration net 

positive. The grinding cost can be recouped by recovering liberated steel particles. The 

critical (economic) grind size for BOF and EAF slag is 100-150 μm, and for LMF slag is 

350-400 μm. Aqueous processing proceeds much faster than dry processing due to 

separate leaching and carbonation processes in the latter. In a batch reactor, the 

precipitated calcium carbonate product layer may inhibit further reaction by reducing the 

diffusion rate of the reacting species. A continuous (two-stage) system allows separate 

leaching and carbonation reactions to take place thus overcoming product layer blinding, 

however, the water requirement is greatly increased.  

Leaching occurs faster than carbonation, and both processes are described 

accurately by the shrinking core model after correction for particle surface area. A 

minimum pH of 8.5 is critical to realize fast carbonation rates, while carbonic anhydrase 

enzyme will catalyze the reaction at a pH>10.33. The best results achieved in this project 

show 47% of the theoretical amount of carbonation can be achieved at 24 hours in a 

reactor using 100 μm slag particles. This amount is equal to 0.5% and 2.4% of the carbon 

dioxide emitted by integrated and mini-mills, respectively. 
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SECTION 

1. INTRODUCTION 

1.1. PROJECT PURPOSE AND METHODOLOGY 

The objective of this project is to develop and demonstrate a process for 

sequestering CO2 generated from steel production by forming carbonates with the 

alkaline earth components in slag, generating a higher value slag co-product. The net 

project result is the design of reactor operating parameters that can be used to treat 

steelmaking offgas rich in CO2 with raw or minimally processed slag. To achieve this 

result, the core research focus is to improve the process kinetics of the hydrous carbonate 

formation reaction, enabling direct removal of CO2 from steelmaking exhaust. The net 

plant CO2 emissions will be reduced by the amount sequestered in the carbonate 

formation, and the resulting slag product increases in value due to immediate stabilization 

allowing direct use in a wider range of construction or other applications. 

A comprehensive literature and intellectual property review was completed as part 

of American Iron and Steel Institute (AISI) project contract TRP9955 and published in 

January 2006 as completion of Work Plan Task 3.0 of this contract. Section 1.0 of this 

dissertation serves as an abridgement of the full literature review and covers published 

information pertaining to slag production and characterization, carbonate mineral 

sequestration, and CO2 capture in slag directly related to the dissertation topic. The 

literature review was used to define the thermodynamic and kinetic test boundary 

parameters, compare thermodynamic, kinetic, and characterization results, and generate 

ideas for the CO2/slag reactor design. 

 

1.2. SLAG PRODUCTION, HANDLING, AND USES 

1.2.1. Slag Production.  Slag is a co-product from iron and steel making. The  

American Society for Testing and Materials (ASTM) defines steelmaking slag in their 

publication D5106-03, as “the nonmetallic product, consisting essentially of calcium 

silicates and ferrites combined with fused and mineralogically combined oxides of iron, 
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aluminum, manganese, calcium, and magnesium, that is developed simultaneously with 

steel in basic oxygen, electric arc, or open hearth furnaces”.1 

Slag is produced during each discrete state of iron and steel making, and the 

corresponding slag produced has its own chemical and physical character. For example, 

the slag from blast furnace ironmaking is high in silica and lime, while low in iron oxide 

content. However, slag from steelmaking has a higher lime and iron oxide content. Slag 

produced during iron or steel refining operations (i.e., hot metal desulphurization and 

dephosphorization or steelmaking ladle metallurgy) has high phosphorus, sulfur, and 

impurity contents removed from the melt. Generally, each type of slag is differentiated 

for treatment and end use due to its chemical and physical nature. This project will focus 

on steelmaking slag produced from basic oxygen furnace (BOF), electric arc furnace 

(EAF), and ladle metallurgy furnace (LMF) operations. While open-hearth slag piles are 

being actively processed, this type of steelmaking is not producing significant amounts of 

new slag to include in this study. In this dissertation, the term “slag” will refer to that 

produced from BOF, EAF, or LMF operations only. 

Slag production can be stated per heat or per year. The National Slag Association 

estimates that per metric ton of steel produced, BOF operations generate 75-150 

kilograms of slag (150-300 lbs/st), while EAF operations generate less at 65-80 

kilograms (130-160 lbs/st).2 This corresponds to the net 10-15% of crude steel output that 

van Oss3 uses in his estimates, and 100-200 kg/t (200-400 lbs/st) per Ionescu et al4. In 

comparison, van Oss3 estimates the production of blast furnace slag at 25-120% of the 

hot metal produced per ton, depending on the overall ore grade. 

Annual slag production tonnage and value is tracked by the U.S. Geological 

Service in their minerals commodity and yearbook reports.5 Production tonnage in the 

U.S. has grown about 3.2% per year during the 1993-2003 period, with the value ($/t) 

growing about 5.5% during that time. The estimated production tonnage for 2004 is eight 

million tonnes. Most of this growth occurred from 2000-2003, during which the tonnage 

and value grew 69.2% and 75.0%, respectively. This greatly outpaced the rate of 

construction sand and gravel, which grew at 3.6% in tonnage and 11.1% in value during 

the 2000-2003 time period.6 Actual per ton price ranges from $0.50 where natural 

aggregates are abundant, to $11.00 where construction demand is high with little or no 
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local natural aggregate. In 2002, the U.S. Geological Service began tracking U.S. output 

compared to world output. U.S. output ranks at approximately 10% of the world 

production, and is directly correlated to steel production. 

1.2.2. Slag Handling.  Slag handling is not well documented, mostly because it is 

not a process requiring a high degree of technology. After cooling to ambient 

temperature, slag is processed similar to bulk aggregate (sizing, separation, and 

transport). Other than storage requirements to achieve stabilization, limited literature 

exists detailing the physical handling of slag from the furnace to end-use. Steel producers 

have not documented the process in detail, as the most common business approach is to 

subcontract slag handling and processing to a specialist handling company. 

Physical handling of slag is carried out similar to gravel aggregate. One slag 

processor (MultiServTM) lists the handling steps on their website.7 In their business model 

the contractor takes possession of the slag as it is tapped from the furnace (under furnace 

removal) into transport pots. The contractor transports the slag to a pour pit or pad where 

it is dumped and allowed to cool naturally or by spray quenching. The cooled slag is dug 

out of the pit with a front loader and brought to the processing station. 

Slag processing typically consists of crushing, screening, and magnetic 

separation.7,8 Magnetic separation may be followed by screening. The oversized material 

may be crushed and sent back through the process again. Magnetic recovered material is 

sold back to the steel mill for furnace feed. van Oss3 estimates that up to 50% of the slag 

volume is recovered as magnetic (entrained metal) for return to the furnace. The non-

magnetic material is graded by size, and stockpiled for sale. 

The end use destination will dictate storage time in the stockpile. This is because 

slag must go through an ageing period to reach stabilization. During aging, CaO/MgO 

phases in the slag react with water and carbon dioxide from the air to form hydroxides 

and carbonates. Formation of these compounds results in a volume change or “swelling” 

of the slag. Stabilization in a stockpile prevents end use in-situ swelling or leaching.  

Slag swelling is a concern when the slag is used as construction aggregate. 

Crawford and Burns document the case of an office building on the Canadian side of the 

international bridge at Sault Ste. Marie, Michigan that experienced wall buckling and 

floor heave due to swelling of steel slag foundation fill.9 This was open hearth slag that 
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generated 9% vertical lift on the building floor slab upon in-situ swelling. To prevent in-

situ swelling, many state governments now require steelmaking slag to be aged before 

use. For example, the Missouri Department of Transportation requires slag used in 

asphaltic concrete to be aged for at least three months after crushing and screening10, 

while the Pennsylvania Department of Transportation requires slag to be tested for 

expansion after six months stockpile curing.11 

An additional problem that may occur with the use of raw slag is leaching of 

alkaline earth metals materials into the surface water. While testing on slag shows the 

leachate reporting to the surface water is non-hazardous12, it may be perceived as a 

problem by the public. For example, slag used in the Cleveland airport runway produced 

a “milky white, sulfuric runoff”.13 While analysis showed that free lime leaching into the 

surface water precipitated calcium carbonate (milky white), which is stable and non-

hazardous, the perception led to a project delay and negative publicity for the use of slag 

in construction. 

1.2.3. Uses for Slag. The National Slag Association (NSA) employs promotional 

and research efforts to identify and develop innovative applications for steel slag’s unique 

chemical and/or physical properties. The key uses the NSA have identified are as a 

source of iron and flux materials into blast furnace operations, high quality mineral 

aggregate, Portland cement, unconfined construction applications, soil conditioning, and 

environmental pH neutralization of abandoned mines and contaminated sites.2,14 In 2003, 

the U.S. Geological survey listed the breakdown of use which supports these same 

categories.3 High quality mineral aggregate (asphaltic concrete, road bases, and surfaces) 

account for more than 63% of the steel slag sold. The next largest use is unconfined 

construction (fill), which accounts for approximately 12-13%, followed by clinker feed at 

5.4%. Other uses include railroad ballast, roofing, mineral wool, soil conditioning, 

recycling into iron making, and environmental pH neutralization of acid mine drainage. 

 

1.3. PHYSICAL PROPERTIES OF SLAG 

Steel slag’s unique physical properties result from both its chemical composition 

and its production method. Comparison to standard construction aggregates show a 



5 

 

higher bulk density and specific gravity, higher hardness/toughness, coarser surface 

texture, and darker color. 

1.3.1. Density and Hardness.  The bulk density and specific gravity of  

steelmaking slag is higher than blast furnace slag and natural aggregates due to the 

increased content of iron and manganese. Specific gravity values for steel slag averages 

3.1-3.7 for BOF and 3.2-3.8 for EAF, in comparison to 2.1-2.5 for air cooled blast 

furnace slag and 2.85 for dolomite.15-18 The resultant bulk density values are 1770-2500 

kg/m3 (156.1 lbs/ft3), in comparison to 1440-1600 kg/m3 (89.9-99.9 lbs/ft3) for 

dolomite.11,16 Beaver Valley Slag, a slag processing subcontractor, lists as-sold bulk 

densities of steel slag from 1410-1930 kg/m3 (88.0-120.5 lbs/ft3) depending upon the 

degree of compaction.19 Estimated Moh’s hardness for steel slag is 6-7 compared to 3-4 

for dolomite.17 Crushing work index and grinding work index provide comparison values 

for crushing (breakage down to 1-2 cm) and grinding (breakage below 1-2 cm) 

operations, respectively. The crushing work index for dolomite is 12.8, which is the same 

for slag.16 However, the grinding work index (ball mill) for dolomite is 13.9 versus 17.2 

for slag.16 Work index has the units of kWh/ton, and a comparison shows it takes about 

24% more energy to grind steel slag compared to dolomite. 

1.3.2. Mechanical Swelling.  Mechanical swelling of steel slag results from  

hydration and carbonation of compounds present in the matrix. Quantification of slag 

expansion was undertaken by Tsuchiya et al. in 1980 by studying the expansion 

characteristics of slag during the water immersion test.20 Their test method measured the 

rate and total volume of expansion of four LD slags. Employing a constant-temperature-

water-immersion test with molds used for measuring California Bearing ratio, data was 

obtained on expansion with time. Expansion ratios of 2-13% were achieved at one year, 

with the ultimate expansion reaching 2.0-35.9% (time not given). A comparison between 

the final expansion ratio and the chemical composition suggests a proportional 

relationship with the amount of free lime (f-CaO). It is assumed that primarily hydrates 

were formed (as opposed to carbonates), since the slags were subjected to water 

immersion testing in a closed mold and not exposed to atmospheric carbon dioxide. No 

characterization was undertaken on the final aged slags. A second round of tests was 

conducted on the highest expanding slag where the slag was allowed to field age at zero, 
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one, three, and six months before undergoing the immersion test. Field aging had the 

effect of significantly reducing the ultimate expansion ratio of the slag. Qualitatively, 

their results show that the processes occurring in the field aging and water immersion are 

different. It is suggested that the free lime in field aging is subject to competing hydration 

and carbonation reactions from the H2O and CO2 in the air. Tsuchiya et al. found that 

most free lime in LD slag is present in unassimilated lumps, not distributed in solid 

solution.21 The free lime lumps are several mm in diameter at a population of one per 

cm3, and are observed as white to brown color in a blackish slag matrix. 

In 1997 Kandhal and Hoffman published the results from a 1982 feasibility study 

of using cured steel slag fine aggregate in hot mix asphalt mixtures.11 They noted that for 

raw slag, the un-slaked lime will hydrate, causing large volume expansions in a few 

weeks, while the magnesium oxide hydrates more slowly causing volume changes that 

may occur after several years. As a result, the Pennsylvania Testing Method (PTM) 130 

was produced to better characterize expansion characteristics of steel slag. This method 

was used to generate ASTM D4792-00 Standard Test Method for Potential Expansion of 

Aggregates from Hydration Reactions.22 Their research focused on the use of fine steel 

slag for hot-mix asphalt. Because the asphalt binder coats the aggregate particles and 

seals of the hydration route, this application serves as a better use for steel slag than 

unbound aggregate. 

The testing time range for Tsuchiya et al. and Kandhal et al. was significantly 

different (>400 days vs. 14 days). However, a comparison of data from both sources at 14 

days gives an average expansion on uncured slag of 0.7% for Tsuchiya and 1.9% for 

Kandhal. The difference lies in both the sample source (Tsuchiya was LD slag and 

Kandhal was unspecified), and that the Kandhal testing allowed the second half of the 

testing to have contact with air. The higher expansion rate may be a result of carbonation 

expansion taking place in addition to hydration expansion. Insufficient data was available 

from Tsuchiya to compare the cured slag expansion. The literature sources reviewed have 

stated several times that the primary constituents in slag that lead to swelling are free 

lime (CaO) and free magnesia (MgO). However, in the slag mechanical swelling studies 

reviewed11,20, no characterization work was undertaken to compare the phases before and 
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after the swelling test. The volume increase contribution of free oxides alone versus other 

phases could not be determined. 

 

1.4. CHEMICAL PROPERTIES OF SLAG 

The final chemical composition of steel slag is a result of the fluxing agent used 

during steelmaking, the charge composition (hot metal and scrap), and refining agents. 

The primary fluxing agents are limestone (standard and dolomitic), lime (standard and 

dolomitic), dolomite, and fluorspar. Refining agents include aluminum, ferromanganese, 

ferrosilicon, and calcium-silicate, all used to remove oxygen, sulfur, phosphorus, and 

other impurities in the molten steel. Most of the fluxing agent and impurities will report 

to the slag phase for removal from the furnace. 

1.4.1. Elemental Content of Slag and TCLP.  A study in 2000 by Proctor et al.  

measured the elemental breakdown of slag samples from 58 active mills with BF, BOF, 

and/or EAF production.12 This study represents approximately 47% of North American 

steel production. Data from this study for BOF and EAF production is shown in Table 

1.1. 

The primary elements indicated are Al, Ca, Fe, Mg, Mn, and Si, which are 

expected from standard steelmaking processes. Fluxing agent serves as the source for Ca 

and Mg, deoxidizer additions account for Al and Si, and oxidation/entrapment in the slag 

accounts for Fe and Mn. Using the average values for the primary elements in BOF slag, 

we find that their oxides (and complex combinations of oxides) account for 93.5% of the 

slag mass. The secondary elements of importance are C, Cr, P, and S, which are present 

as oxides, or carbonates, sulfates, and phosphates with the primary elements. These are 

the impurities removed by steelmaking, which report to the slag. 

In addition to slag characterization, Proctor et al. sought to determine the potential 

for slag to leach chemicals into the soil or groundwater.12 Water leachate tests using EPA 

method 131149 were performed for toxicity characterization leaching potential (TCLP) 

on each critical metal in the slag. The elements C, S, Mg, Ca, and P are considered major 

elements in the earth’s crust, and essential human nutrients, and were excluded from the 

analysis. Analysis of the leachate testing showed a pH of 11.8 for both BOF and EAF 

slag. Comparison to the TCLP regulatory standards was made for As, Ba, Cd, Cr-VI, Cr 
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(total), Pb, Hg, Se, and Ag. None of these elements exceeded U.S. EPA standard limit, 

and most were at least one order of magnitude below. This indicates that in acidic-soil 

conditions the metals present in steel slag do not leach to any appreciable degree and 

steelmaking slag should not be considered hazardous waste. 

 

 

Table 1.1.  Elemental Chemical Composition of Slag by Furnace Type12 

 Average Conc. 
(mg/kg) 

Concentration Range 
(min – max, mg/kg) 

Metal BOF EAF BOF EAF 
Al 23841 35009 100 – 108800 14100 - 71600
Sb 3.3 4 3 - 8.8 1.1 - 18
As ND 1.9 ND 0.5 - 5.8
Ba 75 557 24 – 260 160 - 1800
Be 0.5 1.1 5 – 5 0.6 - 6.3
Cd 2.5 7.6 8 – 15 0.1 - 19
Ca 280135 250653 206900 – 367200 172300 - 324400
C 2600 2936 500 – 5800 100 - 12100
Cr (tot) 1271 3046 440 – 2000 320 - 6200
Cr (VI) ND 1.2 ND 1 - 9.1
Co 3.8 4.8 2 – 12 2.5 - 11
Cu 30 178 12 – 120 62 - 540
Fe 184300 190211 115700 – 229000 32700 - 312000
Pb 50 27.5 2.4 – 330 4.5 - 220
Mg 55318 54460 28700 – 72000 23600 - 91500
Mn 32853 39400 12900 – 65700 18900 - 63800
Hg 0.1 0.04 0.1 - 0.1 0.1 - 0.7
Mo 11 30 0.8 – 73 1.6 - 81
Ni 4.9 30 2.1 – 10 5.2 - 310
P 3197 1781 470 – 5720 580 - 4290
Se 15 18 7.7 – 25 7.5 - 36
Si 59653 74524 30900 – 114100 39900 - 152700
Ag 9.1 8.4 2.3 – 100 1.3 - 100
S 1112 1891 440 – 5000 600 - 3310
Tl 7.2 11 11 – 11 11 - 11
Sn 6.5 10 2.7 – 26 3.2 - 34
V 992 513 430 – 1700 170 - 1500
Zn 46 165 8.5 – 150 31 - 690

Note: Oxygen values are not reported. 
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1.4.2. Compound Content of Slag.  Steel slag rarely contains free elements and 

and at ambient conditions these will be present as compounds. Typically, these 

compounds are oxides, carbonates, or sulfates. Several sources provide a chemical 

compound breakdown of steel slag, as summarized in Table 1.2. 

 

 

Table 1.2.  Steel Slag Chemistry – Compound Basis (Wt. Percent) 
 NSA23 Emery15 BVS24 Noureldin17 Sorrentino25 

Type Steel BOF Steel 
(high Si) 

Steel 
(high Fe) 

Steel Steel 

CaO 42.9 41.3 35.3 37.7 34 50.03 
FeO/Fe2O3 25.0 20.0 9.6 30.8 23 22.67 
SiO2 14.9 15.6 31.4 17.9 16 15.22 
MgO 8.1 6.9 6.2 5.8 8 6.59 
MnO 5.0 8.9 1.9 4.8 10 2.38 
Al2O3 5.0 2.2 8.9 2.7 3 1.68 
P2O5 0.8 NR NR NR NR 2.06 
S* 0.08 - - 1.9 0.52 NR NR 
TiO2 NR 0.5 0.46 0.39 1 0.7 
Na2O NR NR 0.03 0.05 NR NR 
K2O NR NR 0.48 0.28 NR NR 
free CaO NR 3.3 NR NR 3 10.40 
* Sulfur exists principally as calcium sulfate 

 

 

A range of reported data exists, but the major compounds contain Ca, Mg, Fe, Si, 

Mn, and Al. These elements plus oxygen account for >97% of the slag mass. The data 

from the National Slag Association represents a U.S. average, while that from Emery, 

Beaver Valley Slag, and Noureldin represent an approximation for their geographic 

regions. The data from Tsuchiya lists analysis from an individual source. Geiseler18 

compared the amount of free CaO between BOF and EAF slag, estimating <10% and 

<3%, respectively, which corresponds with the data listed in Table 1.2. Little 

differentiation exists in literature to characterize BOF versus EAF, and for the purposes 

of this project unless specified the compositions stated are for steel slag without 

segregation by furnace type. 
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1.5. SLAG MINERALOGY 

A variety of minerals has been observed in steelmaking slags. Table 1.3 contains 

a listing of the predominant minerals from published work. This table includes work from 

Corus RD&T (Ceramic Research Centre)26, Emery15, Monaco and Wu27, Suito28, 

Bradaskja29, Luxán30, and Sorrention.25 The work by Corus utilized DTA and high 

temperature XRD to characterize the solidification sequence of steelmaking slag (type 

not specified). Emery’s findings were based on literature review, while the work by 

Monaco and Wu was based on K-OBM slag. The LD converter slag studied by Suito et 

al. is listed in Table 1.3; however, their data on phosphorus enriched synthetic slags is not 

included. Bradaskja et al. studied minerals in EAF and VOD slags. Only the predominant 

minerals from EAF slag are listed. Luxán et al. carried out a study of EAF black slags in 

Spain, which are defined as a lime content <40% resulting from the cold loading of scrap. 

 

 

Table 1.3.  Predominant Minerals Found in Steel Slag, by Source 
Mineral* Monaco27 Corus26 Emery15 Suito28 Bradaskja29 Luxán30 Sorrentino25 
Lime X X X    X 
Periclase X X X  X   
Hatrurite X X X    X 
Larnite X X X X X X X 
Srebrodolskite X X X X    
Brownmillerite X    X   
Wustite X X X X X  X 
Calcium Ferrite X  X X   X 
Gehlenite      X  
Bredigite      X  
Magnetite      X  
Magnesioferrite      X  
Manganese 
Oxides 

     X  

*Note: Table 1.4 lists the chemical formula for each mineral. 

 

 

Good agreement exists between researchers on the predominate minerals 

observed. These are alkaline earth metal oxides (lime and periclase), calcium-silicates 

(hatrurite and larnite), iron oxide (wustite and magnetite), and calcium-ferrites (calcium 

ferrite and dicalcium ferrite). Many other species are present, all of them solid solutions 
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or complex combinations of the oxides of calcium, magnesium, iron, aluminum, and 

silicon. This work focuses on the predominant minerals listed and not an exhaustive 

analysis of all species contained. Table 1.4 shows that most of these minerals are 

complex combinations of simple oxides. Based on their properties, the combinations 

containing iron and manganese oxides lead to the high density of the slag composite. 

 

 

Table 1.4.  Properties of Minerals Found in Steel Slag 

Chemical Formula Name Density 
(g/cm3) 

Molar Volume 
(cm3) 

CaO Lime 3.3531 16.76 
MgO Periclase 3.5831 11.25 
3CaO·SiO2 Hatrurite 3.1532 72.4 
β-2CaO·SiO2 Larnite 3.34 51.6033 
2CaO·Fe2O3 Srebrodolskite  4.04 67.1833 
4CaO·Al2O3·Fe2O3 Brownmillerite 3.7332 130.3 
Fe0.947O Wustite 5.8731 12.25 
CaO·Fe2O3 Calcium Ferrite 5.0831 42.47 
2CaO·Al2O3·SiO2 Gehlenite 3.04 90.2433 
α'-2CaO·SiO2 Bredigite 3.4034 50.69 
Fe3O4 Magnetite 5.2031 44.52 
MgO·Fe2O3 Magnesioferrite 4.49 44.5733 
Mn3O4 
MnO2 

Hausmannite 
Pryolusite 

4.8631

5.0331
17.30 
49.89 

 

 

While a wide range of minerals has been observed, the focus of this project is the 

minerals that will sequester carbon dioxide. Several minerals in steelmaking slag are 

meta-stable, meaning that under dry vacuum conditions they will stay in their present 

state. However, exposure of these minerals to ambient atmospheric conditions will lead to 

their eventual spontaneous reaction with water and carbon dioxide in air to form more 

stable compounds. Of the minerals listed in Tables 1.3 and 1.4, those containing calcium 

and magnesium are meta-stable in the raw slag, and will sequester carbon dioxide under 

ambient atmospheric conditions by dissolution and subsequent formation of more stable 

compounds. A thermodynamic analysis provides insight to the mechanism of these 

reactions. 
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1.6 THERMODYNAMICS OF SLAG STABILIZATION 

Stabilization is the process that the slag minerals go through to transform from the 

meta-stable to most stable state. The basis of this study is the naturally occurring process 

that involves exposure of the raw slag to ambient atmospheric conditions (temperature, 

pressure, gas phase composition, and humidity). Under these conditions, specific 

minerals in the slag will react spontaneously (e.g., exothermic reaction). As the slag is 

exposed to both water and carbon dioxide, competition exists between hydroxide and 

carbonate formation of each compound. A thermodynamic review determines both the 

heat released in each reaction, and the final stable state of each compound (hydroxide or 

carbonate).  

The key minerals identified for carbon dioxide sequestration are the free oxides 

and silicates of calcium and magnesium. These minerals form both hydroxides and 

carbonates, and their respective Gibbs free energy of formation at ambient conditions 

(G°) determines the final stable state. The subsequent analysis concerns spontaneous 

reactions to form hydroxides and carbonates at ambient temperature of 25°C (77°F). An 

increase in temperature pushes the system away from forming hydroxides/carbonates, 

and ultimately, a temperature will be reached in which the reaction goes backwards 

(decomposition). Hydroxide formation will be studied discretely and as a step in the 

formation of carbonate, while carbonate formation will be studied in both dry and wet 

processes. 

1.6.1. Hydroxide Formation. The reaction of water with alkaline earth metal  

oxides and silicates in the slag leads to the formation of hydroxides. Water can be 

sequestered from air (ambient humidity) or liquid (submersion), and the concentration 

available partially governs the rate of the reaction. Reaction thermodynamics provides the 

state of the equilibrium products and any heat produced. The literature provides this 

information for CaO, MgO, 2CaO•SiO2, and 3CaO•SiO2 at standard conditions (298 K, 1 

atm.).  

Equations 1-4 show the formation of the respective hydroxide from each 

compound, while Table 1.5 provides the heat released (ΔH°r), Gibbs free energy (ΔG°r), 

and volume change (ΔV) of each respective reaction. 
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Table 1.5.  Formation of Hydroxides from Steelmaking Slag Oxides and Silicates 

Eq. Product 
Formula 

Product 
Name 

ΔH°r 
(kJ/mole) 

ΔG°r 
(kJ/mole) 

Molar  
Vol. (cm3) 

(each) 

ΔVol. 
(%) 

(total) 
1 Ca(OH)2 Portlandite -65.2 -57.9 33.0831 97%
2 Mg(OH)2 Brucite -37.3 -27.3 24.6331 119%
3 0.5(1.7CaO·SiO2· 

4H2O) 
0.15Ca(OH)2 

C-S-H 
 
Portlandite 

-19.135,36 -7.933,35,36 10835 

 
42.98 

127%

4 0.3(1.7CaO·SiO2· 
4H2O) 
0.43Ca(OH)2 

C-S-H 
 
Portlandite 

-40.735,36 -28.235-37 10835 

 
42.98 

113%

 

 

Free lime and magnesia readily react with water at ambient conditions to form 

calcium hydroxide (portlandite) and magnesium hydroxide (brucite), respectively, as 

shown in Equations 1 and 2. These reactions have been extensively studied, as they are 

widely used industrial minerals. Thermochemical data for their respective reactions can 

be obtained from FactSage, Ver. 5.4.31 Their reaction with water is spontaneous and 

exothermic, with lime as the stronger reactant. Calcium hydroxide begins to decompose 

at 325°C (617°F), but has a quoted dehydration temperature of 518°C (964°F).38,39 

Magnesium hydroxide begins to decompose at a slightly lower temperature of 200°C 
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(392°F) as reported by Butt et al.40 and has a quoted dehydration temperature of 285°C 

(545°F).38 The reactions of these oxides with water lead to a substantial volume change 

(97% and 119%, respectively), which is why they are listed as key compounds in slag 

swelling studies. 

The hydration of calcium silicates has been studied extensively in cement 

chemistry. Dicalcium silicate and tricalcium silicate together account for approximately 

75% of ordinary Portland cement (OPC) by weight.41 The hydration of dicalcium silicate 

and tricalcium silicate is documented by Tennis and Jennings32, Bentz35, and Fuji and 

Kondo.36 Their work provides the reactions listed in Equation 3 and 4. Their hydration 

route is similar in that they both form calcium silicate hydrate and calcium hydroxide (in 

varying ratios). More than 30 crystalline phases of calcium silicate hydrate (C-S-H) are 

known. The preparation of C-S-H from dicalcium silicate and tricalcium silicate forms a 

C-S-H gel, which may vary in composition. The hydrate reaction path for these minerals 

used by Bentz and Tennis and Jennings has been adopted for cement modeling and 

studied to provide thermochemical data. A ratio of 1.7:1 CaO to SiO2 is adopted by the 

researchers listed; however, the amount of water varies. Thermochemical data for heat of 

formation and molar volume are obtained from Bentz, and data for free energy of 

formation is obtained from Fujii and Kondo. Fujii and Kondo use 2.62 moles of water for 

C-S-H, as opposed to four moles by Bentz, which provides different listed heats of 

formation. However, normalizing both to the same hydration level (4 moles) gives the 

same heat of formation for C-S-H (-3288 kJ/mole for Fujii and -3283 kJ/mole for Bentz). 

The hydration of tricalcium silicate is the strongest listed, providing nearly twice as much 

heat as the slaking of lime. Both dicalcium silicate and tricalcium silicate will 

spontaneously react with water at ambient conditions. The change in volume by the 

hydration provides a significant volume increase (127% and 113%, respectively), 

indicating that they are a significant contributor to slag swelling. 

1.6.2. Carbonate Formation.  Formation of carbonates in slag can occur either 

dry (from non-hydrated minerals) or wet (from hydrated minerals). The ambient 

conditions (amount of water and length of time present) will determine if the slag forms 

carbonates from the dry state, or if hydroxides are formed as an intermediate step. 
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Carbonates of calcium and magnesium oxide will form directly if no water is present. 

Dry carbonation of lime occurs to form calcium carbonate as shown in Equation 5. 

 

32 CaCOCOCaO →+      (5) 

 

This reaction is significantly more exothermic than the hydroxide formation, and 

with a lower free energy, this is a more stable compound. The dissociation (calcining) 

temperature of calcium carbonate depends on the partial pressure of CO2 (pCO2) in the 

surrounding atmosphere. It can range as low as 650°C (1202°F) at pCO2 near zero, to 

898°C (1648°F) for pCO2 at unity.42 Cement kilns normally operate in the 950-1100°C 

(1742-2012°F) range to increase the decomposition rate. 

Dry carbonation of magnesia occurs to form magnesium carbonate (magnesite) as 

shown in Equation 6. 

 

32 MgCOCOMgO →+      (6) 

 

As with calcium carbonate formation, the magnesium carbonate dry reaction is 

significantly more exothermic than the corresponding hydroxide formation. Butt et al., 

reports the dissociation temperature of magnesium carbonate at 320°C (608°F) and pCO2 

near zero to 410°C (770°F) and pCO2 near unity.40 

An alternate dry reaction may occur utilizing both CaO and MgO to reform 

dolomite (CaMg(CO3)2) as shown in Equation 7. 

 

232 )(COCaMgCOMgOCaO →++      (7) 

 

Dolomite has a free energy of formation that is an average of CaO and MgO 

conversion. Dolomite formation requires the intimate association of CaO, MgO, and 

CO3
2- molecules, and as slag is a heterogeneous mixture, the formation of dolomite may 

be more difficult to achieve than the respective single carbonate compounds (even with 

solid-state diffusion). Dolomite in its pure state has a dissociation temperature of 
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approximately 600°C (1112°F), which is expected, as it is a combination of calcium and 

magnesium carbonate.43 

The dry formation of carbonates from dicalcium silicate and tricalcium silicate are 

given by Goto et al.44 Respectively, they will form carbonates according to the reactions 

shown in Equations 8 and 9. 

 

[ ] 2322 2
1

2
1 SiOCaCOCOSiOCaO +→+⋅     (8) 

 

[ ] 2322 3
133

1 SiOCaCOCOSiOCaO +→+⋅    (9) 

 

Both reactions are exothermic and readily produce more stable compounds than 

their respective hydroxide formations at atmospheric ambient conditions. Table 1.6 

summarizes the data from Equations 5-9 on dry carbonate formation. 

 

 

Table 1.6.  Summary Data from Dry Carbonation Calculations 

Eq. Product 
Formula 

Product 
Name 

ΔH°r 
(kJ/mole) 

ΔG°r 
(kJ/mole) 

Molar 
Vol. (cm3) 

(each) 

ΔVol. 
(%) 

(total) 

CO2 
Seq. Pot.
(kg/kg) 

5 CaCO3 Calcite 
Aragonite 

-178.8 
-178.8

-131.0 
-129.9

36.8931 

34.1531 
120% 
104% 

0.78 
0.78

6 MgCO3 Magnesite -116.7 -64.5 28.0331 149% 1.09
7 CaMg(CO3)2 Dolomite -151.1 -100.8 64.3631 130% 0.91
8 CaCO3 

0.5SiO2 
Calcite 
Quartz 

-116.2 -66.2 36.89 
22.6831 

87% 0.51

9 CaCO3 
0.3SiO2 

Calcite 
Quartz 

-140.3 -90.1 36.89 
22.6831 

77% 0.58

 

In each of these reactions, the formation of carbonate compounds results in a 

significant volume increase compared to the oxidized states. The carbonates of CaO and 

MgO are larger in volume than their respective hydrates, indicating that hydration 

followed by carbonation will lead to continued swelling in the slag. The total molar 

volume increase represented by dry carbonation of the silicates, shows a significant 

volume change (77-87%), but the final molar volume is less than that of the hydrates. 
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This indicates that swelling will occur with the silicates upon hydration, but this will be 

followed by subsequent shrinkage upon carbonate formation. 

While a thermodynamic analysis shows dry carbonation of the preceding 

compounds is possible, the reactions are dependent on the availability (partial pressure) 

of CO2, which is low at atmospheric ambient conditions (pCO2~33.4 Pa (3.30x10-4 atm)). 

Research in Finland (Zevenhoven et al.45) is concentrating on dry mineral carbonation 

primarily with magnesium oxides and silicates. They concluded that a catalyst will be 

required (and possibly elevated temperature and pressure) to achieve reaction rates for 

dry carbonation in a reasonable time. The highest reaction rates occurred in the presence 

of humid (water saturated) gas. Hydrates should form more readily due to the higher 

availability of water in normal ambient air. The partial pressure of water vapor in air 

ranges from pH2O=3141 Pa (3.10x10-2 atm) for saturated air at standard conditions to 

pH2O=0.1 MPa (1.0 atm) when rain falls on the slag. It is anticipated that hydrates will 

form more readily, due to availability of water then convert to the more stable carbonate 

compounds. 

In Equations 5-9, oxides and silicates in the slag are combining with ambient CO2 

to form more stable carbonates. The CO2 sequestration potential for each compound 

indicates the mass of CO2 captured per mass of reactant (kg CO2/kg reactant). The CO2 

sequestration potentials for each compound are listed in Table 1.6. The oxides have a 

higher sequestration potential than the silicates. The CO2 sequestration potential is 

directly proportional to the volume increase associated with carbonation. 

1.6.3. Hydrous Carbonate Formation.  While dry carbonation can take place,  

the most likely scenario for the hydroxide and carbonation reactions to take place 

concurrently or in series, which would be the case for slag exposed to ambient air with 

water vapor and CO2. Single step hydroxide and carbonate formation have been covered, 

so conversion of hydroxides to carbonates links these into series. Equations 10-14 show 

the hydroxide to carbonate formation for Ca(OH)2, Mg(OH)2, Ca(OH)2+Mg(OH)2, 2C-S-

H, and 3C-S-H, respectively. Table 1.7 summarizes the resultant enthalpy, free energy, 

and volume change data from these reactions, respectively. 

 

OHCaCOCOOHCa 2322)( +→+      (10) 
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OHMgCOCOOHMg 2322)( +→+      (11) 

 

OHCOCaMg

COOHMgOHCa

223

222

)(2
1

)(2
1)(2

1

+→

++
     (12) 

 

[ ]
OHSiOCaCO

COOHCaOHSiOCaO

223

2222

15.22
1

)(15.047.12
1

++→

++⋅⋅
   (13) 

 

[ ]
OHSiOCaCO

COOHCaOHSiOCaO

223

2222

77.13
1

)(43.047.13
1

++→

++⋅⋅
   (14) 

 

 

Table 1.7.  Sequential Carbonate Formation from Hydrates in Steel Slag Components 
Eq Product 

Formula 
ΔH°r 

(kJ/mole) 
ΔG°r 

(kJ/mole) 
Molar 
Vol. 
(cm3) 

ΔVol. 
(%) 

(overall) 

ΔVol. 
(%) 

(hydrate) 

CO2 
Seq. Pot.
(kg/kg) 

10 CaCO3 -112.7 -71.4 36.89 120% 12% 59% 
11 MgCO3 -79.3 -37.2 28.03 149% 14% 75% 
12 0.5CaMg(CO3)2 -99.8 -58.2 64.36 130% 12% 66% 
13 CaCO3 

0.5SiO2 
-94.3 -59.1 73.78 

22.68 
87% -18% 35% 

14 CaCO3 
0.33SiO2 

-100.7 -63.6 110.67 
22.68 

77% -12% 41% 

 

 

As shown by the free energy data in Table 1.7 for Equations 10-14, all hydroxide 

species will react to form carbonate at atmospheric ambient conditions. The heat released 

equals the heat of dry carbonation minus the heat of hydration. The carbonate compounds 

of these oxides and silicates are more stable than the hydroxides, and the hydroxides will 

convert to the more stable forms at equilibrium. Carbonate conversion from oxides 

produces a small volume increase to additional slag swelling. The conversion of the 

silicate hydrates to carbonates leads to a volume decrease. The competing increase and 

decrease of hydration and carbonation of the various components, will lead to cracking of 



19 

 

the slag during the stabilization period. The cracking will produce smaller slag particles 

(proportional to the amount of oxides and silicates available to react with water and 

carbon dioxide), and open new surfaces for reaction in the slag matrix, thus increasing the 

overall slag stabilization rate. This is the phenomena observed by Tsuchiya et al.20 in 

their slag swelling study. The CO2 sequestration potential is lower for the hydroxide 

compounds compared to dry carbonation due to the extra mass of water in each 

hydroxide. 

 

1.7. CO2 CAPTURE AND SEQUESTRATION 

1.7.1. Implications of CO2 Control in the Steel Industry.  The driving factors  

for CO2 sequestration are extremely complex and involve political, economic, and 

scientific factors. There is uncertainty or disagreement about almost every aspect of the 

anthropogenic greenhouse gas theory, and it is extremely unlikely that anyone in 

government, or indeed possibly in science, is able to command a comprehensive view of 

the whole situation.46 Regardless of personal, corporate, or governmental views of the 

anthropogenic greenhouse gas theory, a binding agreement for the industrial countries 

was put forward at the world summit in Kyoto, Japan in 1997. This agreement, called the 

Kyoto Protocol, proposes that the industrial nations cut their collective emissions of 

specific gases (CO2, CH4, NOx, SF6, hydrofluorocarbons, and perfluorocarbons) by an 

average of 5.2% below the 1990 levels by 2012. The Kyoto Protocol is supported by 156 

countries since it came into force in February 2005. 

The industries working in the countries that have signed the Kyoto Protocol have 

the responsibility to work within the scope of their respective legislation in reducing 

emissions of the gases listed. The iron and steel industry is highly reliant on carbon based 

fuels both directly (coke for iron oxide reduction) and indirectly (EAF use of electricity 

from coal burning power plant). The emission of CO2 has been targeted most heavily by 

the supporting countries, with the net result that the iron and steel industries will need to 

make changes in operation and methodology to meet this cutback. Long-term changes 

may require the development of carbon-free steelmaking, both in the production of steel 

and generation of the energy, but that is many years in the future. Short-term goals can be 

achieved by reducing the carbon intensity of iron and steel making. These include 
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injecting hydrogen rich fuel in the blast furnace (natural gas instead of coke), alternative 

ironmaking technologies (DRI, ITmk3™, COREX, etc.), maximizing scrap recovery and 

use in steelmaking, and optimizing energy use in all areas of ferrous processing. 

Medium-term goals for the iron and steel industry should include greater industrial 

symbiosis, such as limestone replacement by slag cement clinker, and the use of 

byproduct gas and heat for power generation and industrial heating.46 Permanent 

sequestration of CO2 from industrial sources is being investigated as a medium to long 

term option, and if developed properly may provide a commercially favorable route. 

1.7.2. Geological Methods for Sequestration.  Geological sequestration of  

carbon dioxide is actively being researched as a long-term disposal scenario. The two 

significant geological bodies available to capture CO2 permanently from the atmosphere 

are the oceans and mineral deposits in the earth’s crust. 

Natural precipitation of projected CO2 emissions in marine sediments in ocean 

bodies would result in an estimated sequestration of 70-80% of the carbon dioxide; 

however, the process may take several centuries to 1500 years to complete.47,48 Injection 

of liquefied carbon dioxide into deep ocean zones to reduce the time required for natural 

equilibrium is an active research area. Alternatively, liquefied CO2 can be injected into 

subterranean formations, as researched by the Pacific Northwest National Laboratory.49 

While these methods greatly speed up the reaction of carbon dioxide with seawater or 

geologic formations, they both require technologies for capture, liquefaction, transport, 

and injection. To date these methods have shown to be prohibitively expensive for 

common industrial use, mainly due to transport of the liquefied carbon dioxide to a 

proper disposal site. 

Solid based CO2 sequestration holds great potential for industrial operations, as a 

wide variety of minerals are available to form permanent carbonate sinks. The 

distribution of the mineral body in relation to the locality of the CO2 generation source 

will be the primary cost hurdle. The design of a system that can accomplish a reaction of 

the mineral with gaseous CO2 will simplify the unit process by eliminating gas based 

capture and liquefaction systems. Transport of the CO2 to the mineral body or of the 

prepared mineral to the CO2 source becomes the driving economic factor, providing the 

reaction rate is sufficiently fast. 
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Three classes of mineral carbonate disposal strategies have been proposed.47 The 

first approach mimics the natural weathering process whereupon mineral alkalinity 

neutralizes carbonic acid species (e.g., H2CO3(aq) and HCO3
-). Natural carbonate 

weathering generates bicarbonate that goes into surface or ground water solutions, 

eventually reporting to the ocean as the final geological sink. Natural silicate weathering 

extracts alkalinity (e.g., Ca2+ or Mg2+) into surface water, which in turn combines with 

bicarbonate (HCO3
-) in the ocean to precipitating solid carbonates (e.g., CaCO3 or 

MgCO3). A strategy to accelerate the two steps of this process provides a permanent 

ocean-based disposal of bicarbonate salts. The second strategy is similar, but the 

carbonate or bicarbonate brines are injected into an underground reservoir, as opposed to 

ocean disposal. The third strategy involves the formation of solid carbonates for surface 

or underground disposal. The latter strategy is most similar to the current research 

involving slag-CO2 sequestration. 

1.7.3. Minerals for Solid Carbonate Sequestration.  The most common 

minerals studied for solid carbonate sequestration are based on the alkali or alkaline earth 

metals. Respectively, the base ions are monovalent sodium and potassium, or divalent 

calcium and magnesium. Table 1.8 lists many of the potential minerals readily available 

for solid carbonate sequestration. 

Since the desired disposal form of this study is a solid carbonate, the source of 

alkaline ions cannot be a carbonate (which produces CO2 during dissolution), but will 

most likely be a silicate mineral rich in magnesium or calcium, thus the bicarbonate 

forming minerals listed in Lackner are precluded from Table 1.8. Significant sources of 

magnesium and calcium silicates are available on all continents, some of which are 

feasible for use in industrial systems.47 Magnesium ions can be extracted from serpentine 

or olivine rock, and periodite deposits containing these minerals are widespread. Total 

estimates are several hundred thousand GT. Simple oxide minerals, such as lime, 

periclase, or their hydroxides are only locally available in natural mineral form and can 

only be used where these compounds are synthetically produced. Weathering of feldspars 

is a natural phenomenon that captures CO2, but extraction of sodium and potassium from 

these minerals has not been widely studied. 
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Table 1.8.  List of Potential Minerals for Solid Carbonate Sequestration (from Lackner47) 
Mineral Chemical 

Formula 
Resource 

Size (1000 Gt) 
Chemical 

Preprocess 
Disposal 

Form 
Lime CaO Synthetic None CaCO3 
Brucite Mg(OH)2 Small/Synthetic None MgCO3 
Calcium 
hydroxide 

Ca(OH)2 Synthetic None CaCO3 

Periclase MgO Small None MgCO3 
Wollastonite CaSiO3 Small None CaCO3 
Peridotite Olivine + 

Pyroxene 
 Extraction of MgO or 

Mg(OH)2 
MgCO3 

Serpentine Mg3Si2O5(OH)4 100,000 Acid dissolution leading to 
MgO or Mg(OH)2 

MgCO3 

Olivine (Mg,Fe)2SiO4 100,000 Acid dissolution leading to 
MgO or Mg(OH)2 

MgCO3 

Forsterite Mg2SiO4 Pure deposits are 
very small 

Acid dissolution leading to 
MgO or Mg(OH)2 

MgCO3 

Potassium 
feldspar 

KAlSi3O8 Very large Dissolution in water or 
brine 

K2CO3 

Sodium 
feldspar 

NaAlSi3O8 Very large Extraction of sodium 
alkalinity 

Na2CO3 

 

 

1.7.4. Solid Carbonate Capture Chemistry.  Carbon sequestration on a geologic 

scale requires neutralization of carbonic acid. Divalent metal oxides or hydroxides (such 

as Mg2+ or Ca2+) would react with carbonic acid as shown in Equations 15-18 as given by 

Lackner.47 

 

OHMeCOCOHMeO 2332 +→+      (15) 

 

OHMeCOCOHOHMe 23322 2)( +→+     (16) 

 

OHHCOMeCOHMeO 22332 )(2 +→+     (17) 

 

OHHCOMeCOHOHMe 223322 2)(2)( +→+    (18) 

 

While these equations show the thermodynamic possibility of carbonate capture 

with metal oxides and hydroxides, the availability of these minerals are very limited. A 
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more appropriate route would be direct carbonate formation from the silicates as shown 

in Equations 19-20 from Lackner.47 

 

)())(( 223322 SiOmOHMeCOCOHSiOMeO m ++→+   (19) 

 

)()(2))(( 2223322 SiOmOHHCOMeCOHSiOMeO m ++→+  (20) 

 

The formation of a bicarbonate salt in solution allows for the use of carbonate 

minerals as shown in Equation 21. 

 

23323 )(HCOMeCOHMeCO →+      (21) 

 

This reaction produces a bicarbonate salt requiring aqueous or oceanic disposal, 

which is counter to the goal of this research to bind CO2 into a solid slag product. 

Lackner states that it is easier to transform carbonates into bicarbonates than it is to drive 

silicic acid out of its minerals, and that in forming bicarbonates from silicates, only half 

as much silicate is required compared to carbonate formation only.47 The first statement 

is not supported thermodynamically as, for example, the formation of the carbonate from 

forsterite (Mg2SiO4) is exothermic with a ΔG of -230.2 kJ/mole, while bicarbonate 

formation from magnesium carbonate is endothermic at +221.2 kJ/mole. His observations 

also suggest that bicarbonates may represent a more convenient form of sequestration. 

The ocean is large enough to accept the bicarbonates formed, but the practical and 

environmental logistics of this route are not well defined. Solid carbonate formation, 

however, provides a specific and well-defined capture method not subject to the same 

geologic intrusion. The environmental impact from solid disposal is confined to the 

smallest possible region. 

Mineral carbonate formation is a thermodynamically stable route for disposal of 

carbon dioxide that under most natural atmospheric conditions occurs very slowly. 

Carbon dioxide can be released through a reaction of these carbonate phases with a strong 

acid, such as sulfuric; however, under natural conditions even that produced from burning 
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sulfur rich coal is insufficient to free sequestered carbon dioxide. Atmospheric carbonic 

acid (CO2 plus rainwater) reacts with carbonate rocks to release CO2; however, because 

this is a weak acid the rates are relatively slow. Alternatively, carbon dioxide may be 

released through natural calcination, which may take place upon mineral heating through 

volcanic action. The amount of carbon dioxide released through this method on a global 

scale will be very limited. The thermodynamic stability of solid carbonates minimizes the 

need for long-term monitoring and continued maintenance of the disposal site.47 

1.7.5. Formation of Carbonate from Natural Minerals.  Several methods are  

currently being researched to produce a viable large-scale industrial solid carbonate 

disposal method. These methods primarily focus on the silicate minerals, with 

magnesium ores favored more than calcium ores, as magnesium silicates are usually 

more reactive than the calcium silicates. Some work has been done on simple oxides, but 

they are less naturally abundant. Cement chemistry can provide valuable insight to 

mineral carbonation, as can a study of biological carbonate forming processes. The 

information discussed in this section focuses mainly on the carbonation of natural 

minerals, which are minerals obtained from natural geologic occurrences for the primary 

purpose of reaction with carbon dioxide. Carbonation of “derived” minerals (industrial 

co-products such as slags and ash) will be covered in the section on carbonate formation 

in steelmaking slag. The methods researched for carbonation of virgin minerals have a 

direct impact on work to do the same with slags, as the chemical reactions are the same. 

A consortium managed by the National Energy Technology Laboratory has done 

the largest amount of work with solid mineral sequestration. This group, comprised of 

Los Alamos National Laboratory, Arizona State University, and Albany Research Centre 

(ARC), has researched the applications of silicate-based minerals for permanent carbon 

dioxide sequestration. Other groups at the University of Ohio, University of 

Pennsylvania, and Helsinki University of Technology have added to this research. 

Butt et al. at Los Alamos National Laboratory have carried out extensive research 

on carbon dioxide disposal in carbonate minerals.39,40,50,51 Their initial research focused 

on calcium and magnesium silicate minerals. The reactions are exothermic, therefore 

chemically stable; however, the main constraint for cost implementation is the reaction 
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speed. Two approaches were researched to improve the reaction rate: solid-gas reaction at 

high-temperature and reactions in aqueous solutions. 

The focus of solid-gas reactions was to determine the maximum temperature for 

stable formation of the carbonate from silicate. Calculations of the maximum carbonation 

temperature for several common minerals (where CO2=0.1 MPa), are shown in Table 1.9. 

The reaction products are the alkaline earth metal carbonate plus silicate/aluminate/water. 

 

 

Table 1.9.  Thermodynamics of Mineral Carbonation Reactions (from Lackner39) 

Mineral Formula Tdeh 
°C 

Tmax 
°C 

ΔH 
kJ/mole 

ΔQ 
kJ/mole 

Lime CaO - 888 -167 87
Periclase MgO - 407 -115 34
Portlandite Ca(OH)2 518 888 -68 114
Brucite Mg(OH)2 265 407 -37 46
Wollastonite CaSiO3 - 281 -87 37
Clinoenstatite 
(Pyroxene) 

MgSiO3 - 201 -81 23

Forsterite (Olivine) ½Mg2SiO4 - 242 -88 24
Diopside (Pyroxene) ½CaMg(SiO3)2 - 164 -71 19
Grossular (Garnet) ⅓1/3Ca3Al2Si3O12 - 192 -67 28
Anorthite (Feldspar) CaAl2Si2O8 - 165 -81 39
Pyrope (Garnet) ⅓Mg3Al2Si3O12 - 260 -92 40
Talc ⅓Mg3Si4O10(OH)2 439 201 -44 64
Tremolite 
(Ampibole) 

1/7Ca2Mg5Si8O22(OH)2 566 164 -37 72

Chrysotile 
(Serpentine) 

⅓Mg3Si2O5(OH)4 535 407 -35 78

 

 

The temperature Tmax is the maximum carbonation temperature for pCO2=101 kPa 

(1 atm). The temperature Tdeh refers to the dehydroxylation temperature at pH2O=101 kPa 

(1 atm). The enthalpy of reaction, ΔH, is normalized for one mole of CO2 at the 

temperature Tmax. The heat, ΔQ, is the energy required to heat the original mineral and 

the CO2 to the higher of Tmax or Tdeh, from 25°C (77°F). They state in most cases that the 

energy released from carbonation exceeds that required to heat the reactants to Tmax; so, 

theoretically, the reaction can be made self-sustaining. Grinding followed by direct 

carbonation in a rotary kiln or fluidized bed is recommended to achieve minimal cost. 
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While this data proves useful in comparison to the thermodynamic phase stability 

diagram calculated for slag phases, Lackner et al., do not provide reaction rates for the 

direct carbonation reaction in their initial work.39 

Following their initial study, Lackner et al. performed experiments primarily on 

magnesium-based ores.39 This is because two to two and one-half tons of magnesium-

based rock is required to bind one ton of CO2, as opposed to seven tons of calcium-based 

rock. The results of the consortium are extensive, and the key quantitative results are 

presented in Table 1.10. Also included in this table are results from Park et al.52, Kutcha 

et al.53,54, and Zevenhoven et al.45 that are directly comparable. 

 

 

Table 1.10.  Process Conditions Investigated for Carbonate Formation from Minerals 

Mineral Treatment Particle 
Size 
(μm) 

pCO2 
 

(atm.) 

Temp. 
 

(°C) 

Time 
 

(hr) 

% 
Carb. 

Note Ref. 

Serpentine 100 336 500 2 25% 36,63
Mg(OH)2 extracted by HCl 
from Serpentine 

- 49.3 550 0.5 90%+ 1 63

Mg(OH)2 
 

28.7 0.76 
 

52

25 
375 
565

12 2% 
16% 
90% 

2 64

Serpentine heated to 600°C 
and He cooled 

- 115-185 150 1 70-
85% 

3 65-68

Olivine, aqueous with 
NaHCO3 and NaCl 

37 150 185 1 30-
50% 

4 68

Olivine/Serpentine, aqueous 
with NaHCO3 and NaCl 

25 115-185 155-
185

- 99% 5 69-
74,88

Olivine with NaHCO3 and 
NaCl 

75 
10 dry 
10 wet

150 155 1 47% 
82% 

100% 

6 71

Olivine 37 
75

170 200 - 72% 
67% 

7 74

Olivine, Serpentine, and 
Magnesia 

125 dry 
125 
wet

1-25 
15-25

350 
200

24 <1% 
- 

8 75

Olivine, pretreated <150 
<37

- - - 11% 
92% 

9 76,80

Serpentine 
Serpentine 
Serpentine 1000°C pre-treat 

50 
50 
50

1 
14.8 

1

200 
200 
200

3 
3 
3

<1% 
<1% 
<1% 

10 46

Wollastonite - 
2-4

1 
150

25 
185

600 
-

- 
70% 

11 77-78
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Note 1: The rate of direct Mg(OH)2 carbonation was found to be most rapid very 

near the dissociation temperature, as shown in Figure 1.1. 

 

 

 
Figure 1.1.  Mg(OH)2 conversion to carbonate as a function of temperature at pCO2=77.5 

kPa (0.765 atm), from Butt et al.40 
 

 

Note 2: Overall, the efficiency of carbonation at atmospheric pressure is relatively 

slow due to the formation of a product (carbonate) barrier that inhibits outward diffusion 

of water and inward diffusion of CO2. The kinetics of both dehydroxylation and 

simultaneous dehydroxylation-carbonation obey the contracting-sphere model.51 Water is 

required to provide a reasonable reaction rate, and that kinetics of carbonation are better 

in a low velocity CO2 stream compared to a higher velocity of CO2. 

Note 3: During dehydroxylation the Mg(OH)2 crystal structure contracts by 50% 

perpendicular to and 5% parallel to its lamella, respectively.55 The resultant distortion 

induces high levels of interlamellar and intralamellar strain, which facilitates cracking 

and the formation of MgO nanostructures with very high surface areas near 100-200 

m2/g. 
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Note 4: Slurry stirred at 1000-2000 rpm. Mechanical stirring was found to be 

effective at exfoliating the SiO2-rich surface layer, thus exposing fresh olivine for 

carbonation. 

Note 5: Stirred autoclave with 15-30 wt.% solids. The rate controlling parameters 

for the direct carbonation of olivine and serpentine are chemical kinetics and diffusion 

through the product layer, respectively. The rate constant for direct conversion of olivine 

is of the order of 10-7 cm/s, while the diffusivity coefficient in serpentine is of the order 

of 10-10 cm2/s. The diffusivity value is much lower than that of CO2 into water (2x10-5 

cm2/s), but similar to helium into silica (2.4-5.5x10-10 cm2/s), suggesting the pores are not 

filled with water and/or the process is controlled by the diffusion of other components.  

 Note 6: Uses a stirred autoclave containing15 wt.% solids. Pre-treatment involves 

dry and wet attrition grinding to <10 μm. Activation mechanisms are size reduction to 

increase surface area (wet grinding) and destruction of the crystal lattice to form an 

amorphous material (dry grinding).  

Note 7: Uses a high-pressure high-temperature (HPHT) loop reactor with 100% 

flow recycle. The turbulent environment results in high particle-to-particle interaction, 

therefore continually exposing fresh surfaces to reaction. 

Note 8: Dry tests showed negligible carbonation. Wet carbonation took place at 2-

10 wt.% solids, with NaHCO3 and NaCl additives. Quantitative results are not given 

Note 9: Pretreatments studied include particle comminution, magnetic separation, 

acid treatment, and HCl extraction. Acid pre-treatment was conducted with HNO3, 

H2SO4, HCl, and a combination of orthophosphoric acid, oxalic acid, and EDTA. Sulfuric 

acid proved the most effective acid for chemical activation. 

Note 10:  Separate tests were conducting with 1 wt.% NaCl, NaHCO3, or Al2O3 

mixed into the Mg(OH)2, and 500 PPM SO2 mixed into the gas phase with no discernable 

effect of these materials on carbonation rate was observed. 

Note 11: Carbonation of wollastonite at ambient pressure/temperature found to be 

too slow for further investigation. 

1.7.6. Formation of Carbonates from Oxides or Cement Minerals.  The simple  

oxides of calcium and magnesium are more effective for sequestering carbon dioxide 

than their respective silicates, however due to their high reactivity they are rarely found 
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in nature. Small amounts of CaO or MgO are found in slag, and work by researchers in 

Spain on the natural form of these minerals is valuable for better understanding 

sequestration of carbon dioxide in slag. 

Abanades et al. have done extensive research on the use of CaO as a sorbent to 

capture CO2 from industrial combustion processes, primarily for large-scale power 

generation systems.56-62 His work is partially funded by the European Coal and Steel 

Community (7220-PR-125). This work has focused on the characteristics of CaO to serve 

as a regenerative sorbent in a fluidized bed capture system. The reaction of carbon 

dioxide with lime is very simple and proceeds exothermically as detailed previously. The 

equilibrium limit in terms of CO2 capture efficiency from gas phase in a lime 

carbonation-calcination reaction is shown by the reaction in Equation 22, where T is 

expressed in K.57 This equation was developed from data by Baker.63 
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The work by Abanades et al. has focused on a reactor operating at 650°C 

(1202°F) and atmospheric pressure. Using coal combustion flue gases at 12-15 vol.%  

CO2 (similar to steelmaking offgas), initial capture efficiencies higher than 90% have 

been exhibited. Although the initial capture rates of CO2 are high, the regenerative 

performance of CaO as a sorbent decreases rapidly after cycling several times through the 

carbonation-calcination process. This effect is shown in Figure 1.2. 

The sharp decline in activity for carbonate conversion is due to limited diffusion 

of the CO2 through the carbonate product layer and pore closure combined with grain 

growth, which leads to internal sintering and overall shrinkage of the original CaO 

particle.61 The latter factors reduce the effective contact area for CaO-CO2 reaction 

within the fluidized bed. While data from Abanades et al. work is useful in slag-offgas 

reactor and in understanding the carbonation kinetics of calcium oxide, it is not focused 

on a permanent solid carbonate disposal method, but a solid sorbent to compete with 

liquid sorbent (amine) systems. 
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Figure 1.2.  The decay in CO2 sorbent capture capacity with the number of 

carbonation/calcination cycles (from Abanades60) 
 

 

Fernandez et al. from the University of Barcelona studied the carbonation of MgO 

slurries at atmospheric pressure.64 Calcined magnesite (89.3% MgO) was mixed with 

water to form a slurry through which CO2 was passed. The reactivity was directly related 

to the specific surface area of the MgO. A specific surface area of 43.1 m2/g yielded 90% 

MgO conversion in 50 minutes, while 210 minutes was required to reach the same yield 

with a specific surface area of 1.8 m2/g. Specific surface area could be controlled by time 

and temperature during calcining, with an increase in both reducing the specific surface 

area (due to internal sintering). Decreasing particle size or increasing pCO2, solid-liquid 

ratio, CO2, and temperature were all beneficial in speeding up the reaction rate. The 

kinetic relation expressed by Equation 23 was found to be valid for MgO slurry 

carbonation for the first 10 minutes. 

 

ktX MgO =−− 3
1
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XMgO is the fraction carbonated; k is the rate constant (min-1), and t is time (min). 

A plot of the rate constant versus temperature yields an activation energy of 29.1 kJ/mol. 

Studies of the reaction mechanisms indicate that the process is mixing controlled and 

chemical reaction controlled, with reaction of the magnesium carbonate on the particle 

surface with CO2 to form magnesium bicarbonate as the rate-determining step. 

Cement chemistry can provide valuable insight to slag carbonation, as it has many 

of the same mineral phases. Cement and slag both contain calcium silicates, calcium 

aluminates, and calcium ferrites. While cement chemists are primarily concerned with the 

hydraulic activity of these phases, work has been undertaken to understand long-term 

carbonate formation and the corresponding structural and physical changes that take 

place. 

Berger et al. studied the carbonation of calcium silicates and calcium aluminates 

in their research of cement chemistry.65-70 Even though this work was undertaken for 

accelerated curing of cement, the chemistry involved pertains directly to geological CO2 

sequestration. Initial work tested the compressive strength of pure cement minerals 

carbonated after hydration. Pure Ca3SiO5, β-Ca2SiO4, Ca3Al2O6, and C12Al14O33, were 

mixed with water at 92 wt.% solids for five minutes then compacted to 5.86 MPa (57.8 

atm) in a cylinder and exposed to CO2 at 0.39 MPa (3.8 atm) for five minutes. The 

Ca3SiO5 and β-Ca2SiO4 minerals produced an appreciable temperature rise upon reaction 

and the resultant strength was similar to standard cement. The aluminate samples showed 

no appreciable temperature rise or increase in strength from carbonation. 

 The carbonation of tricalcium and β-dicalcium silicate was studied further to 

understand the process chemistry. Powdered Ca3SiO5 (3300 cm2/g) and β-Ca2SiO4 (4500 

cm2/g) were mixed with 12.5 wt.% water and subjected to pCO2~0.1 MPa (1 atm) for 

varying times. X-ray diffraction and ignition loss measurements showed the initial 

chemical reaction occurring for the silicate followed Equation 24. 
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This initial reaction takes place with CO2 accelerating the hydration of the silicate 

to form C-S-H gel and CaCO3. The stoichiometry of the gel is similar to that formed in 

conventional cement hydration. However, the gel carbonates rapidly to eliminate lime 

and produce calcite and silicate gel, yielding an overall reaction shown by Equation 25. 

 

322222 nCaCOOzHSiOOzHnCOSiOnCaO +⋅→++⋅   (25) 

 

The carbonation reaction kinetics of β-Ca2SiO4 and Ca3SiO5 powders were 

determined as a function of material parameters and process conditions. Both silicates 

follow a decreasing-volume diffusion-controlled kinetic model expressed in Equation 26. 
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In this equation, α is the degree of carbonation, K’
T is the apparent rate constant, 

and t is the time of reaction (hours). A plot of log[1-(1-α)⅓]2 versus log(t) yields a straight 

line with slope approximately equal to 1.0. Substituting the temperature dependency of 

KT′ as an Arrhenius equation provides a direct relationship for the degree of carbonation, 

as shown in Equation 27. 
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Ko′ is the pre-exponential term in the Arrhenius relationship times the diffusion 

coefficient; Ea is the activation energy; R is the gas constant; T is the temperature (K), 

and A is the average particle surface area (assumed monodispersed size). The values for 

the reaction parameters for both silicates are shown in Table 1.11. 
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Table 1.11.  Reaction Parameters for Calcium Silicate Carbonation (from Goodbrake69) 

Phase Ko′ 
(h-1) 

Ea 
(kcal/mol) 

ΔHf 
(kcal/mol) 

Ca3SiO5 3.44x104 9.8 -83 
β-Ca2SiO4 2.39x109 16.9 -44 

 

 

These values were obtained from Arrhenius plots for both silicates. The reaction 

conditions were fixed at 0.1 MPa (0.99 atm) CO2 at 100% relative humidity.  

The carbonation mechanism for anhydrous powders is best described by Equation 

24. A small amount of C-S-H gel forms, which rapidly loses CaO and water to form 

amorphous silica. The carbonation heats of formation are shown in Table 1.10 and are 

strongly exothermic. Both silicates form aragonite during carbonation, as long as the 

water stays in the vapor phase. If water condenses on the sample, they will form calcite 

initially, which transforms to aragonite as the sample dries. 

Several other processes are worth mentioning in brief for their value in 

comparison with geological sequestration. Golomb at the University of Massachusetts 

Lowell investigated the formation of a stabilized limestone-CO2 emulsion for carbonate 

sequestration into seawater.71 Finely ground calcium carbonate (10-20 μm) is mixed with 

liquid or supercritical CO2 in water to form a stable emulsion. The CaCO3-coated CO2-

globules are stable and settle in water, thus allowing dissemination into the ocean. 

Lackner mentions that citric acid and EDTA are two chelating agents shown to break 

apart serpentine mineral; however, this method has not been researched in detail.47 

TecEco, a company in Australia envisions the use of forsterite and serpentine minerals as 

feedstock for making a magnesium oxide based cement (Eco-cement) that would 

sequester CO2 from the air as it cures.72 The company fails, however, to properly credit 

the CO2 released through calcining, and at best (even with a solar powered Tec-Kiln), this 

process provides a zero sum for total carbonate sequestration. 

1.7.7. Biomimetic Processes.  Several biological processes form calcium 

carbonate from (dissolved) calcium oxide. These processes (e.g., shellfish exoskeletons) 

use a natural catalyst, carbonic anhydrase enzyme, to increase the formation rate 

compared to a geologic process. The use of purified carbonic anhydrase to mimic the 
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biological process (biomimetic) for industrial scale carbon dioxide sequestration has been 

proposed by Bond, Medina, and Simsek-Ege.73-76 Carbonic anhydrase, a zinc 

metalloenzyme, increases the hydration of CO2 to form carbonic acid, which is defined as 

the rate-limiting step of the fixation of carbon dioxide into calcium carbonate in aqueous 

solution. The overall objective of their research is to develop an industrial CO2 scrubber 

using carbonic anhydrase to catalyze the rate of CO2 hydration for subsequent fixation 

into stable mineral carbonates. Bovine carbonic anhydrase (BCA) was tested in a 

laboratory scale exhaust-seawater contactor and found to reduce the time for calcium 

carbonate precipitation from 20 minutes to less than 10 seconds. This process was 

repeated 15 times using the same catalyst (BCA immobilized on alginate beads), and 

exhibited less than 1% loss in experimental yield. BCA was also found to be stable to 

70°C and resistant to SOx and NOx inhibition at levels expected in normal power plant 

exhaust gas. 

 

1.8. CARBONATE FORMATION IN STEELMAKING SLAG 

Steelmaking slag can be considered a mineral source, thus research in geological 

CO2 sequestration is directly applicable for understanding the mechanisms involved with 

slag-CO2 sequestration. Steel slag, however, is a derived synthetic mineral, in that it 

contains a mixture of minerals found in nature, but it is not naturally produced. Because 

slag is an industrial co-product it is subject to environmental regulations and controls not 

imposed on natural minerals containing the same phases. The high content of CaO, MgO, 

and SiO2 in slag leads to the formation of silicates, which are similar to those minerals 

studied under geological sequestration (i.e., olivine, serpentine, and wollastonite). The 

high iron oxide content in slag however produces phases not commonly studied in 

geological CO2 sequestration, and gives rise to unique work with steelmaking slags. 

Several researcher groups are investigating the carbonation of steelmaking slag 

for use as an industrial sequestration reagent. This research has focused on a wide variety 

of carbonation routes from aqueous dissolution to supercritical carbon dioxide exposure 

to steam-CO2 reactors. All of these processes use steelmaking slag as a direct 

sequestering agent, however additional work is undertaken to produce an end-product 



35 

 

product from the stabilized slag, such as blocks, construction material, or waste 

containment. 

Huijgen and Comans at the Energy Research Centre of the Netherlands (ECN) 

have done the largest amount of recent research on the use of steelmaking slag for 

mineral-based CO2 sequestration.77-81 Their literature review covers much of the 

background geological sequestration research described earlier, including mineral 

selection, thermodynamics, pre-treatment and processing methods, and kinetics.77 They 

selected steel slag as a research focus due to its high theoretical sequestration capacity 

(0.25 kg CO2/kg slag), and it was compared to wollastonite. In their research, slag or 

wollastonite was mixed with water and reacted with CO2 in a batch autoclave reactor. A 

summary of their finding is presented in Table 1.12.  

 

 

Table 1.12.  Summary of Slag Carbonation Results from Huijgen and Comans77-81 

Material Particle 
Size 
(μm) 

pCO2 
 

(atm.) 

Temp. 
 

(°C) 

Time 
 

(hr) 

Carbonation 
Amount 

Steel Slag <2000 0.99-28.6 25-225 2-30 25%
 <38 0.99-28.6 25-225 2-30 70%
 <106

<106
15.1
15.1

50
175

30
30

48%
70%

 <38 9.9 200 15 80%
 <106 19.7 25 - 115 g CO2/kg
Wollastonite <106 19.7 25 - 10 g CO2/kg

 

 

Several notes listed in their conclusion are applicable to the current research. 

They found that the percent conversion (to carbonate) is inversely proportional to the 

square root of the particle size (volume based mean diameter). As Ca-conversion was not 

affected by the stirring rate in the reactor, they concluded that Ca-diffusion through the 

matrix is the rate-limiting step. A fit of the data to an Arrhenius equation yielded an 

activation energy of 3.6 kJ/mol, which is consistent with solid-state diffusion control. 

Reaction time and CO2 partial pressure had milder effects on Ca-conversion, compared to 

temperature.  
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Scanning electron microscopy analysis of the carbonated steel slag helps reveal 

the rate determining mechanism. Figure 1.3 shows a back-scattered electron (BSE) image 

of a polished steel slag sample after carbonation. The core of the particle is calcium 

silicate and calcium ferrite, two common slag phases. During carbonation, calcium 

diffuses outward from the calcium silicate phase leaving a Ca-depleted SiO2 phase 

behind. Calcium on the rim of the particle reacts to form CaCO3. The calcium carbonate 

rim and silica phases both provide a hindrance for further carbonation by limiting the 

diffusion rate of calcium to the surface. 

 

 

 
Figure 1.3.  BSE image of carbonated steel slag particle (from Huijgen79) 

 

 

A comparison of wollastonite with steel slag shows the latter to have a higher 

reactivity to sequester CO2. Figure 1.4 shows the comparison of steel slag and 

wollastonite for a range of temperatures. Peak reactivity was achieved at ~200°C (392°F), 

in which steel slag and wollastonite reached 170 and 135 g CO2 per kg, respectively. A 

decrease in reactivity above 200°C (392°F) was due to the lowering of CO2 solubility in 

water, making the delivery of CO2 to the particle surface the limiting factor. The peak 
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values obtained for slag are 68% of the stated theoretical maximum (0.17 kg versus 0.25 

kg). 

 

 

 
Figure 1.4.  Carbon dioxide uptake of Wollastonite versus steel slag in a batch autoclave 

(d<106 μm, pCO2=2.0 MPa), data from Comans78 
 

 

Teir et al. at the Helsinki University of Technology have investigated the 

carbonation of blast furnace and steelmaking slags as an extension of their work with 

precipitated calcium carbonate formation from primary silicate ores.82 They investigated 

acetic acid extraction of Ca2+ ions for precipitation of calcium carbonate in a slurry 

crystallizer. Blast furnace slag showed 97% Ca2+ in 20 minutes at 60°C compared to 38% 

extraction achieved with wollastonite under the same conditions. Further work is planned 

with this process. 

Stolaroff et al. proposed formation of dilute aqueous alkali-metal solutions from 

steel slag or concrete that can be used to extract CO2 from ambient air.83-86 Steel slag at 

three different size fractions (45-74 μm, 74-300 μm, and 300-600 μm) was leached with 

de-ionized water and a pH buffer at ambient temperature to measure the amount of Ca2+ 

extracted. The initial rate and extend of calcium dissolution is higher for smaller particle 

sizes and lower pH. Approximately 50% of the Ca2+ is leached within the first minute, 
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and 80% within the first hour. A process reaching near terminal concentration of Ca2+ 

may be reached in a few hours. 

Their recommendation for industrial scale-up uses the slag in a water spray bed, 

as shown in Figure 1.5. In this method, water spray leaches Ca2+ from slag piles. The 

leachate is collected and pumped back through the sprayers in a closed system. As the 

leachate droplets fall through the air, CO2 is captured from the atmosphere to precipitate 

CaCO3, which deposits on the slag. Calculations of CO2 absorption rate show that a 0.8 

mm droplet falling from 10 m height will utilize 84% of the Ca2+ in solution in forming 

carbonate. A 140,000 tons per year slag processing system, including water use, pumping 

energy, and material flow, is estimated to exhibit a CO2 sequestration rate of 32,000 tons 

per year at an average cost of $8/ton-CO2. 

 

 

 
Figure 1.5.  Spray bed for carbonation of steel slag (from Stolaroff85) 

 

 

Hills et al. have studied the accelerated carbonation of stainless steel slag and 

other materials for the purpose of rapid stabilization to prevent leaching of heavy metals 

during disposal.87-91 The primary mineral phase in the slags tested was composed of 

calcium silicate. Carbonation was carried out with pCO2 of 3.0 atmospheres for 24 hours. 

The slag was mixed with water in varying ratios, and the maximum carbonation (20% 

weight gain) was achieved with 12.5 wt.% water in solids. No carbonation occurs at 0% 

water, and increasing the water above 12.5 wt.% decreases the carbonation. Comparison 

of the results with industrial materials (pulverized fly ash, municipal solid waste 
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incineration ash, de-inking ash, and ordinary Portland cement) shows a directly 

proportional trend of carbonation weight gain with weight percent CaO in material. X-ray 

diffraction revealed that the carbonation reaction took place by γ-Ca2SiO4 conversion to 

calcite (this is a falling slag). Further testing showed that grinding prior to carbonation 

led to 10 times the compressive strength achieved, but this was not correlated to the 

amount of CO2 captured.  

A second set of tests was conducted on the stainless steel slag only, using the 

optimum conditions found earlier. The bulk slag was graded into three size fractions (<40 

mm, 4-8 mm, and <125 μm), which were then ground for five minutes. The samples were 

mixed with 12.5 wt.% water and exposed to the same pCO2 atmosphere for one hour. The 

theoretical maximum uptake capacity is given by Equation 28, which factors in the 

original slag composition. This equation does not include the MgO fraction, which 

averaged 9.8% in this slag. 

 

OKONaSOCaOCO 2232 93.009.1)7.0(785.0% ++⋅=   (28) 

 

The theoretical carbon dioxide capacity calculated was 45-50% depending upon 

the size fraction, compared to an actual measured capacity of ~18%, showing that one-

hour reaction time was insufficient to reach carbonation equilibrium. 

The carbonation reaction steps and mechanisms have been studied extensively for 

cementitious materials, which can be applied directly for the same process in slags.91 CO2 

from the air permeates through the solid, which is the diffusion controlled rate-limiting 

step. The presence of water solvates CO2 and a high surface area favors transport of the 

CO2 to the solid surface. CO2 hydrates to H2CO3, which then may ionize to H+, HCO3
-, 

and CO3
2- depending upon the pH of the solution. The pH after the reaction drops 

approximately three units, typically from eleven to eight. The cementitious phases 

Ca3SiO5 and Ca2SiO4 are dissolved. The calcium silicate grains are covered by a calcium-

silicate-hydrate gel, which quickly dissolves releasing Ca2+ and SiO4
4- ions. The 

nucleation of calcium carbonate and calcium silicate hydrate is promoted by slightly 

increased temperatures and high surface area. While vaterite and aragonite may 
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precipitate, ultimately all the carbonate converts to calcite. A calcium silicate hydrate gel 

forms and is progressively decalcified converting to silica hydrate and CaCO3.  

Several key factors are found to influence the carbonation process of cementitious 

materials. Increasing the Ca content and Ca/Si ratio favor effective carbonation. Ferrite 

and Ca3AlO6 promote the formation of ettringite (Ca6(Al,Cr,Fe,Mn,Si)2(SO4)3(OH)12-

26H2O), which readily decomposes to calcium carbonate in the presence of CO2. The 

heavy metals Pb, Cd, and Ni increase the susceptibility of carbonation of cementitious 

materials by 40%, while organics will adversely affect carbonation. Water is necessary to 

promote carbonation, but too much blocks the pores and limits the reaction. Higher 

microporosity, surface area, and permeability all enhance carbonation rate. The rate of 

carbonation is directly proportional to the concentration of CO2 in the gas phase. 

Carbonation peaks at 50-70% relative humidity and 60˚C (140°F). Above or below these 

ranges carbonation is less favorable.  

Different methods of carbonation have been tried in the search for a commercially 

favorable route. Exposing solids to dry CO2 under pressure leads to dehydration, causing 

water starvation of the carbonation reaction. At low pressure, a dynamic system is 

favored to a static system as the flowing CO2 helps remove the water vapor produced by 

the reaction. At elevated pressures larger amounts of CO2 are introduced throughout the 

sample before pore closure occurs, aiding carbonation. Vacuum carbonation using a 

desiccant showed a higher amount of carbonation. This is due to diminished resistance of 

water transport from the carbonating solid leaving an open pore network. Supercritical 

carbon dioxide penetrates into fine pores displacing water and replacing structurally 

bound water with CO2. A system to treat Galligu, a calcium sulfide containing waste 

product from soap manufacturing, through an accelerated carbonation process uses a 

cement binder and gaseous CO2 in an enclosed rotary kiln. This system is commercially 

from Forkers, Ltd.91  

Isoo et al. has developed a process to make large blocks from steelmaking slag 

that are used as growth sites for marine life.92-94 Dephosphorization slag (56.8% CaO and 

13.8% SiO2) was ground to a median diameter of 0.61 mm. Exposure to the atmosphere 

led to the formation of 0.9% Ca(OH)2 and 2.5% CaCO3 after one month. The slag was 

placed in large (1m x 1m x 1.2m) molds and reacted with CO2 saturated with water vapor 
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at one atmosphere pressure for 12 days. The main carbonate product was calcite, and 

approximately 6% by weight CO2 was reacted (~20% of theoretical amount). Blocks 

weighing 2.4 tons (1 m3) contain about 130-160 kg CO2. 

 

1.9. CONCLUSIONS 

The production and uses of steelmaking slag were analyzed to estimate the impact 

of implementing slag-based carbon dioxide sequestration. This data, along with the 

chemical analysis and mineralogy of slag, can be used to provide the sequestration 

potential (kg CO2 captured per ton of slag) for slag compared to naturally occurring 

minerals. Significant mineralogical and thermodynamic analysis has been done with 

naturally occurring minerals, which can be directly applied to steelmaking slag. Large-

scale sequestration into natural formations is being actively studied by several research 

consortia around the world. They have analyzed carbonate formation in MgO- and CaO-

based minerals in a variety of reactor conditions, and found that the carbonate product 

layer is the primary factor in retarding the reaction kinetics. Pre-treatment methods and 

reactor conditions have been investigated to minimize the product layer effect. Pre-

treatment methods focus on increasing the surface area through heat/quench, acid 

leaching, or grinding, while reactor conditions include increased pressure and 

temperature, or high-shear reactors to exfoliate the product layer. From these methods, 

only grinding and increased temperature (as available from steelmaking offgas sensible 

heat) are deemed feasible for use in a slag-CO2 sequestration system. Aqueous-based 

reactors have been shown to have a much higher reaction rate compared with dry 

reactors, even at high temperatures. Chemical or biological catalysts, such as NaHCO3, 

NaCl, or carbonic anhydrase enzyme, are available for use in aqueous reactors, and can 

be applied to a slag sequestration system. Steelmaking slags have somewhat different 

composition, morphology, and mineralogy compared with natural minerals, which will 

affect the reaction kinetics of CO2 sequestration. However, data from the literature review 

was used as a starting point for understanding slag characterization, as well as reactor 

design.  
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2. EXPERIMENTAL WORK AND ANALYSIS 

Investigative work and experimental research for this project was conducted in a 

stepwise manner to complete the key tasks identified. These items included industrial site 

application surveys, slag characterization, bench evaluation of kinetic factors, and bench-

scale prototype reactor design. Figure 2.1 is a flowchart showing how these tasks are 

related. The following sections each provide a summary of the methods and results for 

each respective research task. Further details and relevant background material are 

contained in the appendices as appropriate. 

 

 

 
Figure 2.1.  Flow scheme of research work conducted 

 

 

2.1. INDUSTRIAL SURVEY 

Initially, six steelmaking plants were visited to gather process data and slag 

samples and to compile survey feedback from project participants. The purpose of the 

survey was to provide practical operating parameters and determine the steelmaking 
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offgas and slag production parameters. This data was used to identify the process 

boundary conditions for a slag-CO2 sequestration reactor. 

Offgas composition and CO2 emission results from the surveys were analyzed in 

comparison to literature review data and published in the Proceedings of AISTech 2006, 

Volume II and Steel Time International.95,96 Paper 1 of this dissertation is comprised of 

the AISTech 2006 paper. 

Developed through discussions with project participants, a concept for capturing 

CO2 from steelmaking offgas using slag is illustrated in Figure 2.2. The proposed reactor 

would be installed after the baghouse, which generally allows for retrofit accessibility 

and prevents contact between the slag and furnace dust.  

 

 

 
Figure 2.2.  Schematic of process for capturing carbon dioxide from steelmaking offgas 

using slag (EAF application shown) 
 

 

The proposed reactor is designed to contact granulated slag and cleaned offgas. 

Based on survey data, the boundary operating conditions for the incoming offgas stream 

at the exit of the baghouse (stack discharge) are listed in Table 2.1. The granulated slag 

will come from the processing stockpiles and will be at ambient temperature and 

pressure. 
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Table 2.1.  Process Boundary Conditions for Slag-CO2 Sequestration Reactor 

Pressure Direct after baghouse, ~ 1atm. 
Temperature Max. allowable to increase reaction rate 

150°C (typical baghouse limit) 
220-350°C (thermodynamic limit by phase) 

Gas Composition <15 vol.% CO2 (remainder N2 and O2) 
4-5% CO2 average 
CO, SOx, and NOx in PPM amounts 

 

 

2.2. SLAG CHARACTERIZATION 

Detailed chemical and physical slag characterization was undertaken as a 

necessary starting point to understanding the nature of the industrial slag samples as a 

baseline for thermodynamic and kinetic analysis.  

2.2.1. Chemical Characterization.  Slag chemical characterization involved  

elemental and phase identification. Elemental analysis of the first nine industrial samples 

(A1α-E2α) was conducted at ArecelorMital. Carbon and sulfur were measured using a 

LECO C/S analyzer. Thirteen metals (oxides) were measured using x-ray fluorescence 

(XRF). In the XRF analysis, each slag was milled to pass an 80-mesh screen and fused 

into a bead with flux of 75% Li2B4O7 and 15% La2O3. Elemental analysis of the last four 

samples (E1β,γ-E2β,γ) was performed by Nucor Hickman using the XRF standards for 

their slag. A summary of the elemental analysis is presented in Table 2.2. Detailed results 

from all samples are listed in Appendix A. 

X-ray diffraction (XRD) phase analysis was used to identify the phase 

components of the slag samples. This was done at Missouri S&T using a Scintag, Inc. 

PadX x-ray diffractometer with a copper source. Powdered slag samples were analyzed 

from 10-70 degrees two theta at 0.03 deg/min. Steelmaking slag exhibits a high 

background noise level due to the glassy (amorphous) and free metal (steel) content. 

Table 2.3 lists the primary phases identified in each slag sample. Quantification of 

several of the phases was not completed because ICSD card data for some of the more 

complex phases could not be found. All primary phases listed in Table 2.3 are oxides or 

combinations of oxides. Much like similar studies in the literature, iron oxide and 

calcium disilicate were found in almost all slag samples. 
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Table 2.2.  Elemental Composition of Industrial Slags as Determined by XRF (wt.%) 

Elements 
(as oxides) 

EAF 
(8 samples) 

BOF 
(2 samples) 

LMF 
(3 samples) 

 Avg. Range Avg. Range Avg. Range 
CaO 32.44 27.3-35.9 40.71 40.5-40.9 49.43 47-51.3
MgO 11.20 9.4-12.8 12.90 12-13.8 6.23 4.3-10
FeO 26.85 20.2-31.6 21.68 21.6-21.7 5.61 5-6.3
SiO2 13.95 8.7-19.4 11.65 10.4-12.9 12.96 4.5-28.3
Al2O3 8.29 5.6-11.8 5.93 5.2-6.6 21.26 4.9-32.3
MnO 5.37 3.4-7.1 4.59 4.5-4.7 1.06 0.8-1.3
TiO2 0.47 0.4-0.5 0.58 0.5-0.7 0.34 0.3-0.4
ZrO2 0.07 0-0.2 0.18 0.1-0.3 0.20 0.2-0.2
Cr2O3 1.48 0.8-2.5 0.36 0.3-0.4 0.25 0.2-0.2
K2O 0.05 0.1-0.1 B.L. 0-0 0.01 0-0
Na2O B.L. 0-0 B.L. 0-0 0.01 0-0
S 0.34 0.1-0.9 0.11 0.1-0.1 1.33 1-1.6
P 0.30 0.2-0.6 0.43 0.4-0.5 0.08 0-0.2
C 0.23 0.1-0.3 0.53 0.4-0.7 0.38 0.4-0.4
Sr B.L. 0-0 B.L. 0-0 B.L. 0-0
F 0.65 0.3-0.9 0.33 0.3-0.3 1.66 1.7-1.7

B.L. = Below Limit 

 

 

The reactivity of the oxide phases in Table 2.3 with respect to CO2 partial 

pressure and temperature is determined by the phase stability diagram shown in Figure 3 

of the paper published in the Proceedings of AISTech 2006, Volume II. The partial 

pressure of CO2 in the reacting offgas limits the temperature at which the reactor may 

operate. The limiting phase is MgFe2O4, which is stable to 227°C at 5% CO2 and 267°C 

at 11% CO2. Assuming Ca2SiO4 is the most prevalent phase in slag, the stability limit 

increases to 267°C and 352°C at 5% and 11% CO2, respectively.  

Phase distribution was determined by scanning electron microscopy (SEM) and 

electron diffraction spectroscopy (EDS) analysis. Figure 2.3 shows an EDS elemental 

map for slag E1α. The sample was mounted in Spurr resin, polished to 0.5 μm in non-

aqueous suspension, and carbon coated. The image in Figure 2.3 shows primary metal 

particles distributed throughout the slag in discrete shapes. Spectrum analysis shows 

these regions to be composed of Fe and Mn (not oxides). The matrix of the slag is 

composed of a calcium-silicon-iron oxide mix. Slags E1β, E2α, and E2β were analyzed in 
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the same manner, and their respective EDS elemental maps and spectra are provided in 

Appendix A. 

 

 

Table 2.3.  Primary Phases Identified from XRD Analysis of Steelmaking Slag 

  EAF EAF LMF BOF BOF EAF EAF EAF
Formula Phase A1α A1β A1γ B1α C1α D1α E1α E2α 
Oxide                   
FeO Iron Oxide X X       X X X 
MgO Periclase     X           

CaO 
Calcium 
Oxide         X       

Silicate                   
Ca2(SiO4) Larnite X     X X       
Ca2(SiO4) Larnite   X             

Ca2(SiO4) 
Dicalcium 
Silicate     X         X 

Ca2(SiO4) 
Dicalcium 
Silicate           X     

Ca5MgSi3O12 C5MS3             X   
Ca3SiO5 
 

Tricalcium 
Silicate             X   

Ca2Al2SiO7 Gehlenite       X         
Aluminate                   
Ca12Al14O33 C12A7     X X X X     
(Fe0.855Al0.145) 
·(Al0.855Fe0.145) Hercynite              X   
Ferrite                   
(MgO)0.432 
·(FeO)0.568 

Magnesium 
Iron Oxide       X X X     

 

 

Several key conclusions were obtained from SEM/EDS analyses that were used in 

subsequent testing. Fe-rich material is present in EAF slag as particles (10-100μm), 

stringers, globules, and dendrites. Grinding below 100μm should liberate these metallic 

particles for separation and recovery. Manganese is associated with the iron dendrite 

particles; and, it should be recovered with the metallic fraction. Lime (CaO) is dispersed 

throughout EAF and LMF slags to form the matrix material. Grinding to 100μm to 

recover metallic particles should expose sufficient matrix material to enable full exposure 

of CaO for CO2 sequestration. Aluminum and silicon are associated with the matrix 
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material in EAF and LMF slag, but not present in the iron particles. Magnesium oxide is 

present in LMF slag as large (100-500μm) blocks. Grinding to 100μm should expose all 

MgO material for sequestration. 

 

 

 
Figure 2.3.  EDS elemental map for slag E1α showing stringers, globules, and dendrites 

of primary metal in a matrix rich in CaO and SiO2 
 

 

2.2.2. Characterization of Physical Properties.  Physical property  

characterization was undertaken to quantify the slag samples properties for the surface 

area analysis, grindability test, and metal liberation analysis. Surface area analysis 

requires the true density, while the grindability test and liberation analysis require the 

bulk density and particle size distribution. Table 2.4 summarizes the slag samples’ 

physical properties. Evaporable moisture content and bulk density were determined 

according to the ASTM specification listed, and true density was measured by inert gas 

Fe Globule 

Fe Stringer 

Fe/Mn 

Dendrite 

(Ca,Fe,Si)xOy 

Matrix 
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pycnometry on slag samples ground to <106 μm. Loss on ignition testing was done in an 

air atmosphere furnace. 

 

 

Table 2.4.  Physical Properties of Steelmaking Slag Samples 

Sample 

Evap. Moisture 
(wt.%) 

ASTM C566-97 

Bulk Density 
(kg/m3) 

ASTM C29M-97 

True Density 
(kg/m3) 

By Pycnometry 

Loss on Ignition 
@ 990°C 
(Δwt.%) 

A1α 0.00% 2014 4052 -1.7%
A1β 1.14% 1941 3881 -1.4%
A1γ 2.59% 1778 2900 3.3%
B1α 2.52% 2019 3614 0.8%
C1α 4.25% 2138 3548 0.3%
D1α 1.56% 2180 3697 -1.1%
E1α 1.44% 1795 3760 -1.7%
E2α 0.41% 1650 3822 -1.7%
E1β-1 0.02% 1438 3021 -3.2%
E1γ-1 0.81% 2167 3906 -1.2%
E2β-1 0.00% 1849 3069 -1.9%
E2γ-1 1.03% 1874 3665 -0.7%
Average Values 
EAF  0.91% 1945.9 3826.2 -1.35%
BOF 3.38% 2078.7 3580.9 0.57%
LMF 0.87% 1688.1 2996.7 -0.58%

 

 

Evaporable moisture content tests showed most of the slags were very dry in the 

as-received condition. Slag C1α (BOF) was not received in the raw state and its higher 

moisture content reflected the fact that it had been stockpiled for several weeks. True 

density values show that slag is denser than silica (2650 kg/m3) mainly due to its high 

iron content. On average, EAF and BOF slags are denser than LMF slag, also due to iron 

content. Loss on ignition (LOI) data (to determine bound water or carbon dioxide) was 

inconclusive because most of the samples gained weight due to oxidation of the free 

metal content that oxidized upon heating. LOI analysis was not repeated in an inert 

atmosphere furnace. 

Slag particle size distribution (PSD) was measured using a series of nested 8” 

U.S. series mesh sieves. A sub-sample from each slag was obtained using a riffle splitter 

and analyzed on a vibratory shaker according to ASTM D448-03a/D692-00 and ASTM 
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D1073-01 methods for coarse (>9.5 mm) and fine (<9.5 mm) fractions. A summary of 

PSD results for nine slag samples is shown in Figure 2.4. 

 

 

 
Figure 2.4.  Particle size distributions of steelmaking slag samples 

 

 

Most of the 80% passing (P80) values lie between 10-20 mm and all particles were 

smaller than 50.4 mm (2”). The fines (<100 μm) values were all less than 5%. The 

primary exception to this observation is slag E1β1, which is a falling LMF slag that self-

comminuted upon cooling. It had a P80 of ~1.1 mm and a fines value of 55%. Most of the 

subsequent testing procedures required grinding and sizing of the slag samples, which 

was done on an as-needed basis. 

 

2.3. THERMOGRAVIMETRIC ANALYSIS 

The first major testing area investigated in an effort to determine the carbonation 

kinetics of steelmaking slag used a purpose built apparatus for thermogravimetric 

analysis (TGA) designed by Dr. Simon Lekakh of the Department of Materials Science & 

Engineering at Missouri S&T, and I carried out the experimental work and data analysis. 

This device was built to measure the reaction kinetics between a CO2 containing gas 

stream and solid slag particles. The TGA-based method could determine the necessary 



50 

 

parameters for fluidized-bed or rotary-kiln reactors in which steelmaking offgas and 

granulated slag are in direct contact. A schematic of the device and operating details are 

given in Paper 1.  

One hundred and fifty one tests were completed using the TGA reactor. Ninety of 

these tests were debugged the furnace, sample holder, and procedure for optimization of 

distributed gas flow, heat distribution, gas humidification, powder preparation, gas 

composition, and data acquisition. Initial tests were conducted using single particles of 

hi-cal lime suspended by a platinum wire in the gas stream. While this method provided 

initial data on temperature and gas humidification effects, it was not applicable to 

powdered materials such as ground slag or standard powder reagents.  

A new method was devised in which powdered material (e.g., reagent powders or 

slag ground to <106 μm) were pressed into 3.81 cm (1.50”) discs using a Carver press. 

The thickness of the discs averaged one centimeter. Each disc was then placed into a 

316SS sample holder that encouraged reaction only on the top face of the disc. The press 

fixture, sample holder, and disc are shown in Figure 2.5.  

The pressed disc was placed in the sample holder and suspended from a digital 

balance in the tube furnace of the TGA. A measured gas stream was introduced at the 

bottom of the tube furnace and flowed upward to make contact with the disc. A 

thermocouple introduced at ~0.6 cm (0.25”) above the disc surface was used to control 

the furnace temperature. The gas stream could be introduced dry or humidified using a 

heated bubbling column. Figure 2.6 is a schematic of the gas flow path in relation to the 

sample holder and sample disc. 

The schematic in Figure 2.6 shows the sample holder suspended in the tube 

furnace with a gap of approximately 1 centimeter on each side for gas flow. This figure 

also shows a CaO disc that is exposed to a humidified CO2 stream. The water vapor 

absorbs into the CaO disc to form a gel in which CO2 solvates, allowing aqueous 

carbonation to take place. Ideally, the disk was subject to a 1-D reaction front (from the 

top down). However, no method was used to seal the disk in the holder, so some gas 

migrated between the sample and the holder, allowing a reaction to take place along the 

sample sides. 
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Figure 2.5.  Sample holder (left), pressed sample disc of CaO (middle bottom), and 
Carver press ram with cylinder (back right) used to make samples for TGA reactor 

 

 

 
Figure 2.6.  Placement of disc sample in flow stream of TGA reactor 
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The initial results of hi-cal lime testing in dry and humidified streams at a range 

of temperatures are shown in Figure 5 of Paper 1. As the composition of hi-cal lime 

particles varied, further tests were undertaken with reagent grade CaO in order to form a 

baseline for comparing the slag results. Figure 2.7 summarizes the results of testing 

calcined reagent grade CaO in anaerobic grade CO2. All tests were conducted under 

atmospheric pressure. The amount of carbonation was calculated as a function of weight 

gain in relation to CO2 uptake only. Differentiation between H2O and CO2 uptake was 

measured by TGA decomposition analysis of the samples after the reaction tests were 

completed. 

All tests showed similarly shaped reaction curves with initial rapid carbonation 

rates (weight gains) that leveled off at longer times. This leveling off is most evident in 

the 100°C and 300°C dry data in Figure 2.7a. More than 95% of the carbonation took 

place in the first 15 minutes and very little occurred after six hours. At 300°C in 

humidified CO2, approximately 50% of the carbonation took place in the first 15 minutes 

and the remainder over the six-hour test period. A dramatic increase was shown at 500°C 

in both dry and humidified CO2, which had the highest carbonation amounts and rapid 

reaction rates at six hours. Long-term tests conducted over a period of several weeks at 

500°C show that the reaction still progresses even at 10 days with humidified gas 

resulting in 60% carbonation, as compared to 45% in dry gas. 

The shape of the reaction curve is a result of two mechanisms. The initial rapid 

carbonation rate is caused by the chemical reaction between CO2 and the initial unreacted 

surface layer of CaO particles. As a CaCO3 product layer develops, it swells to block off 

the inter-particle path to CaO deeper in the disk and forms a dense barrier through which 

diffusion of the reacting species must take place to continue the reaction. These two 

mechanisms are elucidated in Appendix B, in which log-log plots show a linear 

relationship between time and carbonation. Arrhenius analysis at 0.3% and 3% 

carbonation revealed the activation energy of the chemical and diffusion mechanisms as 

41.6 kJ/mole and 121.5 kJ/mole, respectively, for the dry CO2 case and 38.1 kJ/mole and 

63.9 kJ/mole, respectively, for the humidified CO2 case. The addition of water vapor to 

the gaseous CO2 stream reduces the activation energy for both the formation of CaCO3 

from CaO and the diffusion of CO2 through the CaCO3 product layer. 
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(a) 

 

 
(b) 

Figure 2.7.  Carbonation rate of CaO in dry and humidified CO2 gas: (a) At 6 hours from 
100-500°C and (b) after 10 days at 500°C 

 

 

While temperature and water vapor both increased the carbonation rate of CaO in 

this system, the overall carbonation magnitude was still quite low for both lime and slag. 

Figure 2.8 compares several slag samples analyzed with the TGA reactor to CaO and slag 

tests in an aqueous based system. 

Slags E2β1, E2α, and B2α represent the highest CaO containing LMF, EAF, and 

BOF slags, respectively. Each slag was ground to pass 106 μm and pressed into a disc for 
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the TGA reactor test. At 500°C in humidified CO2, these three slags achieved 4.2%, 

5.3%, and 5.5% carbonation, respectively at 24 hours reaction time. In comparison, 

aqueous testing of slag E2β1 (detailed in Paper 2) yielded 12.8% carbonation at 16 hours 

reaction time. Extrapolation to 24 hours shows that aqueous testing with slag should yield 

~15% carbonation, which is three times that achieved under the best conditions in the 

TGA reactor. Reagent grade CaO shows the same type of improvement with aqueous 

processing resulting in 31% carbonation at 24 hours in 500°C humidified CO2 compared 

to the 95% achieved through aqueous processing. Finally, synthetic dicalcium silicate 

(Ca2SiO4) tested in the TGA reactor was compared to the same material tested using the 

aqueous processing method. At 24 hours processing time <0.5%, carbonation was 

achieved in the TGA reactor (500°C, humidified CO2), while 74% carbonation was 

achieved in the aqueous system. Based on these results, the primary focus of 

experimental testing for the reactor design shifted to the aqueous based system and 

testing with the TGA reactor system was discontinued. Even though a gas-solid based 

processing scheme may lead to a simpler industrial scale reactor design than will slurry 

reactor processing, the kinetic reaction rate in the gas-solid system is too slow to provide 

adequate efficiency for effective scale-up. 

 

 

 
Figure 2.8.  Summary of TGA reactor tests on steelmaking slags compared to CaO and 

aqueous test results 
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2.4. AQUEOUS PROCESSING 

Slag carbonation in an aqueous-based system was undertaken in parallel with the 

TGA reactor tests. Initial results from aqueous processing exhibited more favorable 

reaction kinetics than gas-solid processing, so the remainder of the project focused on the 

design of a gas-liquid-solid reactor. Both leaching and carbonation kinetic parameters 

were investigated, and the methods, results, analysis, and modeling were published in two 

Metallurgical and Materials Transactions B papers, which comprise Paper 2 and 3 of this 

dissertation.97,98 

Paper 2 covers the results from batch leaching and carbonation testing of the slag 

samples. These tests were primarily conducted by Dr. Simon N. Lekakh, whom I assisted 

with sample analysis and data interpretation. Batch reactor tests were conducted at 

ambient temperature and pressure. The specific surface area of slag particles was 

increased by leaching or carbonization. Selective dissolution of the Ca-bearing phase 

resulted in increased surface roughness, while carbonation produced overlapping plates 

of CaCO3 product layer to create a highly irregular surface. Both Ca-leaching and 

carbonation were analyzed using the shrinking core model. The experimental data for 

both processes fit this model well after correction for effective particle size based on the 

measured surface area. Analysis of Ca-leaching showed linear proportionality to particle 

size during the initial stage, which supported a chemical reaction controlled model (CaO 

dissolution). The later stage of leaching is controlled by diffusion of the Ca2+ ions 

through the resulting porous surface layer, as shown by square-root proportionality of 

reaction time to particle size. Carbonate conversion is heavily dependent on particle size 

and the reaction is limited by product layer diffusion. The effective diffusivity of the 

product layer decreased by an order of magnitude from 5x10-9 cm2/s at the start of 

precipitation to 5x10-10 cm2/s as the product layer formed and its density increased. 

Carbonate conversion proceeded more slowly than leaching conversion, and both 

processes were inhibited by the calcium carbonate product layer. 

Paper 3 describes modeling a two-stage reactor system using METSIM Ver. 5.4, 

commercial process simulation software. The modeling was primarily conducted by Dr. 

Lekakh and Dr. David G.C. Robertson (Department of Materials Science & Engineering, 

Missouri S&T), whom I assisted with data analysis and interpretation. The kinetic 
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leaching and carbonation parameters obtained from the batch tests were used to create the 

model. Several operating scenarios of a two-stage system were modeled using water/slag 

contact in Reactor 1 and leachate/CO2 contact in Reactor 2. These scenarios included 

batch versus continuous processing and fresh water input versus water recirculation. 

Fresh water addition to Reactor 1 allowed the highest leaching efficiency and resulted in 

excellent carbonization in Reactor 2, but a continuous system has a high water demand. 

Recirculation of the spent leachate minimized the fresh water addition, but inhibited the 

leaching process by producing a calcium carbonate product layer on the slag particles in 

Reactor 1. Increasing the slag surface area, slag/solution ratio, or reactor residence time 

partially overcame product layer blinding. Optimal residence times were defined for 

different process parameters and slag particle sizes. 

While aqueous processing allowed detailed kinetic analysis, bench scale prototype 

testing, and scale-up modeling of a two-stage reactor, the hydrous carbonation rate of 

slag was found to be insufficient to make an industrial reactor feasible. The batch tests 

showed that 10-15% carbonation could be achieved at 24 hours (~3x better than gas-solid 

results), but modeling showed that up to 20 days processing in a two-stage aqueous 

reactor was required to double that amount to 30%. Several pre-treatment and processing 

factors that increased the carbonation rate and amount were found in the literature review 

(see Table 1.10). These factors included increased temperature and pCO2 to improve 

diffusion rates, high shear processing to abrade away the product layer, particle pre-

processing (i.e., acid leaching, heat and quench, or high pressure grinding) to increase the 

particle surface area, and addition of NaHCO3 and NaCl to the aqueous phase to catalyze 

the reaction. Increasing the temperature and pressure would require batch autoclave 

processing, which would greatly add to the cost and complication of industrial scale-up. 

Particle pre-processing was accomplished in the current test program by grinding of the 

slag to produce a specific size fraction for testing. The NaHCO3 or NaCl catalyzing 

mechanism was not well understood by previous researchers, so the magnitude of their 

improvements was inconsistent.  
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2.5. BIOMIMETIC PROCESSING 

One unique area that has not been investigated with slag or mineral sequestration 

is biomimetic processing. A biomimetic catalyst (carbonic anhydrase enzyme) has been 

shown to improve the rate of calcium carbonate precipitation by two orders of 

magnitude.99 The carbonic anhydrase mechanism and effect on carbonate chemistry are 

described in Paper 4. Carbonic anhydrase was investigated in the current project as an aid 

to improve the aqueous processing rate of slag-CO2 sequestration. Aqueous leaching and 

carbonation tests conducted on steelmaking slags showed the rates of these processes and 

the effects of carbonic anhydrase enzyme. A paper containing the methods, results, and 

analysis has been written for Hydrometallurgy and is contained in Paper 4. The results 

are summarized below. 

 The amount of calcium leached is a strong function of particle surface area, 

which is a more important factor than calcium oxide content. BOF slag exhibited a 

calcium-leaching rate of approximately five times that of LMF slag, though it had 80% of 

the calcium content. The higher leaching rate occurs because BOF slag had 8.7 times the 

specific surface area in the raw state. EAF showed an increase in calcium leached similar 

to that of LMF slag. Carbonic anhydrase did not affect the leaching rate. A low amount of 

magnesium was leached for all slags, and BOF/EAF slags showed negligible amounts of 

iron leached. The specific surface area increased from 15-40 times from leaching and 

BOF particles exhibited the most extensive leaching depth. All leaching curves exhibited 

similar trends. The extent of calcium leaching as a function of time and particle size can 

be expressed by a simple mathematical relationship.  

Carbonic anhydrase catalyzed the reaction between calcium oxide and carbon 

dioxide in water, resulting in a 50% decrease in neutralization time. A 66.6 nM 

concentration of BCA reduced the neutralization time to near the theoretical rate. Similar 

reductions in neutralization time were also observed for all three slags. Carbonic 

anhydrase modified the structure of the precipitating layer on the slag particles from an 

overlapping block structure to a dendritic morphology with smaller particles by 

increasing the nucleation rate of the precipitating particles at the expense of the particle 

growth. 
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The rate of carbonation is a strong function of pH. Time controlled tests in which 

the pH dropped to ~six resulted in a decreased amount of carbonate produced for a given 

time. Comparison of the results to the carbonate speciation predominance diagram in 

Figure 2.9 (for 25°C and 1 atm.), shows that the carbonate (CO3
2-) ion has negligible 

concentration at low pH, so carbon dioxide would be taken from any calcium carbonate 

present to maintain equilibrium with aqueous carbon dioxide. This decrease in 

carbonation amount with time was accelerated by carbonic anhydrase because it 

accelerates the reversible hydration of carbon dioxide. Thus, it will accelerate the system 

towards equilibrium from whichever side. If the pH drops to a level at which carbonate 

dissolution would be necessary to reach equilibrium, the enzyme will accelerate that 

dissolution.  

 

 

 
Figure 2.9.  Carbonate species predominance diagram based on solution pH 
 

 

Tests in which the pH was maintained at greater than 8.5 (with a buffer) exhibited 

the highest rates of carbonation, even compared to all previous testing, as shown in 

Figure 2.10. The carbonate ion is present at pH>8.5 and dominant at pH>10.33. As pH 

increases, so does calcium carbonate formation rate, but even at >8.5 pH the resultant 

carbonation rate was 16 wt.% at 13.25 minutes (BOF slag at 100 μm particle size). 
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Extrapolation of the curve fit for carbonation shows that 47 wt.% carbonation would be 

achieved by BOF slag at 100 μm particle size at 24 hours in a batch reactor. As the 

leaching rate was found to be ~50% faster than the carbonation rate, a further increase in 

carbonation can be realized by using carbonic anhydrase, assuming the pH is at >10.33. 

 

 

 
Figure 2.10.  Comparison of time controlled and pH controlled slag carbonation results 

 

 

According to the carbonation results, as long as the system pH stays above 8.5, 

the slag system can process 151 kg carbon dioxide per ton of slag in a 24-hour period, 

which is 47% of the slag theoretical calcium carbonate capacity. On a per hour basis, the 

amount of carbon dioxide sequestered is 0.4% of that emitted per ton of steel produced 

for BOF production. As a first-order approximation, assuming the carbonation rate is 

proportional to leaching activity, the pH-controlled process should sequester 1.8% of the 

carbon dioxide emitted from EAF steelmaking. Under the same conditions, LMF slag can 

add another 0.1% and 0.6% to the sequestration amounts for BOF and EAF mills, 

respectively. BOF and EAF slags will achieve approximately 50% stabilization in 24 

hours, while LMF slag should reach the same amount in five days. 
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2.6. COMMINUTION ANALYSIS 

In the aqueous processing study of slag-CO2 sequestration, carbonate conversion 

was shown to be strongly dependent upon particle size. Reducing the particle size 

through grinding exposes more surface area for leaching or carbonation and removes the 

product layer to expose fresh Ca and Mg bearing phases. Raw slag contains particles up 

to several inches in diameter but the results of the carbonation modeling show that to 

achieve efficient CO2 sequestration the particles may need to be reduced to <100 µm 

through grinding. Because mineral comminution is energy intensive, there are concerns 

that slag grinding may nullify the CO2 sequestration benefit in both direct cost and 

indirect CO2 generation (e.g., CO2 emitted from the electric generation source). To 

characterize the comminution energy for steelmaking slag, a separate study was 

conducted to measure slag grindability using the Bond Work Index method. Details of the 

test method and results were published in the Proceedings of the 2008 SME Annual 

Meeting and Exhibit100, which is listed in Paper 5. 

The grindability study was conducted on BOF, EAF, and LMF slags in a batch 

ball mill at 106 µm grind size. The resulting Work Index values ranged from 13.8-24.9 

kWh/st, with an average for all slags of 19.9 kWh/st. BOF slag exhibited the highest 

Work Index at 22.2 kW/st, followed by EAF and LMF slags at 20.2 kWh/st and 16.8 

kWh/st, respectively. In comparison, dolomite and silica have Work Index values of 13.9 

kWh/st and 23.8 kWh/st, respectively. 

The Work Index and slag physical properties were used to determine the energy 

consumption of a slag comminution system. A dry comminution system using a cone 

crusher, ball mill, and vibrating screen were modeled using METSIM software for three 

slag types across a range of grind sizes (P80). The method and analysis of this model are 

contained in a paper accepted for publication by AIST Transactions, which is reproduced 

in Paper 6 of this dissertation.101 

All slags showed increasing comminution power consumption with decreasing 

P80, and increased sharply below 200 μm. The crushing power requirement ranged from 

1-7% of the total power and the remaining power (93-99%) consumed by ball mill 

grinding. Comminution optimization, therefore, should focus on the grinding process. On 

a normalized mass throughput basis (kWh/tonne), the decreasing order of power 
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consumption was BOF, EAF, and LMF slag. At a 50 μm grind size, these three slags 

consumed 43.5 kWh/tonne, 40 kWh/tonne, and 34 kWh/tonne, respectively, which 

dropped to 8 kWh/tonne, 8 kWh/tonne, and 7.5 kWh/tonne, respectively, at a P80 of 1000 

μm.  

The amount of CO2 generated at the power supply source was calculated by 

applying an emission factor (kg/kWh) obtained from the U.S. Environmental Protection 

Agency to the grinding power consumption. The amount of CO2 captured by the slag at 

each grind size was calculated using the two-stage reactor sequestration model detailed in 

Paper 3. The resulting CO2 balance for each slag is represented graphically, such as in 

Figure 2.11. For EAF slag, this graph shows the amount of CO2 captured, the amount of 

CO2 emitted by the electric supply source (as a negative sequestration value), and the net 

CO2 sequestered. Similar graphs are shown for BOF and LMF slags in Paper 6.  

 

 

 
Figure 2.11.  Net carbon dioxide sequestered (slag capture-power source emission) for 

EAF slag versus grind size (P80) 
 

 

All slags showed net positive CO2 sequestration benefits based on slag-CO2 

capture and CO2 generation at the power supply source. While the peak net sequestration 
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values are ~20% of the theoretical values due to the low kinetic reaction rate, the net 

amount of CO2 sequestered is positive, indicating that slag grinding has positive 

environmental value. 

 

2.7. METAL LIBERATION ANALYSIS 

Recovery of metal (steel) from the slag was investigated as a means of offsetting 

the cost of slag grinding. Slag is typically processed at steel mills by large-scale crushing, 

screening, and magnetic separation. Large particles (>1.25 cm) of metal are recovered by 

the slag processor and sold back to the mill. The processed slag, however, still has a 

significant metallic content, but the metal is distributed in small particles throughout the 

slag. When the slag is ground for CO2 sequestration processing, the metal particles are 

liberated and can be recovered by magnetic separation. The quantity and distribution of 

the particles are not well documented, so size-by-size recovery of the metallic particles 

was undertaken using grindability tests.  

The procedures for separating of the magnetic content and quantifying the 

magnetic fraction are detailed in the Paper 5, which was published in the Proceedings of 

the 2008 SME Annual Meeting and Exhibit.100 All slag fractions >106 μm ranged from 

14-21 wt.% magnetic content, while the <106 μm fraction had less than 4 wt% magnetic 

material. Overall >91% of the magnetic particles were >106 μm, confirming that grinding 

to this size should be sufficient to liberate most of the metallic fraction from the slag. 

EAF slag had the lowest amount of material >106 μm (86.6%), due to fine steel droplet 

break-up caused during slag foaming. LMF slag had the largest amount >106 μm 

(95.6%), and is produced using a less turbulent process than the supersonic jets used to 

produce EAF or BOF slag. The lower turbulence leads to the generation and entrainment 

of fewer fine steel droplets in the slag. EAF and BOF slags have over twice the amount of 

magnetic material available for recovery than LMF slag.  

The grade of the magnetic fraction after crushing was quite good (89 wt.% of the 

material was reported as metallic). However, the grade of the magnetic fraction after 

grinding was lower in metal content (68 wt.% of the material was reported as magnetic). 

The lower grade was caused by the higher surface area of the fine material, which leads 

to a higher amount of oxidized iron, in addition to incomplete liberation of the metal from 
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the slag. Based on the average amount of material recovered through magnetic separation 

during grinding, the overall amount of metallic material recoverable from ground slag is 

estimated to be 5 wt.% of the total slag ground. Similar analysis yields the overall amount 

of metallic material recoverable from crushed slag of 1.2 wt.%. 

The amount of recoverable metal was factored by slag type into an overall 

valuation model for the slag grinding process. Input from power consumption, net CO2 

sequestration, and metal recovery for each slag type were multiplied by their respective 

commodity prices, then summed to give the operating cost. Equipment capital costs were 

not factored into this analysis. The results of the model are given in the AIST 

Transactions paper in Paper 6.101 The valuation analysis resulted in peak curves for all 

slags. EAF and BOF slags exhibited sharp maximum net values ($7.25/tonne and 

$6.25/tonne) at 110 μm and 120 μm, respectively, with rapid value decreases at larger or 

smaller sizes due to increased grinding cost or decreased metal recovery. LMF slag 

exhibited much less sensitivity to grind size, only varying ~3% from its peak value 

($5.75/tonne) at a size of 370 μm over most of the studied range. In terms of the overall 

valuation, metal recovery is the most significant factor. The magnitude of its value is 3-

10 times the magnitude of power consumption. Carbon dioxide credit/value is not a 

primary factor in direct economic valuation of the process. 
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INTRODUCTION 

 

The alkaline earth-containing phases in steelmaking slag can form carbonates thus 

sequestering carbon dioxide from the surrounding atmosphere. Work has been 

undertaken to improve the carbonate formation kinetics, enabling steelmakers to remove 

CO2 from furnace offgas with slag, which in turn reduces the slag stabilization time. A 

study of basic oxygen furnace (BOF) and electric arc furnace (EAF) slags is reported in 

conjunction with their carbonate formation thermodynamics and capacities, yielding an 

overall slag CO2 capture potential. Preliminary results are presented from bench-top 

“wet” and “dry” slag carbonation tests on industrial slags using a slurry reactor and large-

scale thermogravimetric analysis (TGA). 

 

CO2 EMISSIONS IN STEELMAKING 

 

In response to political demands, carbon dioxide has been targeted as a key 

industrial emission requiring regulation and control. As a key industrial sector relying on 

carbonaceous material for operation, the steel industry worldwide will be affected by 

these regulations. The regulation of carbon dioxide as an emission in the steel industry 

must be based on an understanding of the sources, amounts, and variations of the 

generation of this gas. Control methods can be put in place to target specific sources and 

sized to handle the amounts and variations involved. Carbon dioxide can be generated 

directly through iron or steel processes (blast furnace or BOF), or through indirect means 

(coke ovens or coal burning power plants providing electricity to EAF). Each of these 

sources requires a specific means for regulation and control, which also must be viewed 

in relation to the entire steelmaking route. A comparison of CO2 emissions based on 

geographic regions and steelmaking technologies can be made from published data. 

Stubbles provides trends of U.S. domestic steel industry energy use and CO2 

emissions.1 Technological evolution has reduced the required energy per ton of steel from 

47.4 GJ (45 million BTU) in 1950 to 17.9 GJ (17 million BTU) in 2000. Carbon dioxide 

emissions, stated in terms of carbon equivalent (CE) units (0.27 x tons CO2), have only 

been tracked since 1990, but they exhibit a similar trend to the reduction in energy use. 
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Integrated mills produce more CO2 than mini-mills because of their reliance on coke 

making and blast furnace ironmaking. In the year 2000, integrated mills produced 33.46 

million tons of CO2 (CE units), of which 64% (21.47 million tons) came from the 

production and use of coke. Mini-mills produced 13.65 million tons of CO2 (CE units), of 

which 80% (10.86 million tons) came from electrical production at the power plant. On 

average the U.S. steel industry produced 0.42 carbon equivalent tons of CO2 per ton of 

steel shipped in 2000. 

Carbon dioxide emission data from the steel industries of several other countries 

are available from the literature. Afonin provides data for the steelmaking sector in 

Russia.2 Based on 1998 data, the total CO2 emissions from integrated steelmaking stands 

at 48.6 million tons carbon equivalent, which is 8.5% of all Russian CO2 emissions. On 

an intensity basis, this equals 1.4 tons CE per ton of steel produced. Data from Birat et al. 

show that in 1989 the French integrated-steel industry produced a total of 26.3 million 

metric tons of CO2 total at an intensity of 0.42 tons CE per ton steel.3-6 This is 

comparable to the U.S. emission rates of 2000. By 1994, the CO2 intensity had dropped 

in France to 0.40 tons CE per ton steel, which is approaching the theoretical limit. France 

reported an extremely low CO2 emission rate of 0.03 tons CO2 per ton of steel for EAF 

steelmaking with 100% scrap, due to their high reliance on nuclear power. Holappa 

reports data from Finnish ironmaking that can be used to estimate the carbon dioxide 

intensity for that region, which is approximately 0.53 tons CE per ton of steel for 

integrated steelmaking.7 Data from Emi and Gielen show that the 2005 carbon intensity 

rate for Japanese integrated steelmaking is 0.46 tons CE per ton of steel.8,9 

Anderson et al. reported the results of a study comparing the carbon dioxide 

emissions and energy requirements for 30 different steelmaking routes.10 To the BF/BOF 

baseline of 89% hot metal/11% scrap, they have compared EAF steelmaking using 

standard and alternative iron sources/steelmaking routes at 80%, 50%, and 30% 

replacement of scrap. The carbon dioxide emission data from this publication in 2002 for 

a U.S. basis are shown in Figure 1. The highest CO2 producer is the traditional BF-BOF 

route at 519 kg CE per ton of liquid steel. The lowest CO2 producer is 100% scrap in an 

EAF at 119 kg CE per ton of liquid steel (CE/t LS). All other processes fall between these 

boundaries. As the amount of scrap blending is increased, the carbon dioxide production 
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decreases. Comparison of data from Goodfellow et al. on 100% scrap in an EAF shows 

that the indirect sources produce almost 70% of the CO2 generated, with the largest 

fraction from electricity generation.11,12 These authors showed that U.S. EAF production 

with 100% scrap produces 140 kg CE/t LS (compared with 119 kg CE from Anderson) 

due to the high fraction of electricity supplied from hydrocarbon combustion sources 

(69%). However, on the same basis, Canadian EAF’s generate 89 kg CE due to the lower 

fraction of electrical supply from hydrocarbon fuel (32%), and French EAF’s generate 46 

kg CE due to an even lower reliance on hydrocarbon-based fuels (5%). 

 

 

 
Figure 1  CO2 emission amount (carbon equivalent tons per ton of liquid steel) for EAF 
steelmaking with 30%, 50%, and 80% addition of alternative iron units (AIU) to scrap, 

data from Anderson 200210 
 

 

The composition of steelmaking offgas changes during the stages of the 

steelmaking heat, such as charging, blowing, refining, and tapping. Knowledge of 

composition variation is necessary for feedback control and mitigation technologies. 

Evenson et al. reported on an expert system relying on feedback control from offgas 

analysis in EAF operations.13 Sampling probes installed at the entrance to the fixed duct 

after the combustion gap and at the end of the water-cooled duct downstream of the 
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combustion chamber provide real time composition analysis. For an average of 30 heats, 

the concentration averages upstream and downstream, respectively, were 22.7±2.4% and 

10.3±1% for CO2, 21±2.5% and 0±0% for CO, 0.6±0.5% and 11.3±0.7% for O2, and 

8.1±1.2% and N/A for H2. This data is reported for an upstream flow rate of 15900 

Nm3/hr (9358 SCFM) and a downstream flow rate of 68400 Nm3/hr (40259 SCFM), 

yielding a dilution flow ratio of 4.3. Grant reports EAF offgas data from a U.S.-based 

shop (location not specified) in his work with post-combustion optimization.14 The offgas 

composition profile at the inlet of the fixed duct just after the combustion gap (same 

upstream location as Evenson et al.) for a period of 15 heats shows that the CO2 average 

is a little lower (~15%), the CO average is similar (~18%), the O2 value is higher (~4%), 

and the H2 average is similar (~6%). The high downstream O2 value shows less 

combustion of the CO.  

The current project has worked to establish an understanding of the CO2 

concentration in offgas for the design and placement of a sequestration system. The 

concentrations of CO2, CO, H2, and O2 were measured using a water-cooled probe placed 

in the offgas ducting just after the combustion gap (pre-combustion) of a northeastern 

U.S. EAF shop. The data was analyzed for 10 heats, and the concentration of CO2 in the 

offgas during the stages of one heat is shown in Figure 2. The carbon dioxide content 

approached zero during charging when the roof was moved to the side and the offgas did 

not flow through the duct. During the melting phase, CO2 concentration averaged 20-25% 

from the combustion of natural gas in the oxy-fuel burners and other sources of carbon in 

the charge. The CO2 concentration reached its highest peak of 30-35% during the oxygen 

blow from the combustion of dissolved carbon and carbon injected into the slag. The 

average CO2 concentration across the entire heat is about 18%, which corresponds well 

with the values shown by Evenson and Grant.13,14 Remarkable consistency was shown for 

the 10 heats with peak CO2 concentrations averaging 30-35% and an overall average at 

18-20%. 

Combining the concentration data in Figure 2 with the temperature profile and 

operation of the offgas system yields the estimated CO2 concentration at the discharge 

point (stack). The fourth-hole combustion zone operates at 1760°C and after dilution, the 

offgas is cooled to 450°C. Based on the heat capacity of air, and assuming full 
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combustion of CO to CO2, the peak carbon dioxide concentration drops to 14-15% with 

an average to 6-7%. Further dilution and quenching is required to drop the offgas 

temperature to 90°C for discharge through the baghouse. The carbon dioxide 

concentration in the stack discharge is 10-11% peak and 4-5% average. A CO2 capture 

and sequestration system will most likely be installed after the baghouse to prevent dust 

contamination. Therefore, the final discharge values must be considered for the design. 

These values are significantly higher when compared to the CO2 concentration of 350-

370 PPM in ambient air. 

 

 

 
Figure 2  CO2 concentration (volume %) measured in the offgas collection system at the 
4th hole gap prior to combustion during stages of a heat (data from NE U.S. EAF shop) 

 

 

Analysis of the steelmaking process shows that energy conservation provides the 

most cost effective method for reduction of CO2 emissions. Energy conservation 

minimizes the direct CO2 sources (less combustion of carbon) and indirect sources 

(reduction in electricity). The U.S. has focused on energy reduction as a primary goal, 

which will, in turn, reduce CO2 emissions. These reductions will mostly be realized from 

indirect sources as the U.S. relies heavily on hydrocarbon fuels for electrical generation 

(69%). In Stubbles’ analysis of the history of energy reduction in the U.S. steel industry, 
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he found that the drive towards near net shape final products has provided the largest 

energy savings. Continuous casting and thin slab casting have reduced energy 

consumption from 36.9 GJ/t to 21.1 GJ/t (35 million BTU/t to 20 million BTU/t). The 

move towards strip casting and closure of inefficient facilities should drop the industry 

amount to 14.8 GJ/t (14 million BTU/t) by 2010.1 In addition, the data from Anderson et 

al. clearly shows that steel production from scrap provides the lowest amount of CO2 

emissions and energy requirement.  

Alternative iron and steel making technologies will also provide reductions in 

carbon dioxide emissions, primarily through energy reduction, but also through 

operational changes. Europe and Japan have undertaken proactive research initiatives for 

the purpose of reducing carbon dioxide emissions, and in some cases, to develop carbon-

free steelmaking. Most of the research involves the use of new technologies to replace or 

augment the traditional blast furnace ironmaking. Emi lists injection of pulverized coal, 

plastic, and LNG, as well as increased blast temperatures and decreased moisture, as 

current technologies to reduce CO2 emissions by up to 23% in Japanese iron making.8 

Alternative iron technologies, such as ITmk3® and HIsmelt®, may provide further 20-

25% reduction but are still in development. Birat lists several carbon-free technologies 

being proposed, but they are many years from large-scale commercial development.7 

These technologies include hydrogen reduction and direct electrolytic production of iron. 

Both technologies require a source of electricity that is not hydrocarbon-based, in order to 

provide a net reduction in CO2 emissions. In all cases, recycling is being researched as 

the most powerful method of reducing CO2 emissions for the material community as a 

whole. This includes use of the steel scrap in the EAF and use of the slag to offset the 

limestone used in cement production. 

Sequestration technologies provide direct reduction in CO2 emissions and will be 

effective at specific source point mitigation where further energy or technological 

changes cannot be made. At the present time, most sequestration technologies provide a 

negative cost impact to the steel producer. If CO2 regulations develop to the point where 

emission credits are bought and sold, then the cost-benefit of installing a sequestration 

technology versus paying an emission penalty will be weighed. The current research 

project seeks to develop a cost-effective sequestration technology using slag, which is 
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available in plentiful amounts at the steel plants, to permanently sequester carbon 

dioxide. A side benefit is that the formation of carbonates in slag will render the slag 

immune to in-situ swelling or leaching, thus stabilizing it for immediate commercial use. 

 

SLAG CHARACTERIZATION 

 

The potential of steelmaking slag to react with CO2 to form permanent carbonate 

minerals (sequestration) is derived from slag’s high concentration of alkaline earth metal 

oxides. Two alkaline earth metal oxides in sufficient quantity to sequester CO2 are CaO 

and MgO. These oxides report to the slag from the fluxing agents used during 

steelmaking, which are primarily standard and dolomitic lime or limestone. Table 1 

shows the composition of nine slags surveyed in this project. Six sites are represented 

(A1, B1, C1, D1, E1, and E2), with multiple EAF slag samples taken at some sites. In 

addition, at site A1 an LMF sample was taken for comparison. 

The sequestration potential of a slag can be determined from the formation 

reactions with carbon dioxide at ambient conditions (1 atm, 25°C). Both CaO and MgO 

exhibit a negative ΔG°
f in the reaction with CO2, and thus they readily form carbonates. 

The other major phases (SiO2, FeO/Fe2O3, Al2O3, and MnO) are inert to spontaneous 

reactions with carbon dioxide, and thus they are precluded from the sequestration 

potential. Both K2O and Na2O will readily form carbonates, but neither is present in 

sufficient quantities to be significant. Both CaO and MgO react with CO2 in a 1:1 molar 

combination to form CaCO3 and MgCO3, respectively. On a weight basis, 1000 kg of 

CaO will capture 785 kg of CO2, which can be expressed as 214 kg CE units. Using the 

same basis, 1000 kg of MgO will capture 1092 kg of CO2, or 298 kg CE units. Using the 

average values for CaO and MgO of 34.41% and 11.71%, respectively, from Table 1, 

1000 kg of steelmaking slag has the potential to sequester 398 kg of CO2, or 109 kg CE 

units. The National Slag Association estimates that per metric ton of steel produced, BOF 

operations generate 75-150 kilograms of slag, while EAF operations generate less at 65-

80 kilograms.15 Combining this with the carbon emission values from Anderson et al. of 

519 kg CE/t LS for BF-BOF steelmaking and 119 kg CE/t LS for 100% scrap EAF will 

yield the overall effective yield potential. At these values, the slag produced per ton of 
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liquid steel can sequester 2.4% of BF-BOF and 3.3% of EAF carbon dioxide emissions. 

Segregating the slag types in Table 1 (EAF or BOF) and using the average values for 

their respective processes yields an average carbon equivalent sequestration potential of 

2.7% for BF-BOF and 3.2% for EAF. 

 

 

Table 1  Composition of nine steelmaking slags surveyed in this project 
 A1α A1β A1γ B1α C1α D1α D1β E1α E2α Avg.* 
Type EAF EAF (LMF) BOF BOF EAF EAF EAF EAF - 
CaO 27.34 31.22 47.02 40.90 40.53 33.02 34.49 31.91 35.86 34.41 
SiO2 14.84 13.86 6.07 12.89 10.42 12.43 15.08 17.32 9.93 13.35 
FeO 30.05 24.96 5.02 21.72 21.65 27.93 25.76 20.20 27.98 25.03 
MgO 10.55 11.61 10.03 11.98 13.81 10.98 11.76 12.85 10.13 11.71 
Al2O3 7.02 8.61 26.55 5.22 6.65 8.74 5.56 6.79 9.22 7.23 
MnO 6.51 6.07 1.04 4.67 4.50 3.98 4.85 7.07 4.29 5.24 
TiO2 0.39 0.42 0.41 0.68 0.47 0.50 0.55 0.49 0.49 0.50 
ZrO2 <0.01 0.03 0.20 0.08 0.28 <0.01 <0.01 0.16 0.02 0.08 
Cr2O3 2.48 1.98 0.25 0.31 0.42 0.87 0.78 1.62 0.95 1.18 
K2O 0.05 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 
Na2O <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.10 
S 0.16 0.27 1.35 0.12 0.11 0.21 0.08 0.22 0.30 0.18 
P 0.16 0.16 0.02 0.42 0.45 0.25 0.32 0.18 0.28 0.28 
C 0.11 0.26 0.38 0.67 0.40 0.22 <0.1 0.32 <0.1 0.27 
Sr <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 
F 0.33 0.54 1.66 0.33 0.33 0.87 0.75 0.86 0.55 0.57 

* The average of all slags except A1γ, which is from the LMF at an EAF mill 
 

 

These estimates are based on full conversion to carbonate at ambient temperature 

and pressure, assuming pure CaO and MgO in the slag reacting with an atmosphere 

carbon dioxide at unity partial pressure (pCO2=1.0). These estimates represent the 

thermodynamic potential. A system designed for reacting slag with offgas CO2 will 

deviate from most all of these assumptions. The offgas stack temperature for the data in 

Figure 2 is 90°C, but in some plants this may increase to 150°C. The total gas pressure 

will be at ambient conditions (1 atm.), but the partial pressure of CO2 will be in the range 

of 4-11% (pCO2=0.04-0.11 atm). Steelmaking slag contains only a few percent of free 

lime or magnesia, and thus these compounds cannot be considered in the pure state. 
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Predominately the CaO and MgO will form silicate, aluminate, or ferrite phases. The 

results of XRF analysis showed that the slags listed in Table 2 contain dicalcium silicate 

and larnite (Ca2SiO4), akermanite (Ca2MgSi2O7), C5MS3 (Ca5MgSi3O12), C12A7 

(Ca12Al14O33), clinoenstatite (MgSiO3), magnesio-wustite (MgFeO2), hatrurite (Ca3SiO5), 

periclase (MgO), and lime (CaO). Small amounts of free alumina, wustite, and silica have 

been found, but these do not contribute to carbon dioxide sequestration. 

The ability of specific phases in steelmaking slag to sequester carbon dioxide into 

stable carbonates under non-ideal conditions can be expressed in the phase stability 

diagram shown in Figure 3. Each line shown, generated from data in FactSage™ 5.4, 

represents the reaction of a slag phase to form a carbonate versus temperature and 

equilibrium partial pressure of carbon dioxide (pCO2). For example, the bottom line 

labeled “CaO” represents the reaction CaO+CO2→CaCO3. The top line similarly 

represents the reaction MgSiO3+CO2→MgCO3+SiO2. Above each line the carbonate is 

stable (i.e., reaction proceeds to the right), and correspondingly below each line the oxide 

is stable (i.e., reaction proceeds to the left). As the temperature increases (right to left), 

the carbonate stability region for each phase shrinks. Therefore, at high temperature the 

carbonates will decompose to form oxides. The concentration of CO2 in the atmosphere 

surrounding the slag also affects the carbonate stability. As pCO2 increases, the carbonate 

becomes more stable, thus requiring a higher temperature to calcine the material. For 

example, magnesite (MgCO3) decomposes to magnesia (MgO) at 210°C in ambient air 

(pCO2=350 PPM), but if it is placed in a pure CO2 atmosphere (pCO2=1), then it does not 

decompose until 389°C. 

The sequestration of carbon dioxide by slag operates opposite to calcining. When 

calcining limestone, carbon dioxide is driven off in the clinker by the application of heat. 

To capture CO2 in lime or in other slag phases lower temperatures favor thermodynamic 

stability. At ambient conditions (25°C, pCO2=350 PPM), all phases listed in Figure 3 are 

stable as carbonates, and thus the slag will spontaneously react to sequester CO2. 

However, the major hurdle to slag sequestration is that the reaction kinetics are extremely 

slow. Some states require steelmaking slag to stabilize in stockpiles for three to six 

months prior to use.16,17 The limiting rate step in slag carbonation is the diffusion of the 

CO2 into the slag particles. The CO2 diffusion rate can be improved by increasing the 
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reaction temperature. However, an upper boundary is set by the phase stability of 

carbonate formation. The gray shaded region in Figure 3 shows the pCO2 operating 

region exhibited by the stack offgas, as calculated from Figure 2 data. The lower limit is 

350 PPM, which is the approximate ambient CO2 concentration. The upper limit is 11%, 

with an average of 4%. As pCO2 increases, the allowable reaction temperature for 

carbonate formation also increases. Thus, considering a slag containing clinoenstatite 

(MgSiO3), under ambient CO2 concentration, the carbonate formation reaction can 

proceed up to 74°C. However, exposing slag to offgas at 11% carbon dioxide increases 

the allowable reaction temperature to 168°C. An analysis of the slag phases is critical to 

the sequestration system design to determine the maximum allowable temperature to 

allow carbonate formation while enhancing reaction kinetics. 

 

 

 
Figure 3  Carbonate stability diagram for alkaline earth metal oxide phases found in 

steelmaking slag (data generated from FactSage™ 5.4) 
 

 

The objective of the current project is to develop and demonstrate a process for 

sequestering CO2 from steelmaking offgas by forming carbonates with the alkaline earth 

oxide-containing phases in slag. To achieve this result, the process kinetics of the 

carbonate formation reaction must be improved to allow the design of a commercially 
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feasible reactor. This reactor will contact stack exhaust gas with fresh or minimally 

processed slag allowing rapid sequestration of the CO2 and stabilization of the slag. 

 

CARBONATE FORMATION IN STEELMAKING SLAG 

 

Two different reactor design bases (“wet” and “dry”) are proposed for contacting 

slag and offgas. The first basis (“dry”) is a solid-gas contactor with either a plug flow or 

rotary design. In this system, the stack offgas would be directed through an atmospheric 

pressure-rated vessel containing slag particles. Only the sensible heat of the offgas would 

be used to provide a temperature increase of the system. After sufficient reaction time, 

the carbonated slag is dumped, and fresh slag is input to repeat the process. To allow 

continuous operation, a plug flow design would use two parallel contacting vessels, and 

thus while one is dumping/loading the other is reacting. A rotary design would be similar 

to a cement clinker, with slag particles flowing countercurrent to the offgas. The other 

basis (“wet”) of design allows for slurry contact, and thus the slag is mixed with water 

through which the offgas is bubbled. The slurry reactor would require continuous stirring, 

and thus it could be modeled after a mechanical flotation cell, which allows for intimate 

gas-solid contact in a water-dispersed system. While a slurry reactor is more complicated 

for operations, the water addition may be necessary to achieve sufficient reaction 

kinetics. Both design bases are being investigated in this project through bench-scale 

testing. 

Investigation of the solid-gas contactor design basis is done with a large-scale 

thermogravimetric analyzer designed for this project. A drawing of the bench-scale TGA 

is shown in Figure 4. A traditional TGA apparatus is designed to handle samples of just a 

few grams, but due to the heterogeneous nature of slag, much bigger samples are 

required. The TGA for this project can handle a gross sample weight of 410g with a 

resolution of 0.001g. The central chamber is a vertically oriented tube furnace capable of 

operation to 1100°C. The furnace controller allows a programmable ramp rate (1-

100°C/min) and hold time. Samples are suspended in the furnace from a digital balance, 

which records the sample weight. Samples for gas-solid contact are held in a 304SS mesh 

basket or by a platinum wire (single particle). Samples for decomposition analysis are 
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placed in an alumina crucible held by a platinum wire. The digital balance is protected 

from the furnace heat output through a tortuous path barrier, cross flow fan, and reflective 

radiation shield. The bottom entrance of the tube furnace contains a gas distribution 

device through which reaction gases are introduced. Up to three gases can be metered 

individually or in combination. The gases used in this project are Ar, CO2, N2, and air. In 

addition, the introduced gas can be humidified by bubbling through a heated water 

column. Weight and temperature data are collected to a computer through a portable data 

acquisition system. 

 

 

400g +/- 0001g 

0 -1100 0C 

Air 

CO2 O2 N2 

 
Figure 4  Bench-scale TGA used for slag-CO2 reaction measurements of gas-solid 

carbonation kinetics 
 

 

Baseline testing to determine the effect of temperature and humidity on the 

carbonation rate was conducted with “Hi-cal” lime obtained from a project sponsor. The 

“Hi-cal” lime has a composition of 95% CaO, 3% MgO, and 2% SiO2. Single particles of 

lime, with an average 1.5 cm equivalent spherical diameter, were suspended into the 

TGA from a platinum wire holder. The first series of tests were conducted at 200°C, 

300°C, 400°C, and 500°C with dry CO2 (p=1 atm). A second series of tests was 

conducted at the same temperatures using CO2 gas humidified through a bubbling 

column. In each test, the lime single-particle was suspended in the TGA furnace in an Ar 
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atmosphere while the temperature was ramped to the testing point. Once the temperature 

reached the desired test point, the particle was held in the Ar atmosphere for one hour. 

After one hour, the Ar was turned off and the desired CO2 stream (dry or humidified) was 

introduced into the furnace chamber. The lime sample was allowed to react with CO2 for 

approximately 5.5 hours, after which the Ar stream was reintroduced while the sample 

cooled to room temperature. A plot of weight percent carbonation versus time for each 

sample is shown in Figure 5. 

Each dry sample exhibited an increase in weight with time as it was allowed to 

react with CO2 at the test temperature. The total weight increase at 200°C in dry CO2 at 

5.5 hours was marginal (~1.25%). This corresponds to 2% carbonation. The percent 

carbonation is defined as the fraction of lime converted to calcium carbonate (assuming 

only CaCO3 formed). Increasing the temperature to 300°C and 400°C showed 

incremental increases up to approximately a five weight percent increase for the latter 

temperature. A test temperature of 500°C in dry CO2 showed a significant jump to a 13 

weight percent increase, which is equivalent to 16.5% carbonation. Increasing the 

temperature alone has a significant impact on the reaction kinetics by increasing the 

diffusion rate of CO2 into the lime particle. 

Humidifying the CO2 provided as significant of an impact as increasing the 

reaction temperature. The total weight increase at 200°C in humid CO2 at 5.5 hours was 

approximately double (2.5%) of that exhibited with dry CO2. The weight gain at 300°C in 

humid CO2 was higher than that with dry CO2, but not twice as much. The largest 

difference occurred in humid CO2 at 400°C, which showed a weight gain of 15%, which 

is three times that shown for the dry CO2 at the same temperature. The highest weight 

gain of 17% occurred at 500°C in humid CO2, which corresponds to 21% carbonation of 

the lime sample. Humidification of the reaction gas has a catalytic effect in dramatically 

increasing the reaction rate between CO2 and lime. 

The catalytic effect of a humid CO2 stream in reacting with alkaline earth metal 

oxide-based solids has been noted by several researchers. Both Lackner et al. and 

Zevenoven et al. noted in their work with serpentine (Mg3Si2O5(OH)4) that humidity 

greatly increased the percent conversion to carbonate with all other factors equal.18,19 

Hills et al. also reported in their work the importance of humidifying the CO2 stream with 
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accelerated carbonation of slag and other cementitious wastes.20,21 They propose that CO2 

from the air permeates through the solid, which is the diffusion controlled rate-limiting 

step. The presence of water forms a gel on the lime particle surface into which CO2 

solvates. CO2 hydrates to H2CO3 in the surface gel, which is then ionized to H+, HCO3
-, 

and CO3
2-. The pH in the water drops, thus assisting in the dissolution of the lime. The 

reaction rate in solution is much faster than between the gas and solid state. In the current 

project, temperature, humidification, and particle size will be evaluated for their effect on 

the reaction rate of the industrial slag. 

 

 

 
Figure 5  Carbonation rate of Hi-cal lime (95% CaO) in dry and humid CO2 atmosphere 

(pCO2=1) at 200°C, 300°C, 400°C, and 500°C 
 

 

Investigation of the “wet” process, based on a water-solid-gas reactor design, was 

done with a bench-scale flotation cell using a two-liter chamber with an internally rotated 

impeller. The rate of the carbonation reaction was studied under intensive mixing as 

shown in Figure 6. The rate of slag reaction was compared with the rate of “Hi-cal” lime 

reaction under the same test conditions. For each test, 50 g of solid material was crushed 

and graded to <106 μm then mixed with two liters of tap water. Bottled CO2 was injected 

into the slurry at a rate of 1460 cm3/min for a total of two hours (lime only). Periodic 
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slurry samples of 3-5 g in size were taken, decanted through vacuum filtration, and then 

dried in an oven. Oven drying took place at 220°C for one hour, followed by calcium 

hydrate decomposition at 480°C for two hours and calcium carbonate decomposition at 

920°C for two hours. These temperatures were chosen based on thermodynamic 

equilibrium of the CaO-CO2-H2O system as determined by FactSage 5.4. Parallel 

samples were taken and subjected to analysis in the TGA. 

 

 

 
Figure 6  Bench-scale slurry mixer with internally rotated impeller (left) and mixing 

process with slag-CO2-water (right) 
 

 

Three types of materials were tested in the slurry reactor: “Hi-cal” lime, eight of 

the industrial slags in Table 1, and three synthetic slags produced from reagent grade 

material in an induction furnace. The compositions of the mixtures used to produce the 

three synthetic slags are shown in Table 2. The synthetic slag composition was selected 

to represent a low, medium, and high basicity in slag A, B, and C, respectively. Synthetic 

slags A and B exhibited a “falling” condition and self-disintegrated into a powder during 

cooling. This is a result of the β→γ polymorphic transformation of calcium disilicate. 

Slag C did not exhibit self-disintegration, and thus it was crushed after cooling to produce 

the same particle size as slags A and B. Each synthetic slag was screened to produce 

particles <106 μm. 

The test results with “Hi-cal” lime are shown in Figure 7. Within the first two 

minutes, the pH rose from a background level of 5.8 in carbonated tap water to 12 after 

the addition of lime, indicating a relatively rapid dissolution of CaO and showing the gas-
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liquid-solid mixing process was very efficient. A sample taken at this time showed 47% 

carbonation of the lime and full utilization of the CO2. At six minutes, the pH stayed at 

12 and the percent carbonation jumped to 84%. As the lime consumed the CO2, the pH 

and CO2 efficiency began to drop rapidly. By 20 minutes, both the pH and percent 

carbonation had stabilized, thus very little further CO2 was consumed causing the CO2 

efficiency to drop rapidly. Samples taken at 120 minutes showed little change in the 

percent carbonation and pH, indicating the process had essentially reached completion. 

 

 

Table 2  Mixture composition of synthetic slags used in slurry testing (by weight) 

Component Slag A Slag B Slag C 
CaO 40% 49% 56% 
FeO 15% 15% 15% 
SiO2 26% 20% 15% 
MgO 10% 7% 5% 
Al2O3 5% 5% 5% 
MnO 4% 4% 4% 

 

 

A similar procedure was used for the evaluation of the slag carbonation rate in the 

slurry reactor. However, based on the rapid reaction of lime in this process, testing with 

the slag materials was conducted for only 60 minutes. As an initial comparison of 

reactivity between the slags to lime, the change in pH with time is plotted in Figure 8.  

Slag A1γ (LMF slag) and lime proved to have similar reactivity dropping to just a 

few percent more than the background pH in five minutes, and reaching the background 

pH in 30 minutes. Slags D1α, A1α, and A(synthetic), respectively, exhibited decreasing 

initial pH values, however they all dropped to the same baseline level in 30 minutes. 

These latter slags are less reactive compared with lime and slag A1γ, showing the 

CaO/MgO species to be more tightly bound in the slag. 
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Figure 7  Reaction rate of CO2 with lime (95% CaO) in gas-liquid-solid slurry reactor 

process 
 

 

 
Figure 8  Change of slurry pH with time during reaction of slags and lime with carbon 

dioxide 
 

 

The percent carbonation for eight of the steelmaking slags from Table 1 is shown 

in Figure 9. The results are presented as the percentage of weight loss from calcium 

carbonate decomposition and as the percent carbonization, calculated in reference to the 
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calcium concentration in each slag sample. The percent carbonation at 60 minutes varied 

from zero for slag A1α to a high of 57.5% for slag A1γ. Each sample either reached or 

approached stead-state carbonation within 10 minutes of starting the reaction indicating 

good efficiency of mixing and contact in the slurry reactor vessel. The lack of further 

carbonation after five minutes indicates that the slags become passivated in respect to 

reacting with CO2 after reaching a steady state. Future analysis will focus on the analysis 

of the raw and passivated slag samples to determine the change in surface composition 

and morphology and the corresponding effect on the diffusion of CO2 into the slag 

particle. 

 

 

 
Figure 9  Percent carbonation versus time for eight industrial steelmaking slags in a slag-

water-CO2 slurry reactor 
 

 

A correlation between the endpoint carbonation percent from Figure 9 and the 

amount of CaO in each slag is shown in Figure 10. As expected from the thermodynamic 

calculations, the amount of CaO is proportional to the slag reactivity with CO2. Phase 

determination was not undertaken on the samples to determine the amount of free versus 

combined CaO (i.e., into silicates or ferrites). Two slag samples (A1α and E1α), however, 

showed no reactivity with CO2 in the slurry reactor. Phase characterization of the slags 
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will be undertaken in future work to determine the effect of bulk and surface phase 

composition on carbonation reactivity. 

 

 

 
Figure 10  End-point carbonation percent from slurry reaction with CO2 versus CaO 

content (weight %) in industrial steelmaking slags 
 

 

SUMMARY 

 

The results of bench-scale CO2 sequestration tests by steelmaking slags are 

presented in this paper. In the “dry” process, the rate of reaction of solid lime or slag 

increases proportionally to the reactor temperature. However, an upper boundary 

condition exists, defined by a thermodynamic phase stability diagram that must be 

identified for each phase in the slag. Tests results showed that the addition of water vapor 

(humidification) to the CO2 gas significantly accelerated the carbonation reaction of pure 

lime. The mechanism of this catalytic effect is possibly defined by the formation of 

intermediate calcium hydrate gel on the solid particle surface. A “wet” process, which 

includes the interaction between three phases (water-solid slag-CO2 gas), has a much 

higher carbonation reaction rate when compared with the “dry” process. The percent of 

carbonation statistically correlated to the CaO contents of industrial slags. This data will 
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be used to determine the design parameters for a lab-scale reactor for CO2 sequestration 

by steelmaking slags. 
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Sequestration of carbon dioxide by steelmaking slag was studied in an 

atmospheric three-phase system containing industrial slag particles, water, and CO2 gas. 

Batch-type reactors were used to measure the rate of aqueous alkaline leaching and slag 

particle carbonization independently. Four sizes of slag particles were tested for Ca 

leaching rates in deionized water at a constant 7.5 pH in an argon atmosphere and for 

carbonate conversion by bubbling CO2 through an aqueous suspension. Conversion data 

(fraction of Ca leached or converted to carbonate) were evaluated to determine the rate-

limiting step based on the shrinking core model. For Ca-leaching, the initial controlling 

mechanism is chemical dissolution but as the porous layer develops diffusion becomes 

the rate limiting step. Carbonate conversion proceeded much more slowly than leaching 

conversion and was limited by diffusion through the product calcium carbonate layer. 

The calculated value of diffusivity was found to be 5x10-9 cm2/sec, which decreased by 

an order of magnitude with increasing carbonization conversion due to changing product 

layer density. The experimental data fit the shrinking core model well after correction for 

the particle specific surface area. 

 

I. INTRODUCTION 

 

The U.S. produces 9-14 Mt of steelmaking slag annually, which represents 

approximately 10-15 wt. % of crude steel output.1,2 Primary uses for steelmaking slag 

include high quality mineral aggregate, Portland cement, soil conditioning, and pH 

neutralization of abandoned mine drainage.3,4 The key factor prescribing slag use is the 

alkaline-earth metal (e.g. Ca and Mg) oxides content, which contributes to overall 

basicity and cementitious strength. However, as-produced steelmaking slag is chemically 

unstable because these oxides readily form hydroxides and carbonates through reaction 

with atmospheric gases. Because both hydroxide and carbonate formation produce 

substantial mechanical swelling that leads to heave failure in confined construction 

applications, many states dictate stockpile aging for 3-6 months prior to commercial 

use.5,6  

Forced carbonation of steelmaking slag is a method of circumventing lengthy 

stockpile stabilization and providing the benefit of carbon dioxide sequestration. The 
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conversion of CaO/MgO to carbonates serves to both stabilize the slag, and permanently 

capture and store the CO2. Several research groups have started projects to determine the 

mechanisms involved in forced (accelerated) carbonation of steelmaking slag with the 

goal of using this material as a CO2 sequestering agent. This work is an offshoot of a 

much larger-scale effort aimed at permanent geological sequestration of carbon dioxide 

with naturally occurring silicate or carbonate minerals.7 

Huijgen and Comans measured the carbonation of steel slag in an autoclave 

reactor.8-9 Particle size was found to have a strong effect on the extent of carbonation, 

while reactor temperature, reaction time, and CO2 partial pressure had milder effects on 

Ca-conversion. Carbonation was unaffected by stirring rate in the reactor, so Huijgen and 

Comans concluded that Ca-diffusion through the product layer was the rate-limiting step. 

They concluded that their process can yield an 80% carbonation in relatively mild 

conditions (<38 μm, 200°C, 1.0 MPa pCO2, 15 minutes). In comparison with naturally 

occurring wollastonite (CaSiO3), steel slag was able to sequester 11 times more CO2 at 

ambient temperature. Eloneva et al. investigated acetic acid leaching of slag for 

extraction of Ca2+ for use in producing precipitated calcium carbonate by reaction with 

CO2 in a slurry crystallizer.10 Leaching of the slag resulted in extraction of 97% of the 

calcium ions, as compared to 38% extraction from wollastonite under the same 

conditions. Stolaroff et al. investigated the use of steel slag to form a dilute aqueous 

alkali-metal solution from steel slag that can be used to extract CO2 from ambient air.11-12 

The rate and extent of calcium dissolution was found to be inversely related to particle 

size and pH. Near terminal concentration of Ca2+ may be reached in a few hours. 

Carbonation kinetics were not studied in this work, but its authors suggest that Ca 

leaching and slag carbonation would occur simultaneously. 

Extraction of CO2 from steel manufacturing offgas using steelmaking slag is 

being studied in an effort to quantify the extent and rate of carbonate formation under 

near-atmospheric aqueous conditions.13 The value of CO2 sequestration arises from 

steelmaking slags total carbonation potential and ready availability as a co-product in 

steel production. A survey of industrial slags has found the CaO and MgO contents of 

BOF and EAF slags to average 30-50 wt.% and 10-12 wt.%, respectively.13 Additionally, 

LMF slag contains 50-60 wt.% CaO and 10-12 wt.% MgO. The amount of slag produced 
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per ton of steel is estimated at 75-150 kg for BOF, 65-80 kg for EAF, and 15-20 kg for 

LMF.14 Production of a ton of steel generates 519 kg CO2 carbon equivalent (CE) for 

BOF and 119 kg CO2 CE for EAF. Assuming full stoichiometric conversion of CaO and 

MgO to carbonate, steelmaking slag has the potential to sequester 6-11% of the CO2 

generated from BOF production and 35-45% of the CO2 generated from EAF 

production.14 

While slag may contain a considerable fraction of CaO and MgO, these 

compounds are rarely present in their pure forms. The alkaline-earth metal oxides are 

primarily locked into silicate, aluminate, or ferrite phases. While the carbonation of these 

phases is highly exothermic (e.g., ΔH°r=-116.2 kJ/mole for 

CO2+½Ca2SiO4→CaCO3+½SiO2), the reaction rates are very slow. Methods investigated 

for increasing the reaction rate include fine grinding to increase surface area, increasing 

CO2 partial pressure, increasing reactor temperature, and catalysis. The current study 

aims to quantify the reaction rate of steelmaking slag with CO2 in aqueous systems 

operating at ambient pressure and temperature. The reaction rate of Ca leaching from slag 

into water and the direct carbonation of slag particles were investigated separately in an 

effort to understand the limiting mechanisms for the overall sequestration reaction. 

 

II. EXPERIMENTAL 

 

Batch-reactor experiments were conducted to measure the reaction rate of 

industrial EAF and LMF slags with carbon dioxide in an aqueous system. The effects of 

slag particle surface area and alkaline earth metal oxide content on the extent of 

carbonization (wt. % CaO converted to CaCO3) were investigated. These two parameters 

were selected in order to determine the hydrometallurgical model that best fits aqueous-

assisted carbonation of steelmaking slag. 

Three industrial slag samples (18-22 kg each) were studied. Slag #1 was from an 

electric arc furnace (EAF), Slag #2 from an Al-killed ladle metallurgy furnace (LMF), 

and Slag #3 from a Si-killed LMF. As-received Slags #1 and #2 were gravel sized with 

most particles 2.5-7.5 cm diameter, while Slag #3 was a "falling slag" present as a fine 

powder. The slags were obtained within 24 hours of production and prior to on-site 
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crushing and magnetic separation to ensure minimal reaction with the local atmosphere. 

Each slag sample was stored in its own separate double sealed plastic bin with bulk 

desiccant. 

 

A. Slag Characterization and Sample Preparation 

Prior to beginning the reactor experiments, the chemical and physical 

characteristics of the slags were determined. X-ray fluorescence (XRF) spectroscopy was 

used to measure the elemental composition of each slag, with all components assumed 

present as oxides. X-ray diffraction (XRD) phase analysis (Scintag, Inc. PadX with a Cu 

source) was used to indicate the phase components of the slag samples. 

To obtain fresh particle surfaces and sufficient amounts of slag particles across a 

range of size fractions, Slags #1 and #2 were crushed in a laboratory jaw crusher and then 

a roll crusher until small enough to pass a 6-mesh sieve size (3.35 mm). Slag #3 

contained a high fraction of dicalcium silicate which self-comminuted upon cooling 

therefore was used in the raw condition. Particle size distribution (PSD) was obtained 

using a U.S. mesh series of 20 cm (8 in.) diameter sieves on a vibratory shaker with ~700 

g samples produced by riffle splitting. After crushing and particle size analysis, five size 

fractions—45-75 µm, 150-250 µm, 420-590 µm, and 2300-3300 µm—were chosen for 

subsequent testing. Because the slag-CO2 reaction may be governed by particle surface 

area, the specific surface area (m2/g) was determined for several fractions of the crushed 

slag samples using BET gas sorption method (Quantachrome® Corp., NOVA® 1000). 

Reflected light (RL) microscopy and scanning electron microscopy (SEM) with energy 

dispersive spectrometry (EDS) were used to study the surface topology, structure, and 

composition throughout different testing stages. 

 

B. Reaction Kinetics 

Two sets of aqueous experiments were performed using the batch type reactors. 

The first set of tests involved a simple stirred batch reactor to measure the leaching rate 

of calcium from the different size fractions of the slags. The leaching procedure was 

adopted from the work of Stolaroff.12 Each leaching test was done in a 500 ml glass flask 

filled with 300 ml double de-ionized water and pH buffer TES (2-[(2-hydroxy-1,1-
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bis(hydroxymethyl)ethyl)amino]ethanesulfonic acid). The buffer was used to maintain 

the pH between 7.0-7.5. The buffered water was degassed by Ar bubbling and sealed 

under Ar positive pressure during the experiments. A quantity of slag (400 mg) was 

added such that the aqueous solution would be not saturated by Ca2+ in the case of 

complete leaching. At a predetermined time, a ten ml sample of the solution was taken 

from the reactor for each test and immediately filtered through 0.45 μm syringe filters to 

remove any suspended solids, leaving only the dissolved fraction of Ca2+. ICP-OES 

spectrometry (PerkinElmer® Optima 2000™ DV) was used to measure the Ca2+ 

concentration in the samples.  

The second set of experiments involved measuring the slag particles carbonization 

in aqueous conditions. Thirty grams of each of the four size fractions from the slag 

samples were mixed with 250 ml of de-ionized water in a 500 ml flask. Standard grade 

CO2 was introduced into the mixture through a 1.0 mm glass capillary tube. Each sample 

was allowed to react for a designated period of time, after which the CO2 flow was 

stopped. The slurry mixture was filtered through 11µm filter paper with a vacuum pump. 

The filtrand was dried at 180°C and analyzed for carbon content by the combustion/IR 

method (LECO® CS600) or thermogravimetric analysis (TGA) in an Ar atmosphere. 

Total weight loss up to ~600°C indicated the amount of hydroxide (Ca(OH)2) formed. 

Weight loss above this temperature was associated with the amount of carbonate (CaCO3) 

formed. 

 

III. RESULTS 

 

A. Slag Characterization  

Table I lists the slag chemical compositions obtained by XRF, assuming all 

components to be oxides. EAF slag #1 contained 32.1% CaO while LMF slags #2 and #3 

contained higher, but nearly equal, percentages of CaO plus an Al2O3/SiO2 amount that 

reflected their respective steel deoxidation practices. XRD showed that the three slags 

listed in Table I contained primarily dicalcium silicate (Ca2SiO4) and tricalcium silicate 

(Ca3SiO5) with lesser amounts of akermanite (Ca2MgSi2O7), C12A7 (Ca12Al14O33), 

clinoenstatite (MgSiO3), and magnesio-wustite (MgFeO2). Only a minor amount of free 
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periclase (MgO) and lime (CaO) was present, showing that the alkaline earth metal 

oxides are primarily tied up as silicates, aluminates, and ferrites. Minor amounts of free 

alumina (Al2O3), wustite (FeO), and silica (SiO2 quartz) were also found, but do not 

contribute to carbon dioxide sequestration. 

 

 

Table I.  Steelmaking Slag Composition (Wt Pct) 

Sample #1 #2 #3 
Type EAF LMF 

Al-Killed 
LMF 

Si-Killed 
CaO 32.1 49.9 51.3
SiO2 19.4 4.5 28.3
Al2O3 8.6 32.3 4.9
TiO2 0.4 0.3 0.3
MgO 9.4 4.3 4.3
MnO 6.8 0.8 1.3
FexOy 26.4 6.3 5.5
SO3 0.6 1.0 1.6

 

 

Figure 1 shows the particle size analysis of Slags #1 and #2 after crushing, along 

with Slag #3 in the raw state. Slags #1 and #2 have similar particle size distributions after 

crushing, but Slag #3 is much finer. The measured specific surface area (m2/g) was 

compared with the calculated surface area for hypothetical smooth uniform spherical 

particles. The measured surface area of LMF slag particles was an order of magnitude 

larger than that calculated for uniform spheres, while the EAF slag particles had a surface 

area two orders of magnitude greater due to their internal and external porosity. 

 

B. Reaction Kinetics  

1. Ca Leaching 

Figure 2 shows the effects of particle size, solution temperature, and slag 

composition on the aqueous extraction rate of Ca2+ from slag samples. The aqueous 

solution was maintained at a constant pH of 7.5 throughout each test. Figure 2a shows the 

amount of Ca2+ dissolved in 24 hours for four size fractions of Slag #2 (LMF slag with 



94 

 

49.9% CaO). The percentage of calcium dissolved was calculated from the concentration 

of Ca2+ in the solution and the total amount of Ca (as CaO) added to the batch reactor. 

The particle size (i.e., surface area) had a dominant influence on the amount of calcium 

leached. 

 

 

 
Fig. 1—Particle size analysis of Slags #1 and #2 after crushing and Slag #3 (as-received). 

 

 

During the first hour, approximately 33% of the calcium was leached from the 45-

75 µm fraction, while less than 5% of the calcium was leached from the 2300-3300 μm 

fraction at 24 hours. The effect of temperature on Ca leaching, as shown in Figure 2b, 

was more pronounced during the first few hours, but after three hours the leaching rate 

(% Ca dissolved/time) became similar for the two temperatures tested. Figure 2c provides 

a comparison of leaching different types of slags with the same size particles (150-200 

μm) by showing the absolute value of Ca2+ (ppm) in solution versus time. EAF Slag #1 

has less CaO than LMF Slag #2 (32.1% versus 49.9%), but a higher surface area. The 

leaching rate during the first 100 minutes was higher for Slag #1 due to the increased 

surface area, but the overall amount of calcium dissolved after 24 hours is significantly 

higher for Slag #2 due to the higher starting CaO concentration. 
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(a) 

 

 
(b) 

 
Fig. 2—Effect of (a) particle size, (b) temperature, and (c) CaO concentration in slag on 

the aqueous leaching rate of calcium. 
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(c) 

 
Fig. 2—Effect of (a) particle size, (b) temperature, and (c) CaO concentration in slag on 

the aqueous leaching rate of calcium (cont.). 
 

 

The changes in particle morphology and composition during leaching were 

examined using SEM/EDS and XRD analysis. The leaching of Ca from a slag particle 

started at the slag surface and included internal pores connected to the particle's external 

surface. Figure 3 shows the porous layer remaining on the external surface (Figure 3a) 

and internal surface (Figure 3b) of Slag #1 after leaching. EDS analysis of the unreacted 

core and the surface after leaching showed that selective dissolution takes place. The 

concentration of Ca in the unreacted core is very high (44.5 wt.%), while the Ca at the 

surface after leaching is depleted (0.33 wt.%). Selective leaching of the Ca from the 

surface leaves behind an un-dissolved layer of mixed (Al,Fe,Mn,Mg) oxides in different 

phases than in the original slag. XRD analysis showed that the alumino-calcium-silicate 

phase was eliminated after 24 hours leaching. 
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(a) 

 

 
(b) 

 
Fig. 3—(a) External surface and (b) cross-section images of Slag #1 after leaching. 
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2. Slag Carbonation  

The degrees of carbonization versus time for the four size fractions of Slags #1 

and #2 are presented in Figure 4. For both slags, the particle size predominantly 

influences the amount of carbonization. For the 0.06 mm, 0.2 mm, 0.5 mm, and 1.25 mm 

average particle sizes tested for Slag #1 (Figure 4a), the times to reach 6% carbonization 

were approximately 20 minutes, 800 minutes, 1500 minutes, and 4200 minutes, 

respectively. The data for Slag #2 (Figure 4b) showed the same relationship between 

particle size and degree of carbonization, but the overall carbonization amount is less 

than in Slag #1 for all particle sizes. Measuring the degree of carbonization is less precise 

than measuring the rate of Ca leaching due to the small amount of initial carbon present 

in the slag, and the lower precision of TGA carbon measurement compared to aqueous 

Ca ion measurement with the ICP. 

 

 

 
(a) 

 
Fig.4—Degree of carbonization versus time for four size fractions of (a) Slag #1 and (b) 

Slag #2. 
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(b) 

 
Fig.4—Degree of carbonization versus time for four size fractions of (a) Slag #1 and (b) 

Slag #2 (cont.). 
 

 

Morphological analysis of the resultant carbonate layers is shown in Figure 5. 

Because they exhibit a highly porous structure, interconnected channels allow surface 

reactions to take place deep inside slag particles. A cross-sectional sample of a 0.5 mm 

particle from Slag #2 (Figure 5a) showed after 48 hours carbonization treatment, a 10-20 

µm thick carbonate layer on the external surface (dark region) extending into the pores 

which are up to 100 µm diameter. SEM analysis revealed that the carbonate layer on the 

external surface of Slag #2 consisted of plate-like crystals in a random high-porosity 

structure with 1-3 µm openings (Figure 5b). According to EDS analysis, the plates were 

composed primarily of Ca, O, and C, indicating a calcium carbonate composition. Pores 

connected to the slag surface through channels were exposed by crushing prior to SEM 

analysis. The pore surfaces exhibited a reaction layer made of overlapping calcium 

carbonate plates packed very close together and thus having a high bulk density (Figure 

5c). 
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(a) 

 

 
(b) 

 
Fig. 5—Optical image of Slag #2 particle showing (a) the cross section of a pore, and 

SEM images of (b) the external surface carbonate layer and (c) the pore surface carbonate 
layer. 
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(c) 

 
Fig. 5—Optical image of Slag #2 particle showing (a) the cross section of a pore, and 

SEM images of (b) the external surface carbonate layer and (c) the pore surface carbonate 
layer (cont.). 

 

 

Two different types of reactions between steelmaking slag and water were 

experimentally tested. The first reaction involved simple leaching of Ca2+ ions from slag 

into nearly pure water with a constant pH and surrounded by an inert atmosphere. No 

hydrous CO2 or other impurities were present to react with the calcium ions. In contrast, 

the second type of reaction allowed for the formation of calcium carbonate due to 

saturation of the aqueous solution with CO2. The progress of both types of reactions 

changed the specific surface area of the solid slag particles, as shown in Table II. 

Leaching increased the specific surface area by increasing the surface porosity from 

selective dissolution of the Ca bearing-phases (Figure 3), while the carbonization reaction 

increased it by producing a highly irregular product layer (Figure 5). 

 

IV. DISCUSSION 

 

The shrinking core model is typically employed for analysis of particulate-based 

heterogeneous solid-fluid reactions for determination of the rate-limiting mechanism. 
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Han describes the fundamentals of this model.15 Applying this model to slag 

carbonization reveals that the reaction steps must include (1) mass transport of the 

aqueous carbonic acid ions through the liquid boundary layer surrounding the particle, (2) 

diffusion of the reacting ions through the pores in the product layer (CaCO3) accreted on 

the slag particle surface, and (3) reaction of calcium ions at the solid surface with 

aqueous carbonic acid ions (HCO3- and CO3
2-). The steps of Ca ion leaching-only process 

include (1) surface reaction of Ca bearing phases with water, (2) mass transport of the 

Ca2+ through the porous surface structure developed from selective leaching, and (3) 

mass transport of the calcium ion through the liquid boundary layer. According to the 

shrinking core model, which was originally developed for dense, spherical, uniformly 

sized particles, each reaction step possesses a specific time dependence that has a 

characteristic proportionality to the particle surface area and solution temperature. The 

measured effective diffusivity was approximately 10-9-10-10 cm2/s, while the diffusivity in 

the bulk liquid was approximately10-5 cm2/s. Thus, mass transport through the liquid 

boundary layer was neglected as the rate-limiting step. The slurry was intensively mixed 

with magnetic stirring to maintain a uniform concentration in the bulk solution. 

Therefore, the chemical reaction between the solid and liquid-ionic species and/or 

diffusion through the pores in the product layer can be assumed to control the rate of the 

processes studied. 

 

 

Table II.  Specific Surface Area (m2/g) of Slag after Aqueous Treatment 

Condition Slag 
(0.15-0.25 mm) Initial CO2  

Treated 
Leached 

EAF #1 1.13 12.6 5.42 
LMF #2 0.092 4.4 N/A 

 

 

When the diffusion of the reactants through the product layer is rate-limiting, 

Equation [1] gives the dependence of the molar transport of bulk fluid reactant A (-

dNA/dt, mol/sec) through the product layer at a radius r (cm) and effective diffusivity De 
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(cm²/s).15 The term CA (mol/cm³) is the concentration of the bulk reactant, which is a 

function of the radius. At the radius of the unreacted core CA is zero, while at the outer 

radius of the product layer (in contact with surrounding fluid), CAb is the concentration of 

the reactant ions in the bulk fluid. 
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Solving for the reaction time t (sec), as shown in Equation [2], shows its 

dependence on the particle initial radius R (cm), the unreacted core radius rc (cm), molar 

density of the solid ρB (mol/cm3), and stoichiometric coefficient b.15 Regarding particle 

size, the reaction time to a fixed level of completion is a function of the square of the 

particle radius. 
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When the chemical reaction between the solid and liquid-ion species is rate-

limiting, Equation [3] gives the relationship between surface area, molar transport of bulk 

fluid reactant A, rate constant kr (cm/sec), and concentration of bulk reactant. 

 

ACrk
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1

π
     (3) 

 

Rearrangement and integration of Equation [3] provides the reaction time as a 

function of the parameters shown in Equation [4]. In terms of particle size, the reaction 

time is a function of the particle radius to the first power. 

( )crR
AbCrbk

Bt −=
ρ

      (4) 
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To determine the rate-controlling step, the influences of particle size and solution 

temperature were analyzed. The effect of particle size on the time to reach the equivalent 

levels of Ca2+ in the solute (Figure 2) or the time to reach the equivalent levels of 

carbonization (Figure 4) was analyzed for the respective experiments. If the time has a 

squared dependence particle size, then the reaction is likely governed by product layer 

diffusion (Equation [2]), but if the time has a linear dependence on particle size, the 

reaction is governed by the chemical reaction (Equation [4]). The time dependence for 

both leaching and carbonization is analyzed based on calcium conversion, XCa, as a 

fraction of reacted calcium initially present in the slag. 

 

A. Ca Leaching 

Analysis of experimental data for Slag #2 (Figure 2a) showed that both chemical 

reaction and diffusion mechanisms were involved sequentially during Ca leaching from 

steelmaking slag. During the initial stage (i.e., to 0.07 conversion), the reaction time 

showed linear proportionality to particle size (Figure 6a), supporting a chemical reaction 

controlled model whereby solid CaO dissolves into Ca2+ ions in the water.  

 

 

 
(a) 

Fig. 6—Time dependence with particle size for Ca leaching from Slag #2 for (a) initial 
stage and (b) progressive stage. 
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(b) 

 
Fig. 6—Time dependence with particle size for Ca leaching from Slag #2 for (a) initial 

stage and (b) progressive stage (cont.). 
 

 

As the dissolution reaction progressed to 0.18, conversion a porous surface 

structure developed, as shown in Figure 3, resulting in a tortuous path for the ions to 

travel. Subsequent diffusion through this structure became the rate-limiting step as shown 

by the square root proportionality of the reaction time to particle size (Figure 6b). 

Comparison of the experimental data for Slag #2 (Figure 2a) with Equations [2] 

and [4] allows for direct correlation. Figure 7 shows a plot of the experimental data (45-

75 μm particles) compared to the diffusion and reaction equations. A combination of the 

two equations shows that the experimental data fits well to a chemical reaction controlled 

mechanism up to ~0.3 conversion (60 minutes), which then switches to a combination of 

chemical reaction and porous diffusion layer control to the terminal conversion of 0.63. 

Each reaction mechanism has a different sensitivity to solution temperature. In the 

case studied, increasing the temperature of the aqueous solution enhanced Ca leaching at 

the initial reaction time period (Figure 2b). While the rate of dissolution increased 

significantly with temperature during the initial period, the rate of leaching at the end of 
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the test did not differ greatly between 20°C and 60°C, because the solution temperature 

affects the rate of the chemical reaction more than the rate of diffusion. 

 

 

 
Fig. 7—Comparison of experimental data for Ca leaching from Slag #2 (45-75 μm 

particle size) with chemical and diffusion reaction control mechanisms. 
 

 

As shown in Figure 2c, EAF Slag #1 showed higher Ca dissolution rate during the 

initial period, even with a lower Ca concentration in slag than did LMF Slag #2. This is 

inconsistent with a simple shrinking core model based on uniform smooth solid spheres. 

This model can be corrected by substituting an effective particle size based on the 

specific surface area. Slag #1 had ~10 times the surface area of Slag #2 for the same 

particle size. The much higher surface area led to an increased Ca dissolution rate during 

the initial period. However, rapid dissolution decreased the amount of Ca left in the slag, 

leaving less gradient to maintain the high dissolution rate. Slag #2 had 55% more Ca to 

start with, so it was able to maintain a higher gradient than was the bulk solution, 

resulting in higher total amount of Ca leached. 
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B. Slag Carbonization 

The slag carbonization data was analyzed in a similar manner to determine the 

controlling reaction mechanism. Figure 8a shows the time required to achieve 0.02 

conversion (carbonate reaction) for four particle sizes of Slag #1 and Slag #2. Conversion 

was heavily dependent on particle size and showed proportionality to the square root of 

time, indicating that product layer diffusion was the rate-controlling step. The layer of 

calcium carbonate formed on the surface (Figure 5) retarded the diffusion of carbonic 

acid ions to the slag particle surface. The different slopes exhibited by the two slags 

reflected the effect of true surface area. The effective diameters, calculated from specific 

surface measurements on assumption of uniform spherical particles, were used to 

recalculate the curves shown in Figure 8b, bringing both curves into congruence. 

 

 

 
(a) 

 
Fig. 8—Diffusion limiting model for slag carbonization reaction at 0.02 Ca conversion 

using (a) real particle diameter and (b) effective particle diameter. 
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(b) 

 
Fig. 8—Diffusion limiting model for slag carbonization reaction at 0.02 Ca conversion 

using (a) real particle diameter and (b) effective particle diameter (cont.). 
 

 

According to the shrinking core model, if product layer diffusion is the limiting 

mechanism (Equation [2]), conversion should exhibit a dependence on the square root of 

reaction time. Figure 9a shows the experimental data for conversion of Slag #1 versus 

[time0.5]. During the initial reaction period (i.e. to 0.03 conversion), the experimental 

results closely match the theoretical model. As the product layer increases in thickness, 

the reaction tends to decelerate. The changing density of carbonized layer (Figure 5a), 

which was not considered in this model, is a possible explanation for the decrease in 

reaction rate. Equation [2] was solved numerically by changing the effective diffusivity 

(i.e., increased product layer thickness) for the three conversion periods shown in Figure 

9a (<0.03, 0.03-0.10, and >0.10) to allow the fraction converted to match the square root 

relationship. The experimental data were fit to the resulting equations to yield a diffusion 

coefficient, which changed from 5x10-9 cm2sec-1 at the initial time-period to 5x10-10 

cm2sec-1 when carbonate layer was formed, as shown in Figure 9b.  
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(a) 

 

 
(b) 

 
Fig. 9—(a) Comparison of calculated and experimental data for the carbonization of Slag 
#1 with 0.5 mm average particle diameter and (b) dependence of diffusivity on thickness 

of carbonized layer. 
 

 

Finally, data for the rate of Ca leaching were compared to data for the rate of Ca 

carbonization for the same slag. In both cases, some calcium from the slag reacted with 

the aqueous solution, but the rate of these reactions differed significantly due to the 
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mechanisms and limiting steps involved. In the slag leaching test, Ca ions dissolved from 

the slag into the unsaturated aqueous solution. The limiting step was diffusion of calcium 

ions though the developed porous layer. An additional Ca leaching test was performed on 

Slag #2 (<200 μm), which had been partially carbonized preliminarily. Figure 10 

compares the percentage of reacted Ca from slag (leached or carbonized) to reaction time, 

illustrating that slag carbonization proceeds slower than Ca leaching. The calcium 

carbonate product layer also inhibits the Ca leaching process. The experimental data and 

kinetic parameters obtained will be used to model an industrial prototype reactor that can 

be used to sequester carbon dioxide using steelmaking slag. 

 

 

 
Fig. 10—Comparison of carbonized and leached Ca from fresh and stabilized LMF Slag 

#2 in aqueous solutions. 
 

 

V. CONCLUSIONS 

 

Carbon dioxide sequestration using steelmaking slag was studied in a three-phase, 

batch-system containing industrial slag, water, and CO2 gas at ambient temperature and 

pressure. The reaction rates of aqueous Ca-leaching and direct carbonization were 
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quantified independently to yield the reaction parameters and rate-limiting mechanisms 

listed below. 

1. The specific surface area of slag particles is increased by leaching or carbonization. 

Selective dissolution of the Ca-bearing phase results in increased surface porosity, 

while carbonization produces overlapping plates of CaCO3 product layer to create a 

highly irregular surface. 

2. Both Ca-leaching and carbonization were analyzed using the shrinking core model. 

The experimental data for both processes fit this model well after correction for 

effective particle size based on the measured specific surface area.  

3. Analysis of Ca-leaching shows a linear proportionality to particle size during the 

initial stage (to 0.30 conversion), which supports a chemical reaction controlled 

model (CaO dissolution). The later stage of leaching is controlled by diffusion of the 

Ca2+ ions through the resulting porous surface layer, as shown by square-root 

proportionality of reaction time to particle size. 

4. Increasing the leachate temperature from 20 to 60°C (at atmospheric pressure) 

initially enhanced the Ca-leaching rate but the terminal amount of Ca leached after 24 

hours was nearly the same (47% versus 50%). 

5. Carbonate conversion is heavily dependent on particle size and the reaction is limited 

by product layer diffusion. The calculated value of diffusivity decreased by an order 

of magnitude from the initial value of 5x10-9 cm2/sec due to changing product layer 

density. 

6. Carbonate conversion proceeds more slowly than leaching conversion, but both 

processes are inhibited by the calcium carbonate product layer. 
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Hydrous carbonate sequestration of carbon dioxide using steelmaking slag was 

studied using a METSIM process model to analyze experimental data and determine 

reactor design parameters. Several operating scenarios of a two-stage system with 

water/slag contact in Reactor 1 and leachate/carbon dioxide contact in Reactor 2 were 

investigated. These scenarios included batch versus continuous processing and fresh 

water input versus water recirculation. The METSIM leaching and carbonation models 

were verified with results obtained from previous slag sequestration experiments. Fresh 

water additions to Reactor 1 allowed the highest leaching efficiency and resulted in 

excellent carbonation in Reactor 2, but a continuous system has a high water demand. 

Recirculation of the spent leachate minimizes the fresh water addition required, but 

inhibits the leaching process by producing a calcium carbonate product layer on the slag 

particles in Reactor 1. Increasing the slag surface area, slag/solution ratio, or reactor 

residence time partially overcomes product layer “blinding.” Optimal residence times 

were defined for different process parameters and slag particle sizes. 

 

I. INTRODUCTION 

 

Steelmaking slag contains a high fraction of alkaline-earth oxides that 

exothermically form carbonates, making this material an excellent vehicle for capturing 

and sequestering carbon dioxide. This material has been shown to have the potential to 

sequester 35-45% of the carbon dioxide generated from electric arc furnace (EAF) 

production and 6-11% of the carbon dioxide generated from basic oxygen furnace (BOF) 

production.1 Extraction of carbon dioxide from steel manufacturing offgas using 

steelmaking slag for geological sequestration was studied by quantifying the extent and 

rate of carbonate formation under near-atmospheric aqueous conditions.2 Because the 

natural carbonate formation kinetics are very slow, fine grinding to increase slag surface 

area, increasing pCO2, increasing temperature, and aqueous catalysis are being 

investigated to increase the reaction rate to a level suitable for industrial use.3 The goal of 

this research is to design a reactor for aqueous-based carbonation of steelmaking slag. 

Several research groups have investigated the design of an aqueous reactor system 

for sequestration of carbon dioxide using steelmaking slag. Huijgen et al.4, Eloneva et 
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al.5, and Stolaroff et al.6 have worked with leaching and carbonation of steelmaking slag 

under various conditions. Each study found that the rate and extent of aqueous leaching 

and carbonation was inversely related to particle size as the primary factor, while pH, 

temperature, and pCO2 had milder effects on Ca-conversion. In comparison with 

naturally occurring wollastonite (CaSiO3), eleven times more carbon dioxide could be 

sequestered from steel slag at ambient temperature. Other consortia have actively 

researched methods of large-scale mineral-based carbon dioxide sequestration. O’Connor 

et al. conducted research in an effort to optimize the process conditions for direct aqueous 

carbonation of silicate minerals.7-9 Activation of the minerals (serpentine or olivine) 

through attrition grinding or heat-treatment was necessary to achieve high levels of 

carbonation. Additions of NaHCO3 and NaCl to the mineral suspension were found to 

catalyze the reaction significantly. Park et al. investigated carbonation of olivine and 

serpentine in a manner similar to the work of O’Connor et al.10 Aqueous carbonation 

studies revealed that increasing reactor temperature, pCO2, and NaHCO3/NaCl 

concentration increased the carbonation rate. Fernandez et al. found that the reactivity of 

magnesite slurries for carbonation increases with decreasing particle size and increases 

with pCO2, temperature, and solid-liquid ratio.11 

The current study capitalizes on the findings of many of these researchers, as well 

as current experimental work, in modeling the design of a reactor for aqueous-based 

sequestration of carbon dioxide with steelmaking slag. The current process uses a two-

stage system to decouple the competing leaching and carbonation mechanisms that may 

occur simultaneously in a one-stage reactor. The reaction rate of calcium leaching from 

slag into water and the direct carbonation of slag particles were investigated separately to 

understand the limiting mechanisms for the overall sequestration process. The main 

process parameters modeled in this investigation include particle size, reactor residence 

time, reaction time, and reactor flow sequencing. 
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II. REACTOR DESIGN AND MODELING PROCEDURE 

 

A. Carbon Dioxide Sequestration Reactions 

Carbon sequestration via an aqueous-based reaction of carbon dioxide in offgas 

with lime in steelmaking slag may follow several possible reactions steps. A list of the 

key competing reactions considered is given in Table I. The thermodynamic and kinetic 

parameters of aqueous carbon dioxide dissolution (reactions 1-4) and the reaction of 

carbonate and calcium ions to precipitate the carbonate (reaction 6) have been previously 

described.12,15 Among these reactions, the rate controlling steps are carbon dioxide 

hydration (reaction 2) and carbonate precipitation (reaction 6).15,16 However, compared to 

slag-solution reactions (solid-liquid type) the gas-liquid reactions are relatively rapid.3  

In this study, experimental kinetic data of calcium leaching from slag (reaction 5) 

and direct carbonation of slag particles by dissolved carbon dioxide (reaction 7) were 

used in the process model. The solid-liquid reactions listed in Table I are shown in 

simplified form as a convenience for studying the kinetics of the overall process. The real 

processes involving slag are significantly more complicated, as most of the CaO is 

combined into complex oxide phases (i.e., Ca2SiO4 or Ca12Al14O33).2 The dissolution rate 

of metal oxides (e.g., Ca, Mg, Al, Si, Fe) depends on the degree of iconicity of the M-O 

bond.12 For simplification in the current study, the calcium containing phases are 

designated as CaO, while the experimental leaching kinetic parameters were obtained 

from industrial steelmaking slags containing multiple mineral phases.3 The actual 

mechanism of direct slag carbonation may take several different reaction paths. For 

simplicity of process modeling however, reaction 6 of Table I was used as the direct 

carbonation reaction method. 

 

B. CO2 Sequestration Reactor Design 

The process design consists of two vessels connected by a pumped water stream, 

as shown in Figure 1. Each reactor vessel operates at ambient pressure and temperature. 

Water and slag particles are introduced into Reactor 1, wherein calcium ions are 

dissolved to form an alkaline leachate. The leachate is pumped to Reactor 2, through 

which gaseous carbon dioxide is bubbled. Carbon dioxide dissolves into the water to 



117 

 

form carbonic acid ions, which react with the calcium ions in solution or report to the 

surface of the slag particle. At the particle surface, several competing reactions take place 

to precipitate CaCO3. This process design allows investigation of several system 

scenarios for optimizing carbon dioxide capture. 

 

 

Table I.  Reactions Occurring During Aqueous Slag-Carbon Dioxide Sequestration4,12 

Description  Reaction 
Carbon dioxide 
dissolution 

(1) 

(2) 

(3) 

(4) 

)(2)(2 aqg COCO →  

322)(2 COHOHCO aq →+  
−+ +→ 332 HCOHCOH  

−+− +→ 2
33 COHHCO  

Calcium leaching (5) )(22
2

−+ +→+ OHCaOHCaO  
Carbonate precipitation (6) 

3
2
3

2 CaCOCOCa →+ −+  
Calcium oxide direct 
carbonization 

(7) 
3)(2 CaCOCOCaO aq →+  

 

 

Scenario 1: Fresh water is supplied into Reactor 1 and the leachate containing 

calcium ions is pumped to Reactor 2, where calcium carbonate precipitates. The spent 

leachate (containing residual dissolved carbon dioxide) is discharged.   

Scenario 2: The design is the same as Scenario 1, except that the water supplied to 

Reactor 1 is recirculated from Reactor 2 after complete degassing.  

Scenario 3: Fresh water is supplied to Reactor 2 for saturation with carbon 

dioxide, and then the saturated water is pumped to Reactor 1 for direct reaction with slag. 

The spent water (containing residual dissolved carbon dioxide) is discarded. 

Scenario 4: The water supplied to Reactor 1 is recirculated from Reactor 2 

without degassing.  

Experimental verification of the different scenarios was undertaken using a lab-

scale apparatus consisting of two connected reactors (tanks). Recirculation of the aqueous 

stream took place both with and without partial degassing by argon bubbling. Reactor 1 

contained two kg of slag mixed in 20 liters of water. The leachate was pumped at varying 
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rates to Reactor 2, which was sized with a two-liter volume. Bottle grade carbon dioxide 

was bubbled through a diffuser in the bottom of Reactor 2 to generate a fine gas bubbles 

distribution, which allowed intimate mixing of the gas and alkaline solution. A multi-

channel pH meter was used to measure the pH level in both reactors. At the completion 

of each test, a sample of the slurry from Reactor 1 was filtered, dried, and analyzed for 

fraction carbonation, as described previously.3 Kinetic data from this earlier work was 

used to develop a process model with METSIM (ver. 15.07) process simulation software. 

 

 

 
Fig. 1—Flow schematic of system for carbon dioxide sequestration with slag. 

 

 

C. METSIM Modeling Procedure 

An approach developed by Robertson for modeling the heterogeneous reaction 

kinetics of a non-steady-state process was used for the two-stage reactor system.13 A 

block diagram of the METSIM model is shown in Figure 2. The computer model consists 

of two blocks representing Reactor 1 (Figure 2a) and Reactor 2 (Figure 2b) and 

connected by streams 15/17 and 20/12. In Reactor 1, the amount of input slag is defined 

by Stream 10, which connects the mixer and splitter pair A and C, respectively. In the 

same manner, the amount of aqueous solution is defined by Stream 2, which connects the 

mixer and splitter pair B and D, respectively. Slag leaching and direct carbonation 

reactions occur in splitters E and F, respectively. In Reactor 2, carbon dioxide gas 

(Stream 16) is mixed with the aqueous stream from Reactor 1 (Stream 12) in Mixer F, 
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while carbon dioxide dissolution to form carbonic acid ions takes place in Splitter G. 

Carbonic acid ions react with calcium ions in Splitter M, and precipitated calcium 

carbonate accumulates in the loop consisting of the mixer/splitter pair H/L. 

 

 

 
(a) 

 

 
(b) 

 
Fig. 2—Block diagrams of the METSIM model for (a) Reactor 1 and (b) Reactor 2, 

which are interconnected by streams 15/17 and 20/12. 
 

 

This model allows the study of  each scenario individually. For example, in 

Scenario 1 fresh water is supplied by Stream 9 to leach the slag in Reactor 1. The leached 

calcium ions are pumped by Stream 15/17 to Reactor 2, where precipitated calcium 

carbonate accumulates in Stream 26. The spent aqueous stream is discarded by Stream 22 

without flowing back to Reactor 1. Alternatively, in Scenario 4 the aqueous solution is 

recirculated by streams 15/17 and 12/20 without fresh water input in Reactor 1 or 
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solution discharge from Reactor 2. The model was used to calculate both a non-steady-

state batch type process in Reactor 1 with no fresh slag input from Stream 1 and no 

product discharge to Stream 7, and a steady-state continuous type process with fresh slag 

input and carbonate product output. Because the dissolution rate of carbon dioxide occurs 

more rapidly than slag leaching and carbonation, carbon dioxide dissolution was modeled 

using the known Henry constant with a reaction extent equal to one (equilibrium).12 

 

D. Experimental Reaction Kinetics for METSIM Modeling 

In the METSIM model, the reaction rate (F) is defined by Equation 1. The rate 

constant (K) is defined by the mass flow rate (mi/∆t) from the mixer/splitter to the phase 

splitter, where the reaction occurs with the particular value of reaction extent (RE) at each 

time step (∆t). The experimentally measured kinetic parameters for leaching and 

carbonation from earlier work were used to evaluate the factors in Equation 1.3 

 

)(REKF ×=      (1) 

 

Heterogeneous direct aqueous carbonation of slag particles was modeled for the 

batch case of Scenario 4 in order to validate the results with the experimental data. In this 

scenario, the reaction rate is limited by mass transfer through the carbonate product layer 

and decreases with time as a result of increasing thickness and density of carbonate 

layer.3 The reaction rate expression increases in complexity because the porosity of the 

product layer decreases the core of unreacted slag (with radius rc) in each particle (with 

initial radius R) shrinks. Therefore, a modified shrinking core model was used with the 

assumption that diffusivity (D) decreases as the reaction proceeded. This model is 

defined by Equations 2-5, where JA (moles/m2·s) is the flux of component A, dNA/dt 

(moles/s) is the reaction rate, ρm (moles/m3) is the molar density, and the parameter k 

(m/s) was chosen to fit the experimental data.4  

 

A
A Jr

dt
dN 24π−=−      (2) 
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dr
dCDJ A

A −=       (3) 

 

ccmA drrdN 24πρ=       (4) 

 

)(0 crRkDD −−=      (5) 

 

In this system, Equation 2 is the reaction rate as a function of surface area and 

flux, Equation 3 is the diffusion flux as a function of diffusivity and concentration 

gradient, and Equation 4 is the mass balance of component A.14 Equation 5 is the 

diffusivity as a function of carbonized layer thickness. This system of equations was 

solved numerically for three incremental time steps, each with changing diffusivity, to fit 

the experimental data for carbonation of ladle metallurgy furnace (LMF) slag with 49.9 

wt.% CaO (Slag #2, 420-590 µm).3 In Figure 3 the experimental results are compared to 

the modified shrinking core model using constant and decreasing diffusivity. CaC and 

CaS are the fractions of calcium carbonized and initial present in the slag, respectively. 

 

 

 
Fig. 3—Comparison of experimental data for slag carbonization with shrinking core 

model using constant (D=D0) and decreasing (D=D0-k(R-r)) diffusivity of the product 
layer for slag with 49.9 wt.% CaO and 420-590 µm particle size. 
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For application in the METSIM model, the experimental kinetics of the 

carbonation reaction was approximated to be a function of time (t), as shown in Equation 

6. A factor of n=⅓ resulted in an appropriate fit for the reaction conversion (CaC/CaS) 

calculated from Equations 2-5 and the experimental data. 

 

n

S

C tf
Ca
Ca )(1ln =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−      (6) 

 

For direct carbonation (Figure 4), the experimental data was fit to Equations 7 and 

8, where d is the particle diameter (mm), t is the time (min), and the coefficient A=0.0012 

was taken from correlated experimental data (Figure 4b). Equation 8 is the first derivative 

form, which represents the reaction rate (F), and was the equation used in the METSIM 

model. 

 

 

 
(a) 

 
Fig. 4—Comparison of experimental data for slag carbonization with the parameters (a) 

ln(1-CaC/CaS) and (b) d*ln(1-CaC/CaS) versus time1/3. 
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(b) 

 
Fig. 4—Comparison of experimental data for slag carbonization with the parameters (a) 

ln(1-CaC/CaS) and (b) d*ln(1-CaC/CaS) versus time1/3 (cont.). 
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A similar analysis of the calcium leaching process was undertaken using a set of 

reactions that corresponds to Scenario 1. The reaction rate changes during the leaching 

process because the initial chemical reaction limited mechanism is overtaken by diffusion 

through the porous surface layer developed during treatment.3 The difference in Equation 

9  between leaching  and carbonation (Equation 8) arises from the necessity to take into 

account the solution volume V (cm3), the calcium saturation level Csat (wt. %) for solution 

in equilibrium with solid Ca(OH)2, and the total surface area S= 6W/ρd (cm2) of slag 

particles with diameter d (cm), density ρ (g/cm3), and weight W (g) according to the batch 

test procedure. In Equation 9 CD is the concentration of dissolved calcium in solution (wt. 
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%) and the coefficient A=0.0004 was taken from the correlation of experimental data 

shown in Figure 5. The extent of calcium leaching from slag depends on slag particle size 

and particle surface conditions. Calcium from fresh slag leached twice as fast than from 

the same slag in the carbonized condition.3 Because leaching and carbonation may occur 

simultaneously in the Scenario 4 apparatus, the leaching reaction rate (Equation 9) was 

linked to the current slag carbonation level during each calculation step. 

 

 

 
Fig. 5— Comparison of experimental data for slag leaching with the parameter 

(1/S)*ln(1-CD/Csat) versus time1/3. 
 

 

( )3
1

3
2

3
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III. RESULTS AND DISCUSSION 

 

A. Model Validation with a Batch Reactor 

The METSIM model was first validated by comparing the calculated results with 

the experimental data obtained from the batch reactor tests in the previous work.3 The 

calcium leaching experiments were performed in a batch type reactor under a protective 
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argon atmosphere with unsaturated aqueous solutions, which corresponds to Scenario 1 

for Reactor 1. The METSIM modeling of the batch type reactor was conducted by 

disconnecting Reactor 1 from Reactor 2 and disregarding the feed streams. Figure 6 

compares the calculated and experimental results for the concentration of calcium 

leached (CD) from LMF Slag #2 (49.9 wt.% CaO) at two average particle sizes (60 µm 

and 200 µm). The calculated leaching results were in good agreement with the 

experimental data. Direct carbonation of the same slag was studied in a batch type reactor 

using an aqueous solution saturated by carbonic acid at one atmosphere pressure.3 This 

process was modeled using batch type Reactor 1 connected to Reactor 2 with 

continuously flowing carbon dioxide gas saturating the aqueous solution. The transport of 

calcium ions from Reactor 1 to Reactor 2 was prohibited. This approach modeled the 

experimental conditions of Scenario 3. Figure 7 shows that the experimental results for 

the amount of calcium carbonized (CaC) were in good agreement  with that predicted by 

the METSIM model for two different average particle sizes of LMF Slag #2 (60 µm and 

2800 µm). 

 

 

 
(a) 

 
Fig. 6—Comparison of experimental and calculated concentration of leached calcium 

(CD) for slag particles with (a) 60 µm and (b) 200 µm average diameter. 
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(b) 

 
Fig. 6—Comparison of experimental and calculated concentration of leached calcium 

(CD) for slag particles with (a) 60 µm and (b) 200 µm average diameter (cont.). 
 

 

 
(a) 

 
Fig. 7—Comparison of experimental and calculated results for slag carbonation (CaC) 

with (a) 60 µm and (b) 2800 µm average diameter particles. 
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(b) 

 
Fig. 7—Comparison of experimental and calculated results for slag carbonation (CaC) 

with (a) 60 µm and (b) 2800 µm average diameter particles (cont). 
 

 

B. Model Validation with Experimental Two-Stage Reactor 

The METSIM model was further validated by comparing the calculated results 

with the experimental data obtained from the two-stage reactor tests of the previous 

work.3 Scenario 4 (a batch amount of slag with recirculated non-degassed water) was 

modeled and the results compared to the experimental data for slag carbonation. Calcium 

leaching and direct slag particle carbonation were monitored simultaneously in both 

reactors. Reactor 1 contained 200 g LMF slag (<3.2 mm) in 20 liters of water, while 

Reactor 2 contained two liters of solution, through which 1.5 g/min carbon dioxide was 

bubbled. A solution exchange rate of one liter per minute was used to transfer the fluid 

between the two reactors. The experimental procedure included soaking the slag in 

Reactor 1 for 20 minutes with solution recirculation and no carbon dioxide input into 

Reactor 2. During this time, the pH increased in both reactors as Ca(OH)2 was formed. 

Shortly after introducing carbon dioxide into Reactor 2, the concentration of calcium ions 

in solution decreased, while the concentration of carbonic acid increased. The rate of pH 

decrease (Figure 8) depended on the solution residence time in Reactor 1 (20 minutes) 
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and Reactor 2 (2 min). When using ideal (equilibrium) carbon dioxide dissolution 

conditions in the Reactor 2 METSIM model, the pH neutralization time in Reactor 1 was 

shorter than experimentally measured. Reactor size and method of carbon dioxide 

injection may influence the gas dissolution efficiency because the bubbles of injected 

carbon dioxide may not completely dissolve in the two-liter volume of Reactor 2. Upon 

completion of the neutralization period, equilibrium approximation did not affect on the 

process model results. 

The reaction was allowed to proceed for 20 hours, after which the product was 

dried, sieved, and analyzed for calcium carbonation. The prevailing reaction was direct 

slag particle carbonation in Reactor 1, while a minor amount of residual precipitated 

carbonates was found in Reactor 2. A similar result was achieved using the METSIM 

simulation. The model predicted carbonate precipitation in Reactor 2 immediately after 

introducing carbon dioxide, after which direct carbonation of the slag in Reactor 1 took 

predominance. As the particle size decreased, the amount of slag carbonate product 

increased, as shown in the model results in Figure 9a. 

 

 

 
Fig. 8—Changing pH of aqueous solutions in reactors during carbonization (200 g of 
crushed <3.2 mm LMF Slag #2, 1.5 g/min flow rate carbon dioxide) based on start of 

carbon dioxide flow. 
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(a) 

 
 

 
(b) 

 
Fig.9—METSIM calculated kinetics of (a) LMF slag carbonation for several particle 

sizes and (b) comparison of calculated and experimentally measured calcium carbonate 
content after 20 hours reaction (cont.). 

 

A 1000 µm particle size produced 2% CaCO3 at 20 hours (1200 min), while 

decreasing the particle size by an order of magnitude to 100 µm produced 8% CaCO3 at 

the same time. Decreasing the particle size another half order of magnitude to 20 µm 
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resulted in 23% CaCO3. A comparison of the experimental results (Figure 9b) and 

modeled results (Figure 9a) for five particle sizes shows good agreement. 

 

C. Industrial Process Modeling 

The validated METSIM process model was used to study the four scenarios 

defined for the purpose of reactor flow schematic optimization. 

Scenario 1: The goal of Scenario 1 was to analyze the influence of slag/solution 

ratio and solution residence time in Reactor 1 on the extent of leaching only. In this 

model, slag was leached in Reactor 1 and the alkaline leachate was carbonized in Reactor 

2. LMF Slag #2 with 49.9 wt.% CaO and a monosize 200 µm distribution was used. 

During continuous operation, fresh water was input into Reactor 1, which contained a 

fixed amount of slag, while the spent leachate was discharged at the same rate from 

Reactor 2, with no water recirculated to Reactor 1. For comparison, a batch operation was 

studied using a fixed starting volume of water and slag in Reactor 1, with no water input 

or output. 

The results from this scenario are presented in Figure 10. They show that 

increasing the slag/solution ratio and the solution residence time in Reactor 1 produced a 

higher concentration of calcium ions in solution. Increasing the slag/solution ratio with 

zero water throughput (i.e., in batch mode) provided a diminishing increase in calcium 

ions in solution due to saturation of the aqueous phase (Figure 10a). For example, 

increasing the slag solution ratio by an order of magnitude from 0.08% to 0.8% results in 

an increase of Ca(OH)2 from 150 PPM to 950 PPM at 10 hours, while a further doubling 

of the slag/solution ratio to 1.6% results in a corresponding increase to 1100 PPM at the 

same time. To overcome saturation of the aqueous phase, the feed water throughput in 

Reactor 1 can be increased, which corresponds to a decrease in residence time (Figure 

10b). At a fixed slag/solution ratio of 0.8%, a 5000 minute residence time approaches the 

response of a batch system, which has a theoretical infinite residence time. As the 

residence time decreases, the resulting solution becomes less saturated and at five 

minutes the leachate is under-saturated. While minimizing the solution saturation 

provides increased driving force for Ca dissolution, it also requires a significant increase 

in feed water. The total fraction of calcium leached from the slag (ordinate axis of Figure 
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10c) is equal to the concentration of calcium in solution multiplied by the solution 

volume. The optimal residence time is therefore a balance between maximizing the 

amount leached and minimizing fresh water input. For slag with 200 µm particle 

diameter  and 0.8% slag/solution ratio, the optimal residence time is near one hour 

(Figure 10c). 

Scenario 2: This scenario minimizes fresh water input into the system by 

recirculating the leachate from Reactor 2 to Reactor 1. However, for this scenario to work 

properly, the recirculated leachate must be fully degassed to prevent carbonic acid from 

reporting to Reactor 1. Preliminary experiments with degassing the leachate by argon 

bubbling showed that full leachate degassing is difficult to achieve and the residual 

content of carbonic acid will provide direct carbonation of the slag particles in Reactor 1. 

This problem is addressed in Scenario 4. 

 

 

 
(a) 

Fig. 10—Results of METSIM model for leaching LMF Slag #2 (200 µm diameter) at 
different slag/solution ratios in (a) batch mode and (b,c) increase of Ca leaching by fresh 

water input into mix-flow type Reactor 1 with different residence times. 
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(b) 

 

 
(c) 

 
Fig. 10—Results of METSIM model for leaching LMF Slag #2 (200 µm diameter) at 

different slag/solution ratios in (a) batch mode and (b,c) increase of Ca leaching by fresh 
water input into mix-flow type Reactor 1 with different residence times. 

 

 

Scenario 3: This scenario inputs fresh water into Reactor 2 for saturation with 

carbon dioxide, then pumps the saturated water to Reactor 1 for direct reaction with slag. 
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Because this scenario requires a significant quantity of fresh water input, it was not 

modeled in this analysis. 

Scenario 4: For scale-up to an industrial process of carbon dioxide sequestration, 

continuous processing of slag through the system is desired. To meet this criteria, a 

steady-state METSIM model was set up to allow continuous feed of fresh slag to Reactor 

1 at the same rate as carbonized product was discharged from Reactor 2. Carbon dioxide 

was introduced into Reactor 2 and the aqueous solution was recirculated from Reactor 2 

to Reactor 1. As a first approximation, Reactor 1 was assumed to operate in back-mix 

mode with the composition of the discharged stream as an average for Reactor 1. The 

steady-state model was compared to a batch processing model both of which used fresh 

slag (LMF Slag #2 with 49.9 wt.% CaO). 

In batch processing mode, the amount of slag carbonation increased steadily with 

reaction time, as shown in Figure 11a. At seven days (10,800 min.) of processing in batch 

mode, ~8% carbonation was achieved using 200 μm particles. In steady-state processing 

mode and with a constant amount of slag throughput, the overall amount of carbonation 

depended on Reactor 1 slag residence time and particle size (Figure 11b). A 200 µm 

particle at seven days residence time achieved ~8% carbonation, while a 20 µm particle 

achieved ~22.5% carbonation at the same residence time. Particle size is critical. A 1.0 

mm particle achieved only ~2% carbonation at the same residence time. Increasing the 

slag residence time of Reactor 1 produces more carbonation. For a 200 μm particle, a 

two-day residence time enabled ~5% carbonation, while a twenty day residence time 

allowed ~12% carbonation. While increasing the slag residence time in Reactor 1 results 

in more carbonation, it also requires a larger reactor volume. Decreasing the slag 

residence time makes it possible to minimize the volume of Reactor 1, but results in a 

simultaneous decrease in the level of slag carbonation in the discharged product. A 

balance can be realized between particle size and reactor residence time. When working 

to achieve a specific amount of carbonation, reducing the slag particle size allows for 

reduction in reactor residence time. 
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(a) 

 

 
(b) 

Fig. 11—Comparison of batch carbonization a 200 µm particle (a) and steady-state 
continuous carbonation (b) using varying particle size of LMF Slag #2 in Reactor 1. 

 

 

IV. CONCLUSIONS 

 

METSIM process simulation software was used to model several reactor design 

scenarios for hydrous carbonate sequestration of carbon dioxide using steelmaking slag. 
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A two-stage reactor design was modeled in batch and continuous modes. The process 

allowed the introduction of water and slag into the first reactor and carbon dioxide into 

the second reactor, along with the possibility of recirculating the solution. A comparison 

of the scenarios shows that continuous calcium leaching by fresh water in the first reactor 

has the advantage of preventing the formation of a carbonate product layer on the slag 

particles, which could reduce the leaching efficiency. However, the water requirement in 

a continuous system is much higher than a recirculated system. To minimize the fresh 

water make-up, the spent leachate from the second reactor can be recirculated to the first 

reactor. The main drawback of this system is that the residual absorbed carbon dioxide in 

the recirculated water results in the formation of a calcium carbonate layer on the slag 

particles, which inhibits leaching of calcium ions. The product layer blinding effect could 

be partially overcome by increasing the slag surface area (i.e., decreasing the particle 

size), and increasing the residence time in the first reactor. The METSIM model showed 

that these two factors greatly affected the amount of calcium carbonated. The METSIM 

model was shown to be a useful tool for designing and optimizing carbon dioxide 

sequestration reactor systems based on different slag fractions and compositions.  
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ABSTRACT 

 

Batch aqueous leaching and carbonation tests were conducted using industrial 

steelmaking slags to determine their rates and the effect of carbonic anhydrase enzyme as 

a catalyst. The amount of calcium leached is a strong function of particle surface area, 

which is a more important factor than calcium oxide content. Carbonic anhydrase did not 

affect the leaching rate. The extent of calcium leaching is expressed mathematically as a 

function of time and particle size. Carbonic anhydrase catalyzed the reaction between 

calcium oxide and carbon dioxide in water to achieve a neutralization time near the 

theoretical rate. Additionally, carbonic anhydrase modified the precipitate from an 

overlapping block structure to a dendritic morphology with a smaller average particle size 

because it accelerated particle nucleation more than particle growth. The rate of 

carbonation is a strong function of pH. Time controlled tests in which the pH dropped to 

~6 resulted in a decreased amount of carbonate produced for a given time that was 

accelerated by carbonic anhydrase. pH controlled tests (>8.5) exhibited the highest rate of 

carbonation, even compared to previous testing. Because the leaching rate was ~50% 

faster than the carbonation rate, a further increase in the amount of carbonation may be 

realized by using carbonic anhydrase (but the pH must be maintained >10.33). 

 

INTRODUCTION 

 

Steelmaking slag contains high fractions of alkaline earth oxide based phases (i.e., 

CaO and MgO) that exothermically form carbonates. Thus, it is being considered as a 

means of permanent carbon dioxide sequestration. At current U.S. steel production rates, 

approximately 13-17 million tons/year of slag are generated from basic oxygen furnace 

(BOF), electric arc furnace (EAF), and ladle metallurgy furnace (LMF) processes.1 BOF 

and EAF slag is used as high quality mineral aggregate or cement clinker, while LMF 

slag, produced at ~15% the rate of BOF and EAF slags, has limited use as blast furnace 

flux or acid mine neutralization with the majority going to landfill.2 Based on slag’s 

chemical nature and immediate availability as a co-product from steel production, the 

steel industry initiated a project to investigate hydrous carbonate formation in 
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steelmaking slag as a method of sequestering carbon dioxide emitted in steelmaking 

offgas.3 The goal of this project is to determine the reactor parameters suitable for the 

design of an industrial system for treating steelmaking offgas with raw or minimally 

processed slag.  

While, thermodynamically, slag can capture 6-11% of the carbon dioxide emitted 

by integrated mills and 35-45% emitted by mini-mills, the actual reaction kinetics are 

very slow and full equilibrium may not be reached at atmospheric conditions for 3-6 

months.4 Retardation of the carbonate formation reactions is caused by binding the 

alkaline earth oxides into complex oxide phases (i.e., Ca2SiO4, Ca12Al14O33, and 

MgFe2O4) which reduces their activities, encapsulation of these complex oxides by inert 

phases (i.e., SiO2 and Al2O3), and formation of a dense product layer (i.e., CaCO3) upon 

initial carbonation that inhibits diffusion of the reacting species.1 Therefore, the primary 

focus of this investigation is to improve the process kinetics of carbonate formation from 

the alkaline earth oxide phases. 

Both physical and chemical methods of improving the reaction kinetics for large-

scale mineral deposit based sequestration systems have been investigated. These efforts 

have primarily focused on geologic features containing serpentine, olivine, and 

wollastonite, but the results are directly applicable to slag based sequestration.5-7 Physical 

methods include increasing temperature and/or carbon dioxide partial pressure to enhance 

diffusion rates, pre-treating particles through grinding or acid leaching to increase surface 

area, and exfoliation of the product layer by high shear/abrasive reactors. High-pressure 

high-temperature (HPHT) processes require autoclave-based reactors and are not feasible 

for large scale processing of commodity priced slag. Only grinding pre-treatment (with 

associated metal recovery) was deemed an appropriate physical method for improving the 

kinetic reaction rate.2 Slag leaching and carbonation studies showed that particle size is a 

controlling factor for the conversion of calcium oxide in slag.1 Physical methods alone 

cannot achieve industrial scale rates; therefore, improvements to the process chemistry 

are required. Chemical enhancements have primarily focused on aqueous based 

processing, which has a much higher inherent reaction rate than gas-solid reactions. 

Additives to the aqueous slurry include NaCl, NaHCO3, citric acid, or EDTA.5-8 These 
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additives have moderately improved the carbonation rates, but only when used in HPHT 

systems.  

The current work seeks to investigate a catalytic additive for calcium carbonate 

precipitation in aqueous systems operating under atmospheric conditions. The use of 

purified carbonic anhydrase in a biomimetic-based industrial scale carbon dioxide 

sequestration process has been proposed by Bond et al.9 Carbonic anhydrase is an 

enzyme found in animals, plants, algae, and bacteria that catalyzes a wide range of 

metabolic functions including respiration, photosynthesis, and calcium carbonate 

formation (in both avian shell and mollusk nacre). Carbonic anhydrase (CA) is of interest 

for sequestration as it catalyzes the reversible hydration of carbon dioxide at or near the 

diffusion-controlled limit. One molecule of the CA II (an isozyme of carbonic anhydrase) 

can hydrate 1.4x106 molecules of CO2 per second, which is equivalent to processing 

more than 2 million m3/min of carbon dioxide (at atmospheric conditions) with one mole 

of CA II. 

Bond et al. have focused on designing a system to sequester carbon dioxide 

emitted by large-scale thermal power plants. While purified carbonic anhydrase is 

available commercially (e.g., bovine erythrocytes carbonic anhydrase [BCA] from 

Sigma-Aldrich Co.), this form may be too cost prohibitive for industrial use. Bond et al. 

have identified less costly sources such as plant extracts9 and bacterial overexpression10. 

The latter method can produce carbonic anhydrase at a rate similar to that used to 

produce inexpensive commercial detergent enzymes. Also, because carbonic anhydrase is 

water soluble, Bond et al. have focused on immobilizing the enzyme into chitosan-

alginate beads that maintain accelerated carbonate formation through fifteen cycles, thus 

demonstrating an effective way to minimize enzyme loss.11 BCA showed no denaturing 

up to 70°C in the presence of SOx and NOx contaminants at levels expected in normal 

power plant exhaust gas, so it should be sufficiently robust for industrial scale use.12 In 

their system concept, Bond et al. have assumed a sufficient cation (i.e., Ca2+) source is 

available for reaction with the hydrated carbon dioxide to form calcium carbonate. They 

have investigated seawater, well brines, and produced water (a byproduct of oil wells).13 

These water sources are feasible, but their low calcium ion concentrations require 

buffering (pH~8.5) to maintain high carbonate precipitation rates.  
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Carbonic anhydrase assisted slag-based carbon dioxide sequestration must be 

considered in both the rate of cation leaching from slag and the subsequent precipitation 

of calcium carbonate. Previous aqueous kinetic studies of slag showed that leaching 

occurs faster than carbonation, but both processes are inhibited by the calcium carbonate 

product layer.1 The leaching rate is governed by the rate of calcium (complex) oxide 

dissolution and the tortuous porous surface layer of the slag particle. The dissolution rate 

may be increased with temperature and the porous layer effect may be reduced in 

proportion to particle size. Carbonic anhydrase has been shown to increase the release 

rate of Ca2+ from limestone by a factor of 11.7, so it may assist in cation release from slag 

particles.14 The carbonation rate is governed by product layer diffusion, and any 

mechanism that can increase the diffusivity of the reacting species through this layer, or 

remove this layer to continually expose fresh surface, will improve the carbonation 

kinetics. As shown by Bond et al.9-12 and Mirjafari et al.15, carbonic anhydrase greatly 

improves the precipitation rate of calcium carbonate and thus, may affect the growth rate 

or morphology of the product layer on a slag particle during carbonation. This project 

investigates the role of carbonic anhydrase in assisting cation leaching or carbonate 

formation in an aqueous carbon dioxide sequestration system using steelmaking slag. 

 

CARBONIC ANHYDRASE MECHANISM 

 

Aqueous sequestration of carbon dioxide produces calcium carbonate through the 

reaction of calcium ions and aqueous carbon dioxide. First, gaseous carbon dioxide 

dissolves into water, as shown in Reaction 1, then aqueous carbon dioxide reacts with 

water to form carbonic acid, as shown in Reaction 2. 

 

)(2)(2 aqg COCO ↔       (1) 

 

32
2

2)(2 COHOHCO k
aq ⎯→⎯+      (2) 
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Carbonic acid dissociates into bicarbonate and carbonate ions, as shown in 

Reactions 3 and 4. 

 
−+ +⎯→⎯ 3

3
32 HCOHCOH k      (3) 

 
−+− +→ 2

33 COHHCO       (4) 

 

Calcium carbonate is formed by a reaction between the resulting carbonate ions 

and calcium cations in solution. Because calcium carbonate is semi-soluble in water, it 

precipitates as shown in Reaction 5. 

 

↓↔+ −+
3

2
3

2 CaCOCOCa      (5) 

 

In Reactions 1 through 5, the rate-controlling step of fixing gaseous carbon 

dioxide into carbonate ions is the hydration of carbon dioxide (Reaction 2).9,15 The 

forward rate constant of Reaction 2 (k2) is 0.062 s-1 at 25°C, whereas the formation of the 

bicarbonate ion (Reaction 3) is very rapid (k3=8x106 s-1), its rate being virtually diffusion 

controlled. Carbonic anhydrase catalyzes Reaction 2 to accelerate the precipitation of 

calcium carbonate. 

The presence of carbonic anhydrase enzyme changes the mechanism of carbon 

dioxide hydration. Activation energies for hydrating carbon dioxide have values of 14.7 

kJ/mol for hydration by H2O and 6.0 kcal/mol for hydration by CA II, respectively.9 The 

CA-catalyzed reaction pathway for the hydration of carbon dioxide in Reactions 6 

through 8 replaces Reaction 2 above and significantly enhances the overall reaction rate. 

Carbonic anhydrase is a zinc metalloenzyme. In these reactions, E represents the enzyme 

and Zn the zinc ion at the enzyme active site. 

 
+− +↔⋅ HEZnOHOZnHE 2      (6) 

 
−− ↔+⋅ 32 EZnHCOCOZnOHE     (7) 
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−− +↔+⋅ 3223 HCOOEZnHOHZnHCOE    (8) 

 

The suggested enzyme operating mechanism for the catalysis of carbon dioxide 

hydration is the nucleophilic attack on the carbon atom by zinc-bound OH- to produce 

bicarbonate, which is then displaced by a water molecule.15 

 

MATERIAL CHARACTERIZATION AND EXPERIMENTAL PROCEDURE 

 

Three industrial slag samples were selected for use in leaching and carbonation 

tests. Raw slag samples were collected from BOF, EAF, and LMF steelmaking facilities 

and stored in a sealed container with a desiccant until each test commenced. Physical and 

chemical characterization on each slag sample was undertaken in an effort to understand 

the nature of the starting material. 

A portion of each slag sample was divided by splitting and then analyzed by x-ray 

fluorescence (XRF) for chemical composition and x-ray diffraction (XRD) for phase 

identification. Another portion was ground to <106 μm and analyzed by helium 

pycnometry to determine its true density. The grindability of each slag was measured as 

part of a separate study to determine the work index values for each slag sample.2 Table 1 

lists the results from the chemical and physical characterization analyses. The XRD 

results are discussed in subsequent sections.  

 

 

Table 1.  Chemical and Physical Properties of Steelmaking Slags Studied 

 BOF EAF LMF 
XRF Comp. (wt.%)    
    CaO 40.9 35.9 50.0 
    SiO2 12.9 9.9 4.3 
    FeO 21.7 28.0 6.3 
    MgO 12.0 10.1 4.5 
    Al2O3 5.2 9.2 32.3 
    MnO 4.7 4.3 0.9 
Density (kg/m3) 3614 3822 3069 
Work Index (kWh/st) 21.4 19.9 13.8 
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Each slag contained a high fraction of calcium. Approximately one-half of the 

volume of the LMF slag was composed of lime containing phases. BOF and EAF slags 

contained a much higher fraction of iron oxide, which reflects their processing history. 

The turbulence of BOF and EAF processes results in more entrained iron oxide (and 

metallic iron) compared to LMF slag. This particular LMF slag had a very high alumina 

content, which resulted from the deoxidation process used at the mill from which it was 

collected. The higher iron oxide and manganese oxide levels in BOF and EAF slags lead 

to their greater density than LMF slag. Additionally, BOF and EAF slags require 40-50% 

more energy (kWh/st) for grinding than LMF slag. This greater energy requirement can 

also be correlated to the iron and manganese oxide contents.  

Scanning electron microscopy (SEM) analysis was used to observe the slag 

surface morphology through the various test stages. As a baseline, slag particles obtained 

in the “raw” as-ground state were imaged after each grindability test. Figure 1 shows the 

surface structure of BOF, EAF, and LMF slag particles obtained from a 90-106 μm sieve 

fraction.  

Particles of EAF and LMF slags show smooth surfaces characteristic of brittle 

fracture from a glassy material, while BOF slag shows a much more irregular surface that 

is covered with grinding debris. Similar surface features were observed for particles in 

the 150-212 μm and 500-600 μm fractions. The specific surface area of raw and leached 

samples was measured using Brunauer-Emmett-Teller (BET) analysis using nitrogen gas. 

The raw samples were washed with dehydration alcohol before the surface area analysis 

to remove any grinding debris. The specific surface area of the 90-106 μm fraction of 

LMF slag was 0.12 m2/g. Those of the same size fractions of EAF and BOF slags were 

significantly higher at 0.29 m2/g (134%) and 1.09 m2/g (776%), respectively. The 150-

212 μm and 500-600 μm size fractions showed similar corresponding increases in surface 

area, indicating that EAF and BOF slags have a much higher surface areas for leaching 

due to higher porosity. Supersonic oxygen jets blow on the surface of EAF and BOF 

slags, forming an emulsion, and entraining gas bubbles and liquid steel drops in the slag 

matrix, which results in solidified slag with high porosity and iron content. The ladle 

metallurgy process is more quiescent, typically employing argon bottom stirring, which 

leads to less gas and metal entrainment in the slag.   
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(c) 

Figure 1.  SEM images of as-ground “raw” (a) BOF, (b) EAF, and (c) LMF slag particles 
obtained from 90-106 μm sieve fraction 

 

 

Leaching studies were conducted using individual batch reactors. Each (ground) 

slag sample was sieved to obtain 45-53 μm, 90-106 μm, 150-212 μm, 500-600 μm, and 

800-1180 μm size fractions. Seventy-five milligrams from each size fraction of each slag 

was added to a sterilized 50 ml polypropylene tube, which served as the leaching reactor. 

Fifty milliliters of distilled-deionized (DD) water (18.0 MΩ resistivity) was added to each 

reactor based on gravimetric analysis. For the initial LMF slag leaching tests (water only) 

2 wt.% TES (2-[(2-hydroxy-1,1-bis(hydroxy-185-methyl)ethyl)amino]ethanesulfonic 

acid) pH buffer was added to the reactor. For LMF leaching tests with BCA and the BOF 
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and EAF tests, the amount of TES buffer was reduced to 1 wt.%. Each reactor was 

sealed, placed in a wrist-action shaker, and shaken for a prescribe period of time (1-1440 

minutes) to prevent boundary layer concentration build-up of the leaching species. At the 

end of each test, a 10 ml aliquot was drawn off through a 0.45 μm filter using a syringe. 

The aliquot was placed into a separate 15 ml polypropylene sample tube to which 1 vol.% 

nitric acid was added to prevent metal precipitation. Each sample was analyzed using 

inductively coupled plasma optical emission spectroscopy (ICP-OES) to determine the 

calcium, magnesium, and iron concentrations. Method blanks containing DD water with 

TES buffer and nitric acid were prepared at each run for baseline metal measurement by 

ICP-OES. The ICP-OES was calibrated at 2, 20, 100, and 200 mg/L for each element 

(Ca, Mg, and Fe), and the results yielded a minimum detection limit of 0.3 mg/L and 

measurement error of 1%. Using the concentrations of Ca, Mg, and Fe in the original slag 

samples, the percent leached could be determined. For the leaching tests using BCA, a 

10x stock solution of bovine erythrocyte carbonic anhydrase (Sigma-Aldrich Co.) was 

prepared using Tris-EDTA solution (2.5 mg BCA in 25 ml of TE). This solution was kept 

at 4°C until required for the leaching test. One milliliter of the stock solution was added 

to the 50 ml reactor, which produced a 66.6 nM concentration of BCA. This 

concentration matches that used by Bond et al. in their BCA studies.9 Leached samples 

were analyzed for specific surface area using BET analysis and for morphology using 

SEM analysis.  

Carbonation tests were conducted in a 500 ml spherical glass 3-hole flask placed 

on a mixing plate. For each test, 400 ml of water was added, into which argon or carbon 

dioxide gas was bubbled through a glass frit sparger introduced into the top hole. 

Separate pH and temperature probes were introduced through another entry hole, leaving 

the third-hole open for adding the powdered sample. Argon gas was bubbled through the 

water while a magnetic bar stirred the solution for ten minutes prior to the start of each 

test. Slag carbonation was conducted by adding 3000 mg of slag to the reactor. The slurry 

was mixed for five minutes with argon bubbling and the pH was measured continually. 

After five minutes of leaching, carbon dioxide was introduced through the sparger for a 

prescribed period of time (5-360 minutes). The slurry was mixed by the stir bar 

throughout the entire process. Upon completion of the reaction time, the sparger, pH 
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probe, and temperature probe were removed. The mixture was (vacuum) filtered through 

11 μm paper and oven dried. The dried samples were placed into plastic bags and stored 

in a desiccant cabinet. Tests using 66.6 nM concentration of BCA were formed by adding 

8 ml of 10x stock solution. A photograph of the test setup is shown in Figure 2. 

 

 

 
Figure 2.  Carbonation test apparatus using 3-hole flask; pH and temperature probes at 

left and glass frit sparger for gas introduced at the top 
 

 

Two sets of carbonation tests were conducted. The first set was time based and 

used no buffer in the solution. Tests ran for a prescribed time, regardless of the solution 

pH. As carbonate speciation is a function of pH, a second set of tests used a buffer to 

maintain an alkaline pH. The buffer used was CAPS (3-Cyclohexylamino-1-

propanesulfonic acid) titrated with sodium hydroxide to an initial pH of 10.5. Instead of a 

prescribed test time, each test was conducted until the pH dropped to 8.5. Increasing the 

buffer concentration (0.0-0.200 M) allowed for longer test duration.  

Carbonated samples were analyzed for surface morphology and composition 

using SEM and energy dispersive x-ray spectroscopy (EDS). The hydroxide and 

carbonate content of each carbonated sample was measured by thermogravimetric 
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analysis (TGA) in argon to 920°C. Weight loss at <600°C indicated hydroxide content, 

while weight loss >600°C indicated carbonate content.  

Bond et al. recommends a spectrophotometric assay using the enzyme-mediated 

hydrolysis of para-nitrophenyl acetate (p-NPA) to monitor the activity of carbonic 

anhydrase.12 As a first-order approximation, however, neutralization of CaO was used to 

measure the activity of the BCA 10x stock solution. This method used the same 

procedure as the carbonation tests, but only 300 mg of reagent grade CaO was added to 

the 400 ml of DD water. The solution was argon sparged and stirred for 15 minutes until 

all lime was dissolved. The pH was measured continually throughout the test. Carbon 

dioxide was introduced and the time to reach a pH of 7.0 (neutralization) was measured. 

This test was conducted in DD water only (0.0 nM BCA) and at four BCA concentrations 

(16.7, 33.3, 66.6, and 83.3 nM). The results are compared to the theoretical neutralization 

curve determined by FactSage™ Ver. 5.5 thermodynamic software in Figure 3.  

Neutralization of the alkaline solution with no BCA took place in just under six 

minutes (356 seconds). A one-quarter dose (16.7 nM) of BCA resulted in neutralization 

64% lower than the theoretical time (239 seconds). Increasing the concentration to 33.3 

nM, 66.6 nM, and 83.3 nM concentrations resulted in neutralization times near the 

theoretical limit. These 0.5, 1.0, and 1.25 dosage rate concentrations resulted in 

neutralization times that were 3.5%, 2.3%, and 1.7% over the theoretical time, 

respectively. Based on these results, the stock solution of BCA was deemed active and 

the 66.6 nM concentration was chosen for all subsequent tests to correlate with the 

published data. 

 

LEACHING RESULTS AND DISCUSSION 

 

The three slag types all exhibited calcium leaching directly related to time and 

indirectly related to particle size. Figure 4 shows the calcium leaching curves for LMF 

slag at five particle sizes. The leaching of calcium provided the best straight-line 

proportionality on a log-normal scale. 
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Figure 3.  pH neutralization curves for CaO-CO2-H2O at varying concentrations of 

bovine carbonic anhydrase 
 

 

 
Figure 4.  Calcium leaching from LMF slag with time at five particle size fractions 

 

 

Curve fits of all particle size fractions >90 μm showed parallel proportionality 

with time. The overall amount leached with the >90 μm particles was low with a 

maximum of ~11% leached at 24 hours. The 45-53 μm size fraction exhibited a different 

slope of the proportionality and the interim points showed no change in leaching, but the 
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final point was much higher at 23-30% at 18-24 hours. Observation of the leached 

material showed that all particles >90 μm remained free flowing in the reactor, but the 

45-53 μm particles had agglomerated together as a result of a chemical reaction. Because 

they had to be scraped from the reactor tube, these particles were not turbulently mixed to 

prevent boundary layer formation. Phase maps produced from EDS analysis of raw LMF 

slag particles (850-1180 μm fraction) showed equal distribution of 20-80 μm Fe and Ca 

rich regions. Magnesium was associated with the Fe while Si was associated with the Ca. 

Aluminum was located between the Fe and Ca rich regions. EDS analysis of the leached 

particles showed increased Al and Si concentrations in their respective regions. The same 

type of analysis on particles from the 45-53 μm fraction showed that the surface of the 

leached agglomerate contained mostly Al and Si with very little Fe, Ca, or Mg present. 

Calcium leaching curves for three particle sizes of BOF and EAF slag are 

presented in Figure 5. Both slags show similar magnitude and proportionality of the 

amount of calcium leached by particle size. The overall amount of calcium leached is 

significantly higher than that exhibited by the LMF slag. These two slags showed five 

times the amount of calcium leached at 18 hours for the 90-106 μm size fraction than in 

the LMF slag. 

While the BOF slag showed a greater amount of calcium leached in proportion to 

the amount of CaO present, than did the EAF slag (Table 1), both slags greatly surpassed 

the amount leached from LMF slag, which had the largest amount of calcium oxide. EDS 

analysis of leached BOF slag particles (90-106 μm fraction) showed alternating regions 

rich in Si and Mg and a high amount of Fe present throughout. 

BCA added to the leaching solution had no affect on the amount of calcium 

leached from LMF slag (BCA was not tested with BOF or EAF slag). Figure 6 shows the 

calcium leaching curves for two particle size fractions (90-106 μm and 500-600 μm) of 

LMF slag with and without BCA in the leaching solution.  

The amount of calcium leached under both conditions is nearly identical and no 

significant difference could be measured. The amount of Mg and Fe leached showed the 

same trend with no significant difference measured. Because BCA is a carbon dioxide 

active catalyst and leaching took place in the absence of this component, it had no effect 

on the leaching rate. The effect of BCA on the release of Ca2+ from limestone as reported 
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by Li et al.14 is attributed to the carbonate present in the parent mineral. Carbonic 

anhydrase catalyzes Reaction 2 by replacing it with Reactions 6 through 8. These 

reactions reverse when gaseous carbon dioxide is absent. By means of this reverse 

reaction, carbon dioxide and calcium ions are released from the carbonate mineral. 

Because raw slag contains no carbonate material, BCA had no species on which to act 

rendering it inert in regards to Ca, Mg, or Fe leaching.  

 

 

 

 

 

 

 

 

 

 

(a)      (b) 

Figure 5.  Calcium leaching curves for (a) BOF and (b) EAF slags at three particle size 
fractions 

 

 

Ca, Mg, and Fe leaching for the 90-106 μm fraction of LMF slag are compared in 

Figure 7. The leaching curves for Mg and Fe fit the best linear proportionality on a log-

log scale.  

The amounts of Mg and Fe leached showed very similar trends. Approximately 

20% of each element was leached after 24 hours. Up to six hours, the amount of calcium 

leached on a percentage basis was higher than Mg or Fe. However, after six hours, the 

magnesium and iron leached at higher percentages than calcium. The other size fractions 

showed similar trends. LMF slag contained much lower fractions of magnesium and iron 

oxides than did BOF and EAF slags, yet the amount of Mg and Fe leached (on a 

percentage basis) was higher than calcium after six hours.  
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Figure 6.  Calcium leaching from LMF slag with and without the addition of BCA to the 

leaching solution 
 

 

 
Figure 7.  Leaching curve for Ca, Mg, and Fe from LMF slag particles in the 90-106 μm 

fraction 
 

 

A possible explanation for the lower calcium leaching in LMF slag is that much 

of the calcium is bound as an inert complex oxide, while magnesium and iron are more 

available for dissolution. The high total fraction of calcium provides some free calcia, 
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which dissolves rapidly, providing an initial higher rate. As the free calcia is consumed, 

the resultant inert layer prevents further calcium leaching allowing magnesium and iron 

to dissolve even at lower concentrations. 

BOF and EAF slags show very different magnesium and iron leaching 

relationships than those of LMF slag. Figure 8 shows the leaching curves for BOF and 

EAF slag particles in the 90-106 μm size fractions. The amount of calcium leached is 

significantly higher than LMF slag, as noted previously. The amount of Mg is lower than 

in LMF slag, even though BOF and EAF slags have a much higher starting fraction of 

these elements. The amount of magnesium leached at 18 hours for BOF slag was ~7%, 

which is one third that of LMF slag, while EAF slag barely reached 1% magnesium 

leaching after the same duration. The amount of iron leached by both slags was too low 

to report (<0.01%) at all times and all size fractions. While these values represent the 

percent of each element leached, the resulting concentration in solution will also depend 

on the amount initially present in the slag. BOF and EAF slags have two to three times 

the initial amount of MgO of LMF slag, so they may achieve the same concentration in 

solution even though the percentage leached is less. 

 

 

 

 

 

 

 

 
 
 
 

Figure 8.  Calcium and magnesium leaching curves for the 90-106 μm size fraction of (a) 
BOF and (b) EAF slags 

 

 

The difference between leaching amounts for BOF and EAF slag and LMF slag 

can be understood from their surface morphologies, specific surface areas, and phase 
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analyses. Surface morphology was observed through SEM analysis of the leached slag 

particles. Figure 9 shows particles from the 90-106 μm size fraction of BOF and EAF 

slag after 18 hours leaching and of LMF slag after 24 hours leaching.  

The BOF slag particles show very deep, interconnected leaching pores extending 

up to 25% into the particle. EAF slag showed a high increase in surface porosity, but its 

pores were less connected and extended up to 10% into the particle. Leaching of LMF 

slag was more selective with some particles showing morphology similar to EAF slag 

and some particles showing no leaching at all. The distribution of leachable material was 

more extended and connected in BOF slag, while LMF slag contained a high fraction of 

inert material. EAF particle morphology fell between these two extremes. Table 2 shows 

the specific surface area for the raw and leached particles of the three slag samples at two 

size fractions. The increased porosity in the raw and leached particles is shown by 

specific surface area analysis. Raw BOF slag has approximately 9-10 times the specific 

surface area of LMF slag and up to four times the specific surface area after leaching. 

EAF slag specific surface area values lie closer to LMF slag before leaching and closer to 

BOF slag after leaching. The increased porosity of BOF and EAF slag leads to higher 

specific surface areas, which support a higher leaching rate than in LMF slag.                  

 

 

 

 

 

 

 

 

 

 

 

(a)         (b) 

 
Figure 9.  Particles of (a) BOF and (b) EAF slag after 18 hours aqueous leaching, and (c) 

LMF slag after 24 hours leaching (all particles from the 90-106 μm size fraction) 
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(c) 

Figure 9.  Particles of (a) BOF and (b) EAF slag after 18 hours aqueous leaching, and (c) 
LMF slag after 24 hours leaching (all particles from the 90-106 μm size fraction), (cont.) 
 

 

Table 2.  Effect of Leaching on Specific Surface Area 

Specific Surface 
Area (m2/g) 

BOF EAF LMF 

90-106 μm fraction    
     Raw (post-grind) 1.09 0.292 0.125 
     Post-Leach 16.76 13.37 4.87 
500-600 μm fraction  
     Raw (post-grind) 0.997 0.145 0.086 
     Post-Leach 10.86 7.65 6.18 

 

 

XRD analysis primarily identified complex oxide phases in the three slag 

samples. BOF slag contained Ca2SiO4, (Mg,Fe)O, and Ca2Al2SiO7; EAF slag contained 

Ca2SiO4 and FeO; and LMF slag contained Ca12Al14O33 and Al2O3. The calcium in BOF 

and EAF slags is primarily combined in a 2:1 ratio with silica (2CaO·SiO2), which is a 

short complex oxide with a relatively high degree of ionic bonding. The calcia in LMF 

slag is combined in a 12:7 ratio with alumina (Ca12Al14O33), which is a more extensive 

complex oxide with a lower degree of ionic bonding. The lesser degree of ionicity 

reduces the calcium leachability in LMF slag. The combination of low specific surface 
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area and lower calcium bond iconicity results in an overall lower calcium-leaching rate 

for LMF slag.  

The leaching curves for calcium all follow similar trends based on particle size 

and time, and can be approximated by a common function for each slag. The general 

approximation is shown in Equation 9 and the equation constants are given in Table 3. 

The weight percent of calcium leached (mCa) is a function of the particle diameter (dp in 

μm) and time (t in minutes). The values A-D are equation constants for each slag type. 

 

( ) ( ) ( )DpdCB
pCa tdAm =      (9) 

 

 

Table 3.  Calcium Leaching Constants for Equation 9 

 A B C D 
BOF 1110.4 -0.997 0.0568 0.3228 
EAF 642.27 -0.918 0.1029 0.2103 
LMF 68.306 -0.66 0.046 0.302 

 

 

CARBONATION RESULTS AND DISCUSSION 

 

The first set of slag carbonation tests compared the neutralization time for the 

three slag samples at the same particle size range without solution buffering. Figure 10 

shows the neutralization curves for the 90-106 μm size fractions of LMF, BOF, and EAF 

slags. In each test, the slag was allowed to leach for five minutes before carbon dioxide 

was introduced. The maximum pH values and neutralization times appear to trend 

opposite to that shown by the leaching results. LMF slag exhibited a higher initial pH 

than BOF or EAF slags, indicating that more Ca2+ was released during the initial five 

minutes of leaching. Also the neutralization time for LMF slag was 65-75% longer than 

the neutralization times of EAF and BOF slags indicating that more Ca2+ was released 

over a longer time. Based on the data obtained from this simple test, the results cannot be 

compared to the leaching test.  
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Figure 10.  Neutralization curves for the 90-106 μm particle size fraction of LMF, BOF, 

and EAF slag 
 

 

After the five-minute carbonation test, particles of each slag were analyzed in the 

SEM for surface morphology. Figure 11 shows the surface of particles from the 90-106 

μm size fraction of BOF and LMF slags. The BOF particle (Figure 11a) shows small 

nucleates of a precipitating material distributed across its surface. EDS analysis indicates 

that the particles consist primarily of calcium. The difference between Ca(OH)2 and 

CaCO3 cannot be discerned because the particles are carbon coated. Figure 11b is a close-

up of the LMF slag and shows the particles to be overlapping blocky plates of very 

narrow size distribution (2-3 μm). These particles were produced after introducing carbon 

dioxide into the aqueous leachate; therefore, it is assumed they are primarily formed from 

calcium carbonate. 

Longer-term carbonation tests were conducted using BOF slag particles in the 90-

106 μm size fraction. These tests were conducted for one and six hours with and without 

BCA added to the aqueous system. Figure 12 shows the early neutralization portion of 

the pH curve for the one-hour test. Carbon dioxide was bubbled into the mixture for a 

total of one hour but neutralization took place in a few minutes. 
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(a)      (b) 

Figure 11.  Morphology of calcium carbonate formed on surface (a) BOF and (b) LMF 
slag particles after five minutes of carbonation (particles from 90-106 μm fraction) 

 

 

 
Figure 12.  Neutralization curves for BOF slag (90-106 μm fraction) with and without 

BCA enzyme 
 

 

BCA added to the aqueous mixture reduced the neutralization time by ~50% 

indicating that calcium was precipitating from solution faster. However, the terminal pH 

values were lower without BCA (pH=5.7) than with BCA (pH=6.0), indicating that, 
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overall, less calcium was precipitating into solution in the presence of the enzyme. Figure 

13 shows SEM images of BOF slag particles (90-106 μm fraction) after one hour of 

carbonation.  

 

 

 

 

 

 

 

 

 

 

        

(a)       (b) 

 

 

 

 

      (c)       (d) 

Figure 13.  BOF slag particles (90-106 μm fraction) after one hour carbonation (a,b) 
without BCA and (c,d) with BCA added to the aqueous mixture 

 

 

Figure 13a shows that, after one-hour carbonation without BCA, the slag particle 

was evenly coated with evenly sized granular precipitates that covered the particle with a 

regular spacing. Increasing the magnification (Figure 13b) revealed semi-blocky particles 
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with straight regular sides. Overlapping plates or ledges can be seen on some particles. 

The majority of the particles are 2-3 μm in diameter with some 0.5 μm particles scattered 

throughout. The morphology of the BCA-assisted precipitate coating (shown in Figure 

13c) is less regular with granular particles that are heterogeneously distributed with 

several large pores indicating less even precipitate growth. Increased magnification 

(Figure 13d) showed the particles to be more dendritic in construction and less evenly 

distributed. While some 2 μm particles can be seen, most of the precipitates are <0.5 μm 

in diameter. BCA increased the rate of nucleation, resulting in a higher population of 

smaller nucleates. More nucleation events occurred on the existing precipitates, resulting 

in an irregular agglomeration of small nucleates as opposed to growth of the initial 

nucleating particles. The result should be a less dense precipitate layer containing 

interconnected pores. This morphology should allow continued carbonation as the layer 

thickens because the decreased structure density has a higher diffusion rate than does a 

fully dense product layer. 

Thermogravimetric analysis was used to determine the amount of calcium 

hydroxide and calcium carbonate produced during the carbonation tests. Results of these 

tests are shown in Table 4.  

 

 

Table 4.  Carbonation Results with 90-106 μm Size Fraction Slag Particles 

Slag 
Type 

Reaction 
Time (min) 

Water Only W/ BCA 

  Wt.% 
Hydr. 

Wt.% 
Carb. 

Wt.% 
Hydr. 

Wt.% 
Carb. 

EAF 0 (raw) 0.71% 0.00% 0.71% 0.00% 
EAF 5 0.70% 0.00% - - 
LMF 0 (raw) 0.00% 0.04% 0.00% 0.04% 
LMF 5 1.98% 0.24% - - 
BOF 0 (raw) 3.20% 0.09% 3.20% 0.09% 
BOF 5 1.02% 3.98% - - 
BOF 60 1.75% 2.31% 1.94% 1.31% 
BOF 360 2.90% 1.74% 4.78% 0.77% 
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The raw slag material contained varying amounts of hydroxide and carbonate. 

BOF slag started with the most hydroxide at 3.2 wt.%, while EAF slag had 0.71 wt.% and 

LMF slag had none. All of the slags had <0.1 wt.% carbonate in the raw state. Of the 

three slags, BOF slag had the most product material from handling and storage, showing 

it was the most reactive slag (corresponding to the leaching results). The EAF and LMF 

slags showed different results after the five-minute carbonation test. The hydroxide and 

carbonate amounts of EAF slag did not change, while both products increased for LMF 

slag. The results of the BOF test are the most intriguing. In the raw state the hydroxide 

amount was 3.2 wt.%, while the carbonate amount was near zero. After five minutes of 

the carbonation test, the hydroxide amount decreased to one-third the level, while the 

carbonate amount increased to nearly 4 wt.%. This result was more than twice the amount 

of carbonation achieved in previous carbonation tests with LMF and EAF slag at five 

minutes.1 However, as the carbonation test proceeded to longer times the amount of 

hydroxide increased and the amount of carbonate decreased, contrary to the desired 

effect. These results were exaggerated with the use of BCA at each time. The most 

hydroxide and the least carbonate were achieved with BCA at six hours carbonation.  

These results show the need for pH control when precipitating calcium carbonate. 

A significant portion of the five minute carbonation tests with the three slags took place 

at pH>7 (43% for BOF, 47% for EAF, and 74% for LMF). However, for the one and six 

hour tests, the slag (w/precipitate) was exposed to low pH (pH=5.7 for water only and 

pH=6.1 for BCA tests) for most of the test period (>97% of the time for the one hour test 

and >99.9% of the time for the six hour test). The carbonate ion is most abundant at 

pH>10.33 and is almost non-existent at ph<8.4, as shown in Figure 14, which illustrates 

the speciation of carbonate as a function of pH based on thermodynamic analysis. 

As the carbonate ion is required to react with Ca2+ for calcium carbonate 

precipitation, allowing the pH to drop to the 5.7-6.1 level reduced the activity of this 

specie in the system to extremely low levels. At the pH range of 5.7-6.1, the most 

abundant carbonate specie is aqueous CO2. Calcium carbonate is generated in the first 

few minutes of each carbonate test when the pH is high. As the pH drops, the carbonate 

species equilibrium shifts such that calcium carbonate species are robbed of CO2 to 

maintain a high concentration of aqueous CO2 in the system. Removing CO2 from 
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calcium carbonate frees up the calcium, which then precipitates as calcium hydroxide. 

This effect is magnified with the use of BCA, which catalyzes the reversible carbon 

dioxide hydration reaction, thus increasing the rate at which CO2 is robbed from calcium 

carbonate. To produce a large amount of calcium carbonate, the solution pH should be 

maintained at a value of at least 8.5. 

 

 

 
Figure 14.  Predominance of carbonate species as a function of pH 

 

 

The second set of carbonation tests was conducted to maintain a pH of above 8.5. 

A CAPS buffer was used to allow increased test length at higher pH. Several tests were 

conducted with and without BCA added. Figure 15 compares the carbonation results for 

BOF slag in water only, buffer, and buffer with BCA condition to EAF and LMF 

carbonation results from previous test work. 

The water-only leaching results for BOF slag (“BOF, Water”) from the time 

controlled tests show a decrease in carbonation due to low pH. The amounts of 

carbonation when the pH was kept >8.5 are shown as “BOF, Buffer” and “BOF, Buffer, 

BCA”. Both sets of results show increasing carbonation with time and at a much higher 

magnitude than those of the time controlled tests. The highest amount of carbonation 

results from simple pH control without the BCA enzyme. Greater than 16% carbonation 
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was achieved in 13.25 minutes. Extrapolation of this rate yields 47% carbonation at 24 

hours. The addition of BCA to the solution slightly decreased the amount of carbonation, 

but increased the amount of hydroxide formed. At 8.5 pH the carbonate ion is still 

present, but the bicarbonate ion is the dominant species. The effect of BCA is so rapid 

that it pulls the carbonate species towards equilibrium and begins to rob calcium 

carbonate even at 8.5 pH. To realize the full potential of the BCA enzyme in this system, 

a pH of at least 10.33 must be maintained. Comparing of the buffered test results to data 

from previous EAF and LMF carbonation tests1 shows that a significantly higher amount 

of carbonation was achieved. These previous EAF and LMF tests were conducted at 

prescribed times and did not use pH buffer control, but a higher slag/water ratio (30 g 

slag/250 ml water) was used. This ratio produced a higher concentration of Ca2+ in 

solution, thus maintaining a higher pH for a longer time. For batch-based carbonation, the 

pH controlled method showed an increased carbonation rate of 5-6 times that of the 

previous tests (BOF slag versus EAF or LMF slag). 

 

 
Figure 15.  BOF slag carbonation results from time and pH controlled tests 
 

 

The leaching rate of calcium from BOF slag is calculated using Equation 9, while 

the carbonation rate is shown in Figure 15. Leaching occurs approximately 50% faster 
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than carbonation (on a molar conversion basis) at a particle size of 100 μm. However, 

carbonation results in a product layer that retards the leaching process2, so the leaching 

rate in a batch carbonation system will be less than in a two-stage system. According to 

the carbonation results, as long as the system pH stays above 8.5, the slag system can 

process 151 kg carbon dioxide per tonne of slag in a 24-hour period, which is 47% of the 

slag theoretical calcium carbonate capacity. The amount of carbon dioxide sequestered is 

0.4% of that emitted per ton of steel produced for BOF production. As a first-order 

approximation, assuming the carbonation rate is proportional to leaching activity, the pH-

controlled process should sequester 1.8% of the carbon dioxide emitted from EAF 

steelmaking. Under the same conditions, LMF slag can add another 0.1% and 0.6% to the 

sequestration amounts for BOF and EAF mills, respectively. In regards to slag 

stabilization, BOF and EAF slags will achieve approximately 50% stabilization in 24 

hours, while LMF slag should reach the same amount in five days.  

 

CONCLUSIONS 

 

Tests conducted on steelmaking slags showed the rates and mechanisms 

underlying both aqueous leaching and carbonation processes, and the effect of carbonic 

anhydrase enzyme as a catalyst. The amount of calcium leached is a strong function of 

particle surface area, which is a more important factor than calcium oxide content. BOF 

slag exhibited a calcium-leaching rate of approximately five times the leaching rate of 

LMF slag even though it had 80% of the calcium content. This is because BOF slag had 

8.7 times the specific surface area in its raw state. Like LMF slag, EAF showed an 

increase in calcium leached. Carbonic anhydrase did not affect the leaching rate because 

it only catalyzes reactions involving carbon dioxide. A low amount of magnesium was 

leached for all slags, and BOF/EAF slags showed negligible amounts of iron leached. 

The specific surface area increased from 15-40 times due to leaching, with BOF particles 

exhibiting the most extensive leaching depth. All leaching curves exhibited similar 

trends, and the extent of calcium leaching as a function of time and particle size can be 

expressed by a mathematical relationship.  
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Carbonic anhydrase catalyzed the reaction between calcium oxide and carbon 

dioxide in water to decrease neutralization time by 50%. A 66.6 nM concentration of 

BCA reduced the neutralization time to near the theoretical rate. Carbonic anhydrase 

modified the structure of the precipitating layer on the slag particles from an overlapping 

block structure to a dendritic morphology with smaller particles because carbonic 

anhydrase increased the nucleation rate of the precipitating particles at the expense of the 

particle growth. The rate of carbonation is a strong function of pH. Time controlled tests 

in which the pH dropped to ~six resulted in decreased carbonate production for a given 

time. This decrease was accelerated by carbonic anhydrase, which acts on the reversible 

hydration of carbon dioxide so it will pull the system rapidly towards equilibrium. Thus, 

if the pH drops to a level at which carbonate dissolution would be necessary to reach 

equilibrium, the enzyme will accelerate that dissolution. Tests in which the pH was 

maintained >8.5 exhibited the highest rate of carbonation. At the rate exhibited, 47 wt.% 

carbonation would be achieved by BOF slag at 100 μm particle size at 24 hours in a batch 

reactor. Because the leaching rate was found to be ~50% faster than the carbonation rate, 

a further increase in carbonation may be realized by using carbonic anhydrase (but the pH 

must be maintained >10.33). 

 

ACKNOWLEDGMENTS 

 

This paper was prepared as an account of work sponsored by the U.S. Department 

of Energy in cooperation with the American Iron and Steel Institute (AISI) and its 

participating companies under Agreement DE-FC36-97ID13554. Such support does not 

constitute an endorsement by DOE or AISI of the views expressed in the article. 

 

REFERENCES 

 

1. Lekakh, S.N., Rawlins, C.H., Robertson, D.R., Richards, V.L., and Peaslee, K.D., 
“Aqueous Leaching and Carbonization of Steelmaking Slag for Geological 
Sequestration of Carbon Dioxide,” Metallurgical and Materials Transactions B, (on-
line) January 2008. 

2. Rawlins, C.H., “Grindability Study of Steelmaking Slag for Size-by-Size Recovery of 
Free Metal,” SME Annual Meeting and Exhibit, Feb. 2008. 



166 

 

3. Rawlins, C.H., Richards, V.L., Peaslee, K.D., and Lekakh, S.N., “Sequestration of 
CO2 from Steelmaking Offgas by Carbonate Formation with Slag,” AISTech 2006 
Proceedings, Vol. II, May 2006, pp. 1133-1144. 

4. Rawlins, C.H., Richards, V.L., Peaslee, K.D., and Lekakh, S.N., “Steelmaking Slag 
as a Permanent Sequestration Sink for Carbon Dioxide,” Steel Times International, 
Vol. 30, No. 7, October 2006, pp. 25-28. 

5. O’Connor, W.K., R.P. Walters, D.C. Dahlin, G.E. Rush, D.N. Nilsen, P.C. Turner. 
“Carbon dioxide sequestration by direct aqueous mineral carbonation.” In: 
Proceedings of the 26th International Technical Conference on Coal Utilization & 
Fuel Systems: Editor, B.A. Sakkestad. Gaithersburg, MD: Coal Technology 
Association, 2001, pp.765-776. 

6. O'Connor, W. K., D.C. Dahlin, D.N. Nilsen, S.J. Gerdemann, G.E. Rush, L.R. 
Penner, R.P. Walters, P.C. Turner. “Continuing studies on direct aqueous mineral 
carbonation for CO2 sequestration.” In: Proceedings of the 27th International 
Technical Conference on Coal Utilization & Fuel Systems: Editor, B.A. Sakkestad. 
Gaithersburg, MD: Coal Technology Association, 2002, pp. 819-830. 

7. Teir, S., S. Eloneva, R. Zevenhoven. “Production of precipitated calcium carbonate 
from calcium silicates and carbon dioxide,” Energy Conversion and Management, 
Vol. 46, No. 18-19, 2005, pp. 2954-2979. 

8. Lackner, K.S, “Carbonate chemistry for sequestering fossil carbon,” Annual Review 
of Energy and the Environment, Vol. 27, 2002, pp. 193-232. 

9. Bond, G.M., Egeland, G., Brandvold, D.K., Medina, M.G., Stringer, J., 1999. “CO2 
sequestration via a biomimetic approach,” In: Proceedings of the Sessions and 
Symposia sponsored by the 1999 Extraction and Processing Division Congress. The 
Minerals, Metals, & Materials Society, Warrendale, Pennsylvania, U.S.A., pp. 763-
781. 

10. Medina, M.G., Bond, G.M., and S. Rogelj, “Comparison of carbonic anhydrase 
isozymes for use as a catalyst in carbon dioxide sequestration process,” Proceedings 
of the 93rd Air & Waste Management Association Meeting and Exhibition, 2000, pp. 
5996-6013. 

11. Simsek-Ege, F.A., Bond, G.M., Stringer, J., “A biomimetic route to environmentally 
friendly CO2 sequestration: catalyst immobilization,” Electrochemical Society 
Proceedings, fall 2000, pp. 162-170. 

12. Bond, G.M., Stringer, J., Brandvold, D.K., Simsek, F.A., Medina, M.-G., Egeland, 
G., “Development of integrated system for biomimetic CO2 sequestration using the 
enzyme carbonic anhydrase,” Energy & Fuels, Vol. 15, pp. 309-316. 

13. Liu, N., Bond, G.M., Abel, A., McPherson, B.J., Stringer, J., “Biomimetic 
sequestration of CO2 in carbonate form: role of produced waters and other brines,” 
Fuel Processing Technology, Vol. 86, pp. 1615-1625. 

14. Li, W., Yu, L.-J., Wu, Y., Pia, L.-P., Yuan, D.-X, “Enhancement of Ca2+ release from 
limestone by microbial extracellular carbonic anhydrase,” Bioresource Technology, 
Vol. 98, pp. 950-953. 

15. Mirjafari, P., Asghari, K., Mahinpey, N., “Investigating the application of enzyme 
carbonic anhydrase for CO2 sequestration purposes,” Industrial & Engineering 
Chemistry Research, Vol. 46, pp. 921-926. 

 



167 

 

5. Grindability Study of Steelmaking Slag for Size-by-size Recovery of Free Metal 

 

C.H. Rawlins 

 

Department of Materials Science and Engineering 

Missouri University of Science and Technology 

Rolla, Missouri 

E-mail: kpeaslee@mst.edu 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Published in the Proceedings of the 2008 SME Annual Meeting and Exhibit, and 

edited for this dissertation. 

mailto:kpeaslee@mst.edu�


168 

 

ABSTRACT 

 

The total amount of ferrous slag generated in the U.S. is about one-third the 

amount of iron ore mined. Thus, ferrous slag can be considered a significant mineral 

body for processing. Steelmaking slag contains up to 30 wt.% metal, of which only the 

>25 mm fraction is commonly recovered. A grinding study was conducted on basic 

oxygen furnace (BOF), electric arc furnace (EAF), and ladle metallurgy furnace (LMF) 

slags using the Bond Work Index method to determine grindability to 106µm. Work 

Index values ranged from 13.8-24.9 kWh/ST, depending on slag type and composition. 

Steel particles were magnetically recovered from crushed and ground samples for size-

by-size analysis, yielding up to 18 wt.% of the slag weight recovered as magnetic. The 

recovered material, as characterized by inert gas melting, was found to be 61-96 wt.% 

metallic.  

 

INTRODUCTION 

 

Slag is generated during each discrete state of iron and steel production, but 

steelmaking slag is generally characterized by a higher lime, iron oxide, and metallic iron 

content than slag produced from blast furnace iron. Total U.S. production of steelmaking 

slag ranges from 10-15 Mt.1 This total correlates, per ton of steel produced, to 75-150 

kg/t BOF slag, 65-80 kg/t EAF slag, and 15-20 kg/t LMF slag.2 Steelmaking slag is 

currently sold at $3-4/t and is used in high quality mineral aggregate (asphaltic concrete, 

road/rail base, and surfaces), confined construction (fill), clinker feed, roofing, mineral 

wool, soil conditioning, iron making, and acid mine drainage neutralization.1,3 

In 2005, a project entitled “Geological Sequestration of CO2 by Hydrous 

Carbonate Formation in Steelmaking Slag” was initiated as part of the steel industry’s 

CO2 sequestration breakthrough program.4 Part of this study shows that to achieve CO2 

sequestration efficiency sufficient for industrial-scale use, grinding the slag <200 µm will 

provide sufficient surface area for rapid leaching of the alkaline-earth components and 

subsequent conversion to carbonates. To characterize the comminution energy for 

steelmaking slag, a separate study was conducted to determine the grindability of 
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steelmaking slag using the Bond Work Index method. Size-by-size separation of 

magnetic material from the ground slag was conducted as part of this study to include the 

value of the recovered metal into an overall cost model. This paper presents the results 

from the grinding study. 

 

SLAG CHARACTERIZATION 

 

Thirteen steelmaking slag samples were gathered from project partners for this 

study (8 EAF, 2 BOF, and 3 LMF). Chemical and physical characterization of these slags 

were undertaken to quantify their properties prior to grinding.  

Table 1 lists the major elements (as oxides) as determined by X-ray fluorescence 

(XRF). A full listing of all the elements identified is shown in Table A-1 in the Appendix. 

The high mass fraction (40-55 wt.%) of alkaline-earth metal oxides (CaO and MgO) 

makes steelmaking slag attractive for CO2 sequestration. Both CaO and MgO report to 

the slag from the (dolomite) lime added as a fluxing agent. Silica, alumina, and MnO 

result from the deoxidizing additions, while the high fraction of FeO in EAF/BOF slag 

comes from the oxidation of iron late in the decarburization process. The LMF process 

has stronger reducing conditions that result in a lower fraction of FeO. 

 

 

Table 1.  Average Slag Composition (as Oxides) from XRF 

Element 
(wt.%) 

EAF BOF LMF 

# Samples→ (8) (2) (3) 
CaO 32.44 40.71 49.43
MgO 11.20 12.90 6.23
FeO 26.85 21.68 5.61
SiO2 13.95 11.65 12.96
Al2O3 8.29 5.93 21.26
MnO 5.37 4.59 1.06

 

 

Scanning electron microscopy (SEM) analysis of slag samples shows metallic 

iron particles distributed in an oxide-based matrix. Figure 1 shows a backscattered 
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electron image of an EAF slag particle. As determined by EDS, the matrix material (dark 

gray) is a mixture of (Ca,Fe,Al,Si)xOy with a porous structure. Dispersed throughout the 

matrix are globules, stringer, and dendrites of metallic Fe (white) and Fe/Mn (light gray). 

Analysis of several samples suggests that a grind size of ~100 µm should be sufficient to 

expose the metallic fraction for separation. 

 

 

 
Figure 1.  SEM backscattered electron image of EAF steelmaking slag. The dark gray 
matrix is a combination of oxides (Ca,Fe,Al,Si), while the distributed particles are free 

metallic steel (Fe or Fe-Mn). 
 

 

Several key physical properties of the slag samples, as an average based on type, 

are listed in Table 2 and a full listing appears in Table A-2 in the Appendix. The as-

received slags are dry with the EAF and LMF samples having less than 1% evaporable 

moisture. The BOF slag is higher at ~3%, which was a function of stockpile storage at the 
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generating site. The bulk and true densities of slag are higher than typical silica gangue 

minerals due to the high fraction of FeO and metallic Fe. Loss on ignition (LOI) results 

used to determine hydroxide/carbonate content were inconclusive because the free 

metallic Fe oxidized offsetting any weight loss, and actually resulted in weight gain for 

EAF and LMF samples. Figure 2 shows the particle size distribution (PSD) of five slag 

samples in the as-received condition as determined by sieve analysis. The d50 values 

ranged from 3-20 mm, with the top size of some samples ranging up to ~75 mm. 

 

 

Table 2.  Averaged Physical Properties of Slag 

Property 
(# samples) 

Evap.  
Moisture 
(wt.%) 

Bulk  
Density 
(kg/m3) 

True  
Density 
(kg/m3) 

LOI  
@ 990°C 
(wt.%) 

EAF (7) 0.91 1945.9 3826.2 -1.35 
BOF (2) 3.38 2078.7 3580.9 0.57 
LMF (3) 0.87 1688.1 2996.7 -0.58 

 

 

 
Figure 2.  Particle size distribution of five raw (as-received) slag samples. 
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EXPERIMENTAL 

 

The Bond closed-circuit ball mill test was used to determine the slag grindability. 

This type of test was chosen due to the availability of literature data for comparison and 

its applicability to mineral processing simulation software for subsequent analysis. To 

ensure a grind size of <200 μm for CO2 sequestration and <100 μm for metal recovery, a 

test mesh size (P1) of 106 µm was chosen. 

The procedure listed in the SME Mineral Processing Handbook was followed for 

the experimental work.5 A 12”x12” end-loading smooth mill was fabricated from a 

standard schedule pipe, as shown in Figure 3. The mill sets on a roller stand operating at 

70-72 RPM. A counter measures the number of revolutions during each test period. The 

mill is charged with 285 balls at a size and number distribution given by the SME 

procedure. 

 

 

 
Figure 3.  12”x12” end-loading (opposite face) smooth ball mill on stand for Bond 

closed-circuit grindability test. 
 

 

The slag samples were prepared by crushing in a laboratory jaw and roll crusher 

until all slag particles passed 3360 μm (<6 mesh). PSD of the crushed slag as determined 

by sieve analysis is shown in Figure 4. Crushing the slag minimized the spread in PSD 
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between samples as evident by comparing the 80% passing feed size (F80) for each 

sample. Metallic material from the crushed samples was separated using a 1.4 kgf (3 lb.) 

magnet. The crushed slag samples were further prepared by determining the packed bulk 

density, weight of feed that would occupy 700 ml, and calculating the ideal product 

period (IPP). 

 

 

 
Figure 4.  Particle size distribution of five slag samples after jaw/roll crushing <6 mesh 

(<3360 µm). 
 

 

Ball mill grinding took place according to steps 7-20 listed in the SME 

procedure.5 Each test took from 5-7 periods, and sieve analysis was conducted to 

determine the amount of product after each period. The procedure was repeated for each 

period until the net grams (of product) per revolution did not change significantly, which 

corresponded to a circulating load (C.L.) value of 250%. The data from the final two or 

three periods was averaged to obtain the corresponding percentage C.L. and net grams 

per revolution, which is the grindability value (Gbp). Sieve analysis of the material ground 

in the final period was used to determine the PSD of the undersize (product) and oversize 

(circulating load). From the plot of the product PSD, the 80% passing size (P80) was 
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determined using a fifth-order polynomial curve fit and Solver in MS Excel®. The 

laboratory Work Index (WiB) in kWh per short ton was calculated using Equation 1. 
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Size-by-size magnetic fraction analysis was conducted on the product streams. 

For each sample, material from each of eleven size fractions in the circulating load and 

the complete product stream (<106 μm) was passed under a 1.4 kgf (3 lb.) magnet to 

separate the magnetic fraction. The separated material was then tested for quantification 

of the metallic content. The samples were placed in individual graphite crucibles and 

melted in an argon flooded (inert atmosphere) induction furnace. This method causes slag 

and metal to each form a discrete layer upon melting. These layers are then mechanically 

separated after cooling and the weight fraction metallic is determined. Figure 5 shows an 

example of the separated slag and metallic fractions. 

 

 

 
Figure 5.  Mechanical separation of slag (left) and metallic (right) fractions after inert 

induction melting and cooling. 
 

 

RESULTS 

 

Results from each grinding period for the ball mill test conducted on slag E2α are 

shown in Figure 6. The first period was conducted to obtain a baseline for the start of the 



175 

 

test. The grindability and C.L. results from this period deviate greatly from their ideal 

values as calculated from the IPP. In this case, the grindability and C.L. values were 0.31 

g/rev and 972%, respectively. As the periods progressed, the grindability converged 

rapidly such that by the third period the value was within 9% of the final value. Seven 

periods were conducted with this slag. The grindability values of periods six and seven 

were within a few percentage points of each other signifying that the test reached steady 

state. The grindability and C.L. values for periods six and seven were averaged to provide 

values for the work index calculation. The values obtained were 0.90 g/rev and 250%, 

respectively. To obtain the P80 values, the PSD of the product was plotted, as shown in 

Figure 7, in comparison to the feed. The values of F80 and P80 for Slag E2α are 1934 μm 

and 89 μm, respectively. Using Equation 1, the work index value for Slag E2α was 

calculated to be 19.93 kWh/ST. In comparison, the work index for dolomite is 13.9 

kWh/ST and for silica sand is 23.8 kWh/ST.5  

 

 

 
Figure 6.  Net grams of product (<106 μm) per revolution and circulating load (%) values 

for each ball mill test period for Slag E2α. 
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Figure 7.  Particle size distribution of the feed, circulating load, and product for Slag E2α 

after period seven. 
 

 

Tabulated results for the slags tested are listed in Table 3. The first two tests were 

stopped prematurely due to a misunderstanding of the test protocol, however, the WiB 

value should be within a few percentage points of the final value. 

 

 

Table 3.  Results from Bond Work Index Test for Slag 

Sample C.L. 
(%) 

Grind. 
(g/rev) 

F80 P80 WiB 
(kWh/ST) 

A1α-EAF 240 0.83 2664 82 19.59 
A1β-EAF 243 0.81 2818 86 20.30 
A1γ-LMF 248 0.88 2228 88 19.84 
B1α-BOF 245 0.78 2877 90 21.39 
C1α-BOF 251 0.72 2702 90 22.99 
D1α-EAF 248 0.71 2690 100 24.91 
E1α-EAF 249 0.95 2339 81 17.51 
E2α-EAF 250 0.90 1934 89 19.93 
E1γ1-EAF 248 0.94 2672 80 17.36 
E2β1-LMF 250 1.37 2218 88 13.80 
E2γ1-EAF 249 0.73 2650 80 21.44 

EAF-Avg. 20.15 
BOF-Avg. 22.19 
LMF-Avg. 16.82 

Overall-Avg. 19.91 
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The work index values ranged from 13.8-24.9 kWh/ST, with an overall average of 

19.91 kWh/ST. BOF slag had the highest average, with EAF slag next, then LMF slag 

exhibiting the lowest value. LMF slag has the highest amount of lime and lowest amount 

of FeO and free Fe, so it should be the easiest to grind based on the assumption 

grindability is proportional to hardness (FexOy has twice the hardness of CaO and MgO). 

The reason BOF slag ranks above EAF slag is unknown, but may be due to EAF slag’s 

higher porosity (due to its foaming during the steel heat). An X-ray diffraction study of 

these slag samples is currently being conducted to quantify the phase fraction and may 

provide further insight into the ranking. 

Size-by-size magnetic fraction results for Slag E2α are presented in Figure 8. 

These results are presented by size fraction and for the entire sample. All fractions >106 

μm ranged from 14-21 wt.% magnetic, while the product fraction had less than 4 wt.% 

magnetic. Overall, 12.45 wt.% of the entire sample was magnetic, with 11.33 wt.% >106 

μm, and 1.12% <106 μm. Thus, 91% of the magnetic particles were >106 μm, confirming 

that grinding to 106 μm should be sufficient to liberate the majority of the metallic 

fraction from the slag. A summary of results averaged from twelve slag samples are 

presented in Figure 9. For the overall average, >91 wt.% of the magnetic fraction is >106 

μm. EAF slag had the lowest amount of material >106 μm (86.6%) due to fine steel 

droplet break-up generated during slag foaming. LMF slag had the largest amount >106 

μm (95.6%), and when compared to EAF or BOF slag which use supersonic jets, it is 

produced using the least turbulent process, leading to less fine steel droplets generated 

and entrained into the slag. The overall average amount of magnetic fraction in slag 

liberated by grinding is 7.44 wt.%. This is the amount of material available after crushing 

to <3360 μm and magnetic separation. According to type, EAF and BOF slags have over 

twice the amount of magnetic material available for recovery than LMF slag. Details of 

the magnetically recoverable amount per slag sample after crushing and after grinding are 

presented in the Appendix in Table A-2. 

The quality of the magnetically recoverable fraction is important in determining 

the valuation of the process. The metallic quantification process used was only 

moderately accurate because some of the samples did not stratify fully upon melting, 

making mechanical separation of the slag-steel phases difficult. In addition, some of the 
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samples were corrupted during melting due to offgas generation that led to splattering. 

Generally, the magnetic fraction after crushing, which consisted of 3-10 mm particles, 

melted cleaner and provided higher accuracy determination of the weight percent 

metallic. The magnetic fraction after grinding was a much finer powder, and several of 

the samples were contaminated due to splattering. The results presented in Table 5 are 

reasonably accurate (±5%). 

 

 

 
Figure 8.  Size-by-size magnetic fraction results for Slag E2α. 

 

 

The grade of the magnetic fraction after crushing is quite good with 89 wt.% of 

the material reporting as metallic. However, the grade of the magnetic fraction after 

grinding is less with 68 wt.% of the material reporting as magnetic. The lower grade is 

due to the higher surface area of the fine material, leading to a higher amount of oxidized 

iron, plus incomplete liberation as slag material is still bound to the magnetic particles. 

Based on the average amount of material recovered from magnetic separation during 

grinding (7.44 wt.%), the overall amount of metallic material recoverable from ground 

slag is estimated to be 5 wt.%. Using similar analysis yields an overall amount of metallic 

material recoverable from crushed slag of 1.2 wt.%. 
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Figure 9.  Weight percent magnetic material by slag type. Total bar height is total amount 
of magnetic material in each slag. Shaded regions represent the amount above or below 

106 μm. Numbers to the side of each bar represent the percentage >106 μm. 
 

 

Table 4.  Metallic Content for Magnetic Fraction from Slag 

Slag Type 
(# samples) 

Magnetic 
Fraction Wt.% 

Metallic 
(post-crush) 

Magnetic 
Fraction Wt.% 

Metallic 
(post-BWI) 

EAF (6) 86% 61% 
BOF (2) 88% 72% 
LMF (3) 96% 72% 
Average 89% 68% 

 

 

CONCLUSIONS 

 

The Bond closed-circuit ball mill method is labor intensive and generally requires 

about twenty man-hours per sample to produce final results. The primary source for error 

lies in the efficiency of product separation (e.g., screening) between each period and 

accurate determination of the F80 and P80 values. Multiple tests were not run on the same 

sample for comparison, but the final WiB values lie in the expected range when compared 

to published values.  
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As an estimate for future (rapid) calculations, a comparison of density (bulk and 

true) to WiB was made, but the results showed poor correlation. This is probably due to 

the slag’s heterogeneity. Multiple density and work index tests on the same sample may 

lead to a closer fit. An alternate source for poor correlation may be caused by the free 

metallic content in the slag. Slag shows a much higher content of free metallic particles 

than most ores. The distributed steel particulates are not friable, so through this procedure 

any steel particles greater than the test size will remain in the circulating load (i.e. will 

not grind and report to the product, which is removed after each period). Therefore, an 

artificial mass of very dense particles will build up from period to period. Because only 

the oxide matrix is subject to crushing, segregation of the metal from the slag takes place. 

Analysis of the grinding results, after calculated removal of the non-friable particles, will 

be undertaken in future work to establish the WiB for the matrix material in-absentia of 

the steel.  

A cost analysis model that factors grinding energy into the slag-CO2 sequestration 

process is being constructed. Reduction in slag particle size provides a more favorable 

reaction rate for industrial-scale CO2 sequestration, but the tradeoff comes in form of the 

energy required to grind the slag. The energy required has a direct cost and an associated 

CO2 generation amount, both of which have an economically quantifiable value. To 

offset these costs, the metal fraction can be recovered and returned to the steel mill for 

subsequent inclusion in the charge material, providing a cost credit. The results of this 

model will be published in future work. 
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APPENDIX 

 

Table A-1.  Slag Composition (as Oxides) from XRF Analysis 

Elements 
(# samples) 

EAF 
(8) 

BOF 
(2) 

LMF 
(3) 

 Avg.  
(wt.%) 

Range 
(wt.%) 

Avg. 
(wt.%) 

Range 
(wt.%) 

Avg. 
(wt.%) 

Range 
(wt.%) 

CaO 32.44 27.3-35.9 40.71 40.5-40.9 49.43 47-51.3
MgO 11.20 9.4-12.8 12.90 12.0-13.8 6.23 4.3-10
FeO 26.85 20.2-31.6 21.68 21.6-21.7 5.61 5.0-6.3
SiO2 13.95 8.7-19.4 11.65 10.4-12.9 12.96 4.5-28.3
Al2O3 8.29 5.6-11.8 5.93 5.2-6.6 21.26 4.9-32.3
MnO 5.37 3.4-7.1 4.59 4.5-4.7 1.06 0.8-1.3
TiO2 0.47 0.4-0.5 0.58 0.5-0.7 0.34 0.3-0.4
ZrO2 0.07 0-0.2 0.18 0.1-0.3 0.20 0.20
Cr2O3 1.48 0.8-2.5 0.36 0.3-0.4 0.25 0.25
K2O 0.05 0.05 B.L. B.L. 0.01 0.01
Na2O B.L. B.L. B.L. B.L. 0.01 0.01
S 0.34 0.1-0.9 0.11 0.11 1.33 1.0-1.6
P 0.30 0.2-0.6 0.43 0.4-0.5 0.08 0-0.2
C 0.23 0.1-0.3 0.53 0.4-0.7 0.38 0.38
Sr B.L. B.L. B.L. B.L. B.L. B.L.
F 0.65 0.3-0.9 0.33 0.33 1.66 1.66

http://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel_slag/�
http://www.nationalslagassoc.org/PDF_files/SSPremAgg.PDF�
http://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel_slag/islagmyb03.pdf�
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Table A-2.  Physical Properties of Slag Samples 

Sample Slag 
Type 

Evap.  
Moisture 
(wt.%) 

Bulk 
Density 
(kg/m3) 

True 
Density 
(kg/m3) 

LOI 
@ 990°C 

(wt.%) 

Magnetic Fraction 
 

(wt.%) 

Method→  
ASTM 

C566-97 
ASTM 

C29M-97 Pycn.  
>6 mesh 

post-crush 
<6 mesh 

post-BWI 
A1α EAF 0.00 2014 4052 -1.7 0.32 3.83
A1β EAF 1.14 1941 3881 -1.4 0.18 11.53
A1γ LMF 2.59 1778 2900 3.3 0.53 2.61
B1α BOF 2.52 2019 3614 0.8 0.76 12.08
C1α BOF 4.25 2138 3548 0.3 0.18 5.95
D1α EAF 1.56 2180 3697 -1.1 0.12 2.68
E1α EAF 1.44 1795 3760 -1.7 0.27 5.21
E2α EAF 0.41 1650 3822 -1.7 0.46 12.45
E1β-1 LMF 0.02 1438 3021 -3.2 5.08 4.77
E1γ-1 EAF 0.81 2167 3906 -1.2 3.28 6.30
E2β-1 LMF 0.00 1849 3069 -1.9 1.28 3.99
E2γ-1 EAF 1.03 1874 3665 -0.7 3.75 17.92
Average  1.23 7.44
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ABSTRACT 

 

The feasibility of processing electric arc furnace (EAF), basic oxygen furnace 

(BOF), and ladle metallurgy furnace (LMF) slags for metal recovery and carbon dioxide 

sequestration was evaluated using a combination of grindability and sequestration tests 

on industrial slags and modeling studies using METSIM. Power consumption, slag-

carbon dioxide capture, and metal recovery all increased inversely to grind size (P80) 

within the range of 50 to 1000 μm. The optimum grind size was determined based on a 

calculated process net value using commodity indexes. EAF and BOF slags exhibited 

sharp maximum values at 110-120 μm, with a rapid decrease at larger or smaller sizes 

due to increased power consumption or decreased metal recovery. LMF slag exhibited 

much less sensitivity to grind size, with ~3% variation from its peak size of 370 μm over 

most of the studied range. All slags showed net positive carbon dioxide sequestration 

benefits based on slag capture and generation by the power supply source. 

 

INTRODUCTION 

 

Slag is a co-product from each distinct stage of ferrous liquid-metal processing. 

However, steelmaking slag contains higher calcium oxide, iron oxide, and metallic iron 

content than slag produced from blast furnace iron. Ranging from 10-15 million metric 

tons in U.S. production, steelmaking slag is a significant mineral resource to study for 

value optimization.1 Currently, steelmaking slag is sold for $3-4/metric ton (tonne) for 

use in such applications as high quality mineral aggregate, construction fill, cement 

clinker feed, and ironmaking flux.2 The use of slag as an agent for capturing carbon 

dioxide emissions has the potential of increasing its application and value.3 Due to its 

high alkaline earth oxide content and immediate availability at the steel mill, steelmaking 

slag can serve as a unique source point mitigation for carbon dioxide sequestration.  

To further investigate this hypothesis, a project was initiated in 2005 to study 

geological sequestration of carbon dioxide by hydrous carbonate formation in 

steelmaking slag.3 The project goals include investigation of the kinetic mechanisms 

limiting the carbonation reaction rate and determination of process parameters necessary 
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to design an industrial-scale sequestration system. In this study, carbonate conversion 

was found to be strongly dependent on particle size.4 Achieving suitable efficiency for 

industrial-scale carbon dioxide sequestration requires fine slag grinding, which provides 

sufficient surface area for rapid leaching of the alkaline-earth components and subsequent 

conversion to carbonates.5  

Because mineral comminution is energy intensive, there are concerns that the 

energy required to grind the slag would exceed the carbon dioxide sequestration benefit 

in both direct cost and indirect generation (e.g., carbon dioxide emitted from the electric 

generation source). To accurately characterize the comminution energy for steelmaking 

slag, a separate study was conducted to determine the grindability of this slag using the 

Bond Work Index method.6 This work index is a comminution parameter that expresses 

the resistance of a mineral to crushing or grinding and permits calculation of the power 

expended in these unit processes. Included as part of the study, size-by-size separation of 

the liberated magnetic fraction from the ground product allowed corresponding 

quantification of the separated material for metallic content (e.g., grade). 

The current work seeks to assess the feasibility of grinding steelmaking slag for 

carbon dioxide sequestration and metal recovery. Slag comminution promotes carbonate 

conversion at a rate sufficient for industrial-scale sequestration, but the overall merit of 

the process is determined by a balance of the grinding costs (i.e., direct energy and 

indirect carbon dioxide generation) and benefits (i.e., improved carbon dioxide 

sequestration and metal recovery). Using three industrial slags (EAF, BOF, and LMF) at 

five grind sizes (50, 100, 200, 500, and 1000 μm) and results from the previous 

sequestration and grinding studies4-6, these four factors were investigated. An accurate 

correlation was fit within the grind size range for each factor to yield the optimum grind 

size for each slag type. 

 

SLAG COMMINUTION 

 

Slag grinding research has primarily been conducted in the cement industries 

where granulated blast furnace slag is used as a clinker amendment. These efforts have 

focused on comparing various grinding processes to achieve a desired Blaine fineness, 
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but do not address steelmaking slag, metal recovery, or provide suitable data for 

estimating power consumption.7-9 A study on metals recovery from slags found the 

density, resistance to impact, and Los Angeles abrasion test values for steel slag are 

higher than those of basalt or granite, but does not provide sufficient details to 

characterize the power consumption for steel slag grinding.10 Published values for a slag 

Work Index are available, but are not delineated by type and the as-published inaccuracy 

is too high for the current calculations.11  

Because detailed comminution data for steelmaking slag by type was not 

available, grindability measurements were conducted as part of the current project.6 

Using industrial samples of EAF, BOF, and LMF slags; Bond Work Index values (Wi) 

were obtained using a laboratory ball mill. The ball mill closed circuit test was chosen for 

its applicability to grind sizes as low as 500 mesh (25 μm). This grindability test is based 

on the Third Theory of Comminution, as shown in Equation 1.12-13  

 

8080

1010
F
W

P
W

W ii −=      (1) 

 

Work input (W) in kilowatt-hours per short ton (st) is a function of the work index 

(Wi) and particle diameter in microns, at which 80% passes in the product (P80) and feed 

(F80). Numerically, Wi is the kilowatt-hours per short ton required to reduce the material 

(slag) from a theoretical infinite feed size to 80% passing 100 μm. The Wi value has high 

portability as a standard for comparing comminution of minerals and for use in mineral 

processing sizing and simulation programs. 

Based on slag characterization results, a target grind size (P80) for the work index 

test was determined. Scanning electron microscopy (SEM)/backscatter electron (BSE) 

analysis of steelmaking slag samples indicated that a grind size of ~100 μm should be 

sufficient to liberate most of the metal particles.6 Furthermore, carbon dioxide 

sequestration kinetic analysis and modeling showed that a particle size of 200 μm or less 

will provide sufficient reaction time for an industrial scale reactor.5 Based on these 

observations, a target grind size of 106 μm (150 Tyler mesh) was chosen for the Bond 
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Work Index test . Size-by-size analysis of the ground material subsequently found that 

more than 90% of the metallic fraction is >106 μm. 

The grindability experimental results enabled the development of a model for 

estimating the comminution power requirement. Figure 1 shows a schematic of the 

grinding model developed in METSIM (ver. 15.07), a commercially available 

metallurgical processing simulator. Raw slag undergoes primary size reduction in a cone 

crusher. For each slag type, the cone crusher size and settings remained constant 

regardless of the final product grind size. This allows the cone crusher to provide the 

same function in each case. The crushed slag is fed to a ball mill for grinding to the final 

product size. The mill is operated dry and sized based on a target P80 (i.e. 50, 100, 200, 

500, and 1000 μm). An approximate 2:1 inside length to diameter ratio with 40 vol.% ball 

loading is used for the mill in each scenario. The top ball size varied from 50-75 mm, 

depending upon the target P80. The ground product from the ball mill was passed across a 

single deck vibrating screen for topsize control, where the oversize material recirculates 

back to the ball mill feed and the undersize particles report to the product. The screen 

aperture was selected to provide ≤1 wt.% recirculation of topsize material to the ball mill 

feed. In this manner, the mill operates essentially in open circuit mode. Based on these 

mill-circuit operating parameters, the efficiency factors shown in Table 1 were applied to 

the calculated grinding power (work input) using Equation 1.14 

 

 

 
Figure 1.  Schematic of METSIM grinding circuit use to calculate comminution energy 
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Details of the crusher, ball mill, and screen dimension and operating parameters 

are listed in Table A-1 in the Appendix. In this model, only the power draw of the cone 

crusher and ball mill are calculated. Power requirements for the vibrating screen and 

subsequent magnetic separation processes are minor compared to that of the 

comminution equipment. 

 

 

 Table 1.  Efficiency Factors Applied to Calculated Grinding Power (W)14 

Factor Value 

Dry Grinding (EF1) 1.3 
Open Circ. Grind, 80% Passing (EF2) 1.2 
Mill Diameter, D in meters (EF3) ( ) 2.044.2 D  
Oversized Feed (EF4) ( )( )[ ] ( )8080808080 //7 PFFFFWPF ooi −−+  

( ) 5.0134000 io WF =  
Fineness of Grind (EF5) ( ) 8080 145.1/3.10 PP +  

 

 

The slag parameters input to the model were obtained from characterization of the 

different slag types in previous work.6 Table 2 lists the input slag parameters, while 

Figure 2 shows the feed particle size distribution (PSD), with all data obtained as an 

average from multiple samples (number of samples shown in parentheses). The density of 

slag is higher than that of typical silica gangue minerals due to the higher iron and iron 

oxide content. Work index values ranged from 13.8-24.8 kWh/st, with the average for 

each slag type listed in Table 2. LMF slag has the highest amount of lime and the lowest 

amount of iron oxide, so it should be the easiest to grind (based on a rule of mixture 

estimation using Wi for burnt limestone and hematite of 11.0 and 18.0, respectively).11 

The reason BOF slag ranks higher than EAF slag is unknown given EAF slag’s higher 

iron oxide and lower calcium oxide content. Higher porosity in the EAF slag may provide 

an easier crack propagation path. Overall, slag has a higher work index than burnt 

limestone, hematite, or magnetite (19.2), and is comparable to silica sand (23.8).11 The 

mass flow used in the simulation for EAF and BOF slag was 100,000 tonne/yr (50 

tonne/hr), while that used for LMF slag was 25,000 tonne/yr (12.5 tonne/hr). These 
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values approximate slag production for a one million ton per year steel mill. Comparing 

the particle size distributions shows LMF slag to have the widest spread, the largest F80, 

and the highest amount of fines (<100 μm). Overall, EAF slag has the largest particle 

size, with 47% passing 12.5 mm, compared to 67% passing for LMF slag and 80% 

passing for BOF slag. LMF slag has the highest amount of material already in the target 

P80 size range (50-1000 μm), while EAF slag has the least. While BOF slag has a higher 

work index, it has more material in the feed already in the product size range and a 

smaller topsize (compared to EAF slag), which may offset some of the energy 

consumption. 

 

 

Table 2.  Slag Physical Properties used in METSIM Grinding Model 

Slag Type 
(# samples) 

Density 
(kg/m3) 

Wi 
(kWh/st) 

Mass Flow 
(tonne/hr) 

EAF (7) 3826 20.15 50.0 
BOF (2) 3581 22.19 50.0 
LMF (3) 2997 16.82 12.5 

 

 

 
Figure 2.  Feed stream particle size distribution of EAF, BOF, and LMF slags used in 

METSIM comminution model 
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The total comminution power required at each target grind size as estimated by 

the METSIM model is shown in Figure 3. This data is based on total mass throughput 

(Figure 3a), in which EAF and BOF slag are processed at four times the rate of LMF 

slag. Normalized mass throughput (Figure 3b) is the total power divided by mass flow 

rate. All slag types show increasing comminution power with decreasing P80, which 

increases sharply below 200 μm. The crushing power draw ranges from 1-7% of the total 

power required, showing that slag grinding will be the controlling process for 

optimization (Table A-1). On a total mass throughput basis, EAF and BOF slag have 

similar power requirements with a 10% difference at 50 μm and a 3% difference at 1000 

μm. On a normalized basis, the power draw follows the Wi values, descending from BOF 

to LMF, and the difference increases as the P80 decreases. The curves in Figure 3 were fit 

with the second order exponential decay given in Equation 2. This correlation yielded an 

R2>0.999, indicating accurate interpolation within the P80 range modeled. The terms of 

this equation are detailed in the Appendix in Table A-2. 

 

 

 
(a) 

 
Figure 3.  Total comminution power (crushing+grinding) versus P80 for three slag types 

based on (a) total mass throughput and (b) normalized mass throughput 
 



191 

 

 
(b) 

 
Figure 3.  Total comminution power (crushing+grinding) versus P80 for three slag types 

based on (a) total mass throughput and (b) normalized mass throughput 
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The primary concerns about slag grinding have been the issues of power (electric) 

consumption and carbon dioxide generation (emission) at the electric supply source. Both 

terms can be quantified as input into an overall valuation model. The cost of electric 

power is published each month by the U.S. Department of Energy in Electric Power 

Monthly (EPM). The retail price for electricity in the industrial sector based on the 

October 2007 EPM publication (12 month rolling average ending July 2007) is used in 

the valuation model.15 Conversion of energy consumption to carbon dioxide emissions is 

greatly dependent upon the energy source and varies by geographic region. The U.S. 

average, as published by the U.S. Environmental Protection Agency, of 0.704 kg carbon 

dioxide per kWh (considering power plant generation only, and not factoring 

transmission losses) can be applied to the comminution energy amount.16 The total 

amount of carbon dioxide emitted by the consumption of comminution electricity will be 

factored into the section on sequestration as an offset (e.g., negative sequestration). 
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CARBON DIOXIDE SEQUESTRATION 

 

Thermodynamically, carbon dioxide sequestration is a function of alkaline earth 

oxide content. In the slag sequestration study, the theoretical amount of carbon dioxide 

captured is calculated from the lime plus magnesia content.3 While full thermodynamic 

conversion of these oxides to carbonates can result in significant capture potential (i.e., 

9.0-11.2 kg carbon dioxide captured per tonne of liquid steel produced, which is 35-45% 

of that emitted from a mini-mill), the kinetic reaction rate limits the actual yield. The 

conversion rate is limited both by encapsulation of calcium and magnesium oxides by 

non-porous, non-reactive materials (i.e., silica, iron oxide, or alumina), and by locking of 

these oxides into less reactive phases (i.e., dicalcium silicate or calcium ferrite). The 

reaction rate can be significantly enhanced through particle size reduction and aqueous 

processing.4 Particle size reduction increases the surface area of the slag particles to 

expose encapsulated reactive phases, thus greatly increasing the carbonate conversion 

rate. Aqueous processing allows for stepwise leaching of the alkaline phases and 

subsequent conversion of the leachate to carbonate. The two-step process minimizes 

carbonate product layer build-up on the slag particles, which inhibits further conversion.  

Based on the size-by-size slag leaching and carbonization study, a two-stage 

reactor system was designed in METSIM to model industrial-scale slag sequestration.5 

Inputs to the model are the slag particle size distribution (produced from the METSIM 

grinding model) and slag chemical composition, which is listed in Table 3. In this model, 

only the calcium oxide fraction is considered for carbonation. The model simulates a two-

stage continuous processing system where water in Reactor 1 leaches the alkaline 

components and the leachate is sent to Reactor 2 for precipitation of carbonated through 

reaction with bubbled carbon dioxide. The leachate water is continuously recirculated to 

minimize the feed water requirement, and the precipitated carbonate is deposited onto the 

slag particles in Reactor 1. Both reactors operate at atmospheric pressure and temperature 

for a total processing time of twenty days. 

The two-stage sequestration METSIM model was first investigated using LMF 

slag at five particle sizes (20, 100, 200, 1000, and 10000 μm) that encompass the full 

distribution of particles produced by the grinding model. The resulting weight percent 



193 

 

carbonate (CaCO3) at each particle size was fit to Equation 3, which is applied to the 

ground slag, and assumes that calcium oxide is evenly distributed amongst the particle 

sizes. A Harris power fit was used for particles <1 mm and a simple power fit for 

particles >1 mm, resulting in excellent data correlation (R2>0.99). In Equation 3, Ci is the 

weight percent carbonation for particle size Pi (mm), and the terms a, b, and c are 

correlation coefficients. 

 

 

Table 3.  Slag Composition used in METSIM Sequestration Model 

Oxides EAF (8) BOF (2) LMF (3) 
CaO 32.44 40.71 49.43 
MgO 11.20 12.90 6.23 
FeO 26.85 21.68 5.61 
SiO2 13.95 11.65 12.96 
Al2O3 8.29 5.93 21.26 
MnO 5.37 4.59 1.06 
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The total amount of carbonation (wt.% CaCO3) for each particle size distribution 

(C) is calculated by Equation 4, which sums the product of each particles weight percent 

carbonation (Ci) and the amount (wt.% retained) in each size fraction (ni). Particle sizes 

ranged from 32-2870 μm in i=17 fractions. 
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The amount of carbon dioxide captured per hour (ċ, kg/hr) is then determined as a 

function of the total carbonation (C in weight percent), the molecular weight fraction of 

CO2 in CaCO3, and the mass flow rate of slag (m, tonne/hr), as shown in Equation 5. 
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The amount (kg/hr) of carbon dioxide captured by LMF slag for each P80 value 

was calculated directly from Equations 3-5. The same approach was used for EAF and 

BOF slag except that each Ci term in Equation 3 was multiplied by a composition factor 

reflecting these slags lower calcium oxide content. The composition factor is the fraction 

of calcium oxide in each slag based on the LMF slag composition (i.e., for 

EAF=32.44/49.43). The composition factor methodology was validated for both LMF 

and EAF slags in the METSIM sequestration model. Although the model was not 

validated with BOF slag, applying the composition modification factor is an appropriate 

first order approximation. 

Figure 4 shows the resulting carbon dioxide balance for each slag. Each graph 

shows, for each grind size of each respective slag, the amount of carbon dioxide captured 

by that slag (as calculated from Equations 3-5), the amount of dioxide emitted by the 

electric supply source (as a negative sequestration value), and the net carbon dioxide 

sequestered.. All amounts are shown on a normalized scale that is obtained by dividing ċ 

by the respective slag mass flow rate. In each graph, the data for slag-carbon dioxide 

capture was fit to a second-order exponential decay (see Table A-2 in the Appendix) with 

an R2>0.999, while the other two sets of points are connected by straight lines. The data 

for emission by power source can be fit to the preceding curve for the power consumed, 

and the net sequestered data is a sum of the other two lines. Both the EAF and BOF slags 

show similar profiles at slightly different magnitudes. The amount of carbon dioxide 

captured by the slag and the amount released by the power source both increase with 

decreasing P80. The amount captured is approximately three-seven times the amount 

released, resulting in a net positive amount of carbon dioxide sequestered for all slags. 

For EAF and BOF slag, the net amount sequestered peaks at a P80~100 μm. Below this 

size, the amount released from power consumption rises faster than the amount captured 

by the slag, resulting in a decrease in the net amount. Above this size, the increasing 

particle size hinders the capture rate, resulting in a decrease in the net amount 
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sequestered. LMF slag shows a positive net sequestration rate, but no peak within the 

range tested due to the low Wi yielding low power consumption, even at fine grind sizes.  

 

 

 
(a) 

 

 
(b) 

Figure 4.  Net carbon dioxide sequestered (slag capture-power source emission) for (a) 
EAF, (b) BOF, and (c) LMF slags versus grind size (P80) 
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(c) 

 
Figure 4.  Net carbon dioxide sequestered (slag capture-power source emission) for (a) 

EAF, (b) BOF, and (c) LMF slags versus grind size (P80) (cont.) 
 

 

The theoretical amount of carbon dioxide captured by each slag is shown in Table 

4 as a comparison to the peak values shown in Figure 4. While the predicted peak values 

are ~20% of the theoretical values due to the low kinetic reaction rate, the net amount of 

carbon dioxide sequestered is positive, indicating that slag grinding has positive 

environmental value. Work is ongoing to improve the kinetic reaction rate to increase the 

realized carbon dioxide sequestration rate. 

 

 

Table 4.  Comparison of Peak Theoretical and Actual Carbon Dioxide Sequestration 

Net CO2 Seq. (kg/tonne) EAF BOF LMF 
Theoretical 255 320 388 
Peak from Figure 4 50 67 92 

 

 

Sequestration values of carbon dioxide can be assigned through intercompany 

trading or open market exchange. For the valuation model, data from the Chicago 
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Climate Exchange (CCX), which trades in Carbon Financial Instrument (CFI) contracts, 

was used The October 2007 price is applied to each P80 value in Figure 4.17  

 

METAL RECOVERY 

 

The metal content of steelmaking slag was measured in the crushed product 

feeding the grindability test and in the ground product of the final period after the 

grindability test.6 In preparation for the grindability test; all slags were crushed (jaw/roll) 

to pass through a 3.36 mm sieve. Magnetic material liberated from crushing (>3.36 mm) 

was separated and set aside for subsequent analysis. After each grindability test, the 

magnetic fraction was separated on a size-by-size basis into 10 fractions from 106-3360 

μm, plus the <106 μm fraction as a whole. Figure 5 shows the particle size distribution of 

the magnetic fraction and Table 5 shows the total quantity of magnetic material in each 

slag. EAF and BOF slags have similar size distributions and total amounts of magnetic 

material, but EAF has slightly finer particles and more material that is magnetic in the 

finer fraction. LMF slag has a lower overall amount of magnetic material, but larger 

particle size. The more quiescent processing nature leading to less trapped metallic 

particles. Overall, ~90% of the magnetic particles were >106 μm, which aids in liberation 

and magnetic separation. 

From the magnetic fraction separated after crushing and the fraction separated 

after grinding, the amount of steel trapped in the slag was determined by melt separation.6 

Because it was simpler to handling in the induction furnace, quantitative analysis was 

performed only on the total magnetic fraction separated after crushing (>3.36 mm) and 

the total magnetic fraction separated after grinding (<3.36 mm). The material from 

crushing stratified well upon melting and separated cleanly, leading to accurate 

determination of the weight fraction metallic. The post-ground powder magnetic fraction 

was less accurate because some of the sample did not fully stratify upon melting. Table 6 

shows the weight percent metallic in each magnetic fraction analyzed. The grade of the 

magnetic fraction after crushing is very high at 86-96% metallic. However, the grade of 

the post-grind magnetic fraction is less at 61-72% metallic. This difference is due to the 
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higher surface area which results in a higher iron oxide content, and incomplete liberation 

from grinding, which leads to slag oxides remaining bound to the metallic particles. 

 

 

 
Figure 5.  Particle size distribution of magnetic fraction in three types of steelmaking 

slags 
 

 

Table 5.  Quantity of Magnetic Material in Steelmaking Slag 

Wt.% Magnetic EAF BOF LMF 
>106 μm 8.61 8.81 5.92
<106 μm 1.14 0.67 0.17
Total 9.75 9.48 6.09

 

 

Table 6.  Metal Content of Magnetic Fraction in Slag 

Wt.% Metallic EAF BOF LMF 
>3.36 mm 86.1 88.1 95.5
<3.36 mm 60.7 71.9 72.0

 

 

The amount of metallic material liberated from grinding is a function of 

individual size fraction magnetic content (Figure 5), the amount of slag in each size 
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fraction, and the metallic content of the magnetic fraction. The liberated magnetic 

fraction is first calculated according to Equation 6, where Φi is the weight percent of 

magnetic material liberated, Bi is the magnetic content in weight percent, and qi is the 

weight percent passing, all of size fraction i. The amount of metal liberated at that size 

fraction (θi, weight percent) is given by Equation 7, which is the product of the weight 

percent magnetic material liberated and the metallic grade of that magnetic fraction (Xi). 

The total weight percent of magnetic material liberated (Φ) and corresponding amount of 

metallic material liberated (θ), are calculated by summing Equations 6 and 7 over the 

complete particle size range. 
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The mass flow rate of liberated metal (S, tonne/hr) is given by Equation 8, where 

m is the mass flow rate of slag (tonne/hr) and β is the weight percent of magnetic material 

present in the slag. The mass flow rate is normalized to kg/tonne for comparison analysis. 
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A plot of metal recovery (kg/tonne), normalized for each slag type, versus target 

grind size is shown in Figure 6. The results for the five P80 sizes studied are shown as 

individual points, which are then fit to a second-order exponential decay correlation with 

R2>0.999 (terms are defined in Table A-2 in the Appendix). Both EAF and BOF slags 

show similar trends, in which metal recovery rapidly decreasing as P80 increases. The 

BOF slag trends at ~10-15% higher recovery than EAF slag over the entire range due to a 

higher amount of metal in the larger size fractions (Figure 5) and a higher quality of 

recovered magnetic fraction (Table 6), even though the overall amount of magnetic 
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material is lower (Table 5). Recovery of metal from LMF slag is less reliant on grind size 

(in the grind size range studied) because of the high content in the larger particle size 

fraction. On a normalized basis, more metal can be recovered from LMF slag than EAF 

slag at grind sizes >356 μm and BOF slag at grind sizes >770 μm.  

 

 

 
Figure 6.  Amount of recovered metal liberated from steelmaking slag by target grind P80 

 

 

Valuation of the recovered metal is critical in determining the feasibility of slag 

grinding. While the metal in the particles should be similar in composition to other pit 

scrap, the smaller size of particles may require more handling and preparation as furnace 

feedstock. Recovered magnetic particles <1 mm may require briquetting to enable proper 

handling. In addition, the associated non-metallic materials (i.e., surface oxides and 

mechanically trapped slag) will take up space in the charge bucket without adding value 

to the melt. The recovered magnetic/metallic particles are treated as machine shop 

turnings, then devalued by 25% to estimate for particulate processing and reduced 

quality. The value used for machine shop turns is available through American Metals 

Market. The October 2007 monthly average, based on St. Louis, Missouri consumer 

purchase and converted to $/tonne, is used in the valuation model.18  
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VALUATION ANALYSIS 

 

Valuation of the slag grinding process is determined through a cost analysis 

model. Input from the power consumption curve, carbon dioxide sequestration curve, and 

the metal recovery curve for each slag type are multiplied by their respective commodity 

prices given in Table 7, then summed to give the operating cost in $/hr. Dividing this 

result by the slag mass flow rate (m, tonne/hr) normalizes the values to provide the 

operating cost in $/tonne. Equation 9 shows the final expression applied to the P80 range 

from 50-1000 μm. All factors are shown in terms of operating cost hence the use of 

carbon dioxide generation (negative sequestration), and subtraction of metal recovery 

price. Equipment capital costs are not factored into this analysis. Peak P80 values for each 

curve were found by numerical analysis. 

 

 

Table 7.  Commodity Prices Used in Slag Grinding Valuation Model 

 Electricity 
($/kWh) 

CO2 Emissions 
($/tonne) 

Steel Scrap 
($/tonne) 

Basis EPM15

Industrial Sector
July 2007 (12 month)

CCX17

CFI Contract
October 2007

AMM18 
St. Louis Consumer
October 2007 Avg.

Cost $0.0627 $1.90 $141.17
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The results of the cost analysis are presented in Figure 7, which shows net value 

normalized to $/tonne versus grind size (P80). EAF and BOF slags show similar, nearly 
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parallel curves, with BOF slag at a ~15% higher net value than EAF slag. Both show 

similar peak P80 sizes (112 versus 122 μm), which indicates that maximum value is 

achieved by grinding both slags to similar sizes. The net value drops off sharply when P80 

decreases to less than the peak value because rising power costs overtaking metal 

recovery. The net value also drops off at sizes larger than the peak P80 due to decreasing 

metal recovery. From peak size to largest P80, the net value drops ~30%, indicating that 

accurate determination of metal content and distribution in each steel mill’s slag is 

important in realizing the full potential of slag grinding for BOF and EAF slag. LMF slag 

has a peak at 369 μm and shows much less sensitivity to grind size. There is a sharp drop 

at sizes below 200 μm due to increased power consumption and negligible metal 

recovery, but from 200-1000 μm, the net value varied ~3%, indicating that the grind size 

is not that critical. For ease of handling the magnetic/metallic product, a larger grind size 

may be chosen for realization of nearly full net value. Grinding BOF slag below 700 μm 

or EAF slag below 300 μm provides more value than grinding LMF slag. 

 

 

 
Figure 7.  Net value from grinding versus P80 for steelmaking slags based on power 

consumption, carbon dioxide sequestration, and metal recovery 
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In terms of magnitude, the most significant factor in valuation is metal recovery, 

which accounts for 76-90% of the cost as P80 increases from 50-1000 μm. Power cost and 

carbon dioxide generation account for 23-9% and ~1%, respectively, over the same 

range. The peak P80 values decreases as scrap price increases or electricity cost decreases. 

Carbon dioxide credit/value is not a primary factor in direct economic valuation of the 

process as detailed. However, for environmental assessment this process does provide a 

net positive sequestration, which may have other benefits in addition to direct economic 

impact. Future emission regulations may also change the magnitude of the carbon dioxide 

sequestration term significantly.  

 

CONCLUSIONS 

 

The feasibility of processing EAF, BOF, and LMF slags for metal recovery and 

carbon dioxide sequestration was evaluated using a combination of grindability and 

sequestration tests on industrial slags, and modeling studies using METSIM. Slag 

comminution power consumption, associated carbon dioxide generation from the power 

supply source, carbon dioxide sequestration by the comminuted slag, and metal recovery 

from the comminuted slag were evaluated within a grind size P80 range of 50-1000 μm. 

Input data for the METSIM grinding and sequestration models came from experimental 

slag grindability tests, size-by-size metal recovery analysis, and aqueous carbon dioxide 

sequestration measurements. The results of this study yielded the following conclusions. 

1. Power consumption increased with decreasing grind size for all slags, with the 

magnitude ranking a function of work index value. The values ranged from 6-8 

kWh/tonne at 1000 μm to 35-45 kWh/tonne at 50 μm.  

2. Slag-carbon dioxide capture increased with decreasing grind size for all slags and the 

overall amount captured was a function of calcium oxide content. After factoring in 

the carbon dioxide generated from the power supply source, all slags exhibited a 

positive net sequestration benefit, achieving a maximum of 50-90 kg carbon 

dioxide/tonne at ~100 μm.  

3. Metal recovery increased with decreasing grind size and was a function of overall 

metal content and particle distribution. LMF slag showed much less sensitivity to 
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grind size than did EAF and BOF slags due to the higher metallic content in its larger 

size fraction. 

4. Valuation analysis using commodity index data resulted in peak curves for all slags. 

EAF and BOF slags exhibited sharp maximum values at 112 μm and 122 μm, 

respectively, with rapid value decreases at larger or smaller sizes due to increased 

grinding cost or decreased metal recovery. LMF slag exhibited much less sensitivity 

to grind size, with ~3% variation from its peak size of 369 μm over most of the 

studied range.  

5. In terms of fraction of the overall valuation, metal recovery is the most significant 

factor, with 3-10 times the magnitude of power consumption. Carbon dioxide 

credit/value is not a primary factor in direct economic valuation of the process as 

detailed. 

This work is part of an overall study regarding geological sequestration by 

hydrous carbonate formation in steelmaking slag. Slag grinding was investigated because 

particle size was found to be a critical factor in accelerating the kinetic reaction rate. 

 

ACKNOWLEDGEMENTS 

 

This paper was prepared as an account of work sponsored by the U.S. Department 

of Energy, in cooperation with the American Iron and Steel Institute (AISI) and its 

participating companies, under Agreement DE-FC36-97ID13554. Such support does not 

constitute an endorsement by DOE or AISI of the views expressed in the article. The 

authors also acknowledge the support of ArcelorMittal Steel, Gallatin Steel, IPSCO, 

Nucor, and US Steel for their support in supplying slag samples and analysis. 

 

REFERENCES 

 

1. “Iron and Steel Slag Statistics and Information.” U.S. Department of the Interior, U.S. 
Geological Survey, Minerals Information, June 2005, 

  http://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel_slag/ 
2. H.G. van Oss, “Slag-iron and steel.” U.S. Geological Survey Minerals Yearbook 

(2003): 69.1-69.3, June 2005, 
  http://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel_slag/islagmyb03.pdf  

http://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel_slag/�
http://minerals.usgs.gov/minerals/pubs/commodity/iron_&_steel_slag/islagmyb03.pdf�


205 

 

3. C.H. Rawlins, V.L. Richards, K.D. Peaslee, and S.N. Lekakh. “Sequestration of CO2 
from Steelmaking Offgas by Carbonate Formation with Slag.” In: Proceedings of the 
AISTech 2006 Conference, May 1-4, 2006; Cleveland, OH, U.S. Warrendale, PA, 
U.S.: Association for Iron and Steel Technology. 

4. S.N. Lekakh, C.H. Rawlins, D.G.C. Robertson, V.L. Richards, and K.D. Peaslee, 
“Aqueous Leaching and Carbonization of Steelmaking Slag for Geological 
Sequestration of Carbon Dioxide,” Metallurgical and Materials Transactions B, (on-
line), Jan. 2008. 

5. S.N. Lekakh, D.G.C. Robertson, C.H. Rawlins, V.L. Richards, and K.D. Peaslee, 
“Investigation of a Two-Stage Reactor for Carbon Dioxide Sequestration Using 
Steelmaking Slag,” Metallurgical and Materials Transactions B, accepted for 
publication Feb. 2008. 

6. C.H. Rawlins, “Grindability Study of Steelmaking Slag for Size-by-Size Recovery of 
Free Metal,” submitted for 2008 SME Annual Meeting and Exhibit, Feb. 2008. 

7. D. Rose, “Granulated Blast Furnace Slag Grinding,” World Cement, September 2000, 
pp. 49-52. 

8. D. Longhurst, and M. Weihrauch, “Slag Grinding: Weighing Up the Options,” World 
Cement, July 2001, pp. 123-126. 

9. W. Stoiber, “Comminution Technology and Energy Consumption, Part 2,” Cement 
International, Vol. 1, No. 6, 2003, pp. 90-97. 

10. H. Shen, and E. Forssberg, “An overview of recovery of metals from slags,” Waste 
Management, Vol. 23, 2003, pp. 933-949. 

11. Society of Mining Engineers, SME Mineral Processing Handbook, Ed. N.L. Weiss. 
New York: American Institute of Mining, Metallurgical, and Petroleum Engineers, 
Inc., 1985, pp. 30-71. 

12. F.C. Bond, “Crushing & Grinding Calculations Part I,” British Chemical 
Engineering, Vol. 6, No. 6, June 1961, pp. 378-385. 

13. F.C. Bond, “Crushing & Grinding Calculations Part II,” British Chemical 
Engineering, Vol. 6, No. 8, August 1961, pp. 543-548. 

14. C.A. Rowland, “Selection of Rod Mills, Ball Mills and Regrind Mills,” Mineral 
Processing Plant Design, Practice, and Control Proceedings, Volume 1, Eds. A.L. 
Mular, D.N. Halbe, and D.J. Barratt. Littleton, Colorado: Society for Mining, 
Metallurgy, and Exploration, Inc., 2002, pp. 710-754. 

15. “Electric Power Monthly October 2007, with Data for July 2007,” Energy 
Information Administration, U.S. Department of Energy, p. 106, July 2007  
http://www.eia.doe.gov/cneaf/electricity/epm/epm_sum.html. 

16. “Useful Facts & Figures,” Energy Star, U.S. Environmental Protection Agency & 
U.S. Department of Energy, July 2007 
http://www.energystar.gov/index.cfm?c=energy_awareness.bus_energy_use. 

17. Chicago Climate Exchange, July 2007, http://www.chicagoclimateexchange.com/ 
18. American Metals Market, July 2007, http://www.amm.com/ 

 

 

 

http://www.eia.doe.gov/cneaf/electricity/epm/epm_sum.html�
http://www.energystar.gov/index.cfm?c=energy_awareness.bus_energy_use�
http://www.chicagoclimateexchange.com/�
http://www.amm.com/�


206 

 

APPENDIX 

 

Table A-1.  Power and Dimension Parameters from Slag Grinding Circuit Model 

P80 
(μm) 

Crusher 
Power 
Draw 
(kW) 

Ball Mill 
Diameter 

 
(m) 

Ball Mill 
Length 

 
(m) 

Top  
Ball Size 

 
(mm) 

Ball Mill 
Power 
Draw 
(kW) 

Screen 
Aperture 

 
(mm) 

EAF   
  50 18.4 3.63 7.39 75 1977 1.5
  100 18.4 3.32 6.30 65 1373 1.5
  200 18.4 2.89 6.23 75 953 2.0
  500 18.4 2.44 5.39 50 568 2.5
  1000 18.4 2.14 4.66 50 367 3.5
BOF   
  50 18.3 3.78 7.44 75 2163 1.5
  100 18.3 3.32 6.70 75 1491 1.5
  200 18.3 2.89 6.71 75 1026 2.0
  500 18.3 2.55 5.13 65 595 2.5
  1000 18.3 2.14 4.81 50 378 3.5
LMF   
  50 6.9 2.24 4.63 50 423 1.0
  100 6.9 1.98 4.63 50 306 1.0
  200 6.9 1.83 3.88 50 215 1.0
  500 6.9 1.52 3.52 50 128 1.5
  1000 6.9 1.37 2.79 50 81 2.5

 

 

Table A-2.  Terms from Second Order Decay Correlation 
280

2
180

1
tPtP

o eAeAyy =− ++=  

y yo A1 t1 A2 t2 
Power (kW/hr) 
  EAF 
  BOF 
  LMF 

321.8
333.7
70.13

1104
1241
387

349.6
336.1
51.82

 
2137 
2385 
243.1 

45.81
44.65
380.6

Slag-CO2 Capture (kg/tonne) 
  EAF 
  BOF 
  LMF 

21.90
33.73
29.68

46.21
34.78
66.36

627.0
395.6
871.8

 
16.38 
34.78 
33.19 

149.7
404.9
151.5

Metal Recovered (tonne/hr) 
  EAF 
  BOF 
  LMF 

1.117
0.561
0.376

1.391
0.908
0.097

1256
339.8
1065

 
0.643 
2.029 
0.142 

208.5
2414
3497
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SECTION 

3. CONCLUSIONS 

This dissertation begins the investigation of carbon dioxide sequestration using 

steelmaking slag. It is my hope that steel producers will use this information to make 

informed and accurate decisions regarding more thorough utilization of their slag co-

product. The following concepts are the key findings from this research project. 

1. A slag-carbon dioxide reactor should be installed directly after the baghouse, 

with a maximum operating temperature <300°C. The gas composition at this point will 

average 4-5% carbon dioxide, with a maximum content <15%. 

2. Carbonation reaction rate is primarily governed by particle size, which is the 

governing factor for surface area. Grinding can be used to decrease the particle size, and 

is itself carbon dioxide sequestration net positive (i.e., more CO2 is sequestered by the 

slag than is released from the energy source). The cost for grinding can be recouped by 

recovering the liberated metal particles. The critical grind size (e.g., size at which 

maximum economic return is realized) for BOF and EAF slags is between 100-150 μm, 

while LMF has a larger critical grind size at 350-400 μm. 

3. Aqueous processing proceeds much faster than dry processing. An aqueous-

based system allows calcium to be leached from the slag particle, then react with carbon 

dioxide in solution to form calcium carbonate, while a dry system can only form calcium 

carbonate on the particle surface. The dense product layer forms a barrier that inhibits 

carbonation by decreasing diffusivity of the reacting ions. This same effect can take place 

in a batch aqueous system where the calcium carbonate precipitates on the slag particle 

surface; however, a continuous system allows separate leaching and carbonation to occur.  

4. Leaching occurs faster than carbonation, and both processes are described by 

the shrinking core model. A minimum pH of 8.5 is critical to realize fast carbonation 

rates, while carbonic anhydrase enzyme will catalyze the reaction at pH>10.33. The best 

results achieved in this project show 47% of the theoretical amount of carbonation can be 

achieved at 24 hours in a reactor using 100 μm slag. This amount is equal to 0.5% and 

2.4% of the carbon dioxide emitted by integrated and mini-mills, respectively. 
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Table A.1.  Elemental Analysis of EAF Slags as Determined by XRF (Wt.%) 

Elements 
(as oxides) A1α A1β D1α D1β E1α E2α E1γ-1 E2γ-1 
Slag Type EAF EAF EAF EAF EAF EAF EAF EAF 
CaO 27.34 31.22 33.02 34.49 31.91 35.86 32.08 33.59
MgO 10.55 11.61 10.98 11.76 12.85 10.13 9.41 12.31
FeO 30.05 24.96 27.93 25.76 20.20 27.98 26.36 31.59
SiO2 14.84 13.86 12.43 15.08 17.32 9.93 19.41 8.72
Al2O3 7.02 8.61 8.74 5.56 6.79 9.22 8.56 11.81
MnO 6.51 6.07 3.98 4.85 7.07 4.29 6.76 3.40
TiO2 0.39 0.42 0.50 0.55 0.49 0.49 0.45 0.43
ZrO2 B.L. 0.03 B.L. B.L. 0.16 0.02 - - 
Cr2O3 2.48 1.98 0.87 0.78 1.62 0.95 2.24 0.96
K2O 0.05 B.L. B.L. B.L. B.L. B.L. - - 
Na2O B.L. B.L. B.L. B.L. B.L. B.L. - - 
S 0.16 0.27 0.21 0.08 0.22 0.30 0.57 0.90
P 0.16 0.16 0.25 0.32 0.18 0.28 0.47 0.59
C 0.11 0.26 0.22 B.L. 0.32 B.L. - - 
Sr B.L. B.L. B.L. B.L. B.L. B.L. - - 
F 0.33 0.54 0.87 0.75 0.86 0.55 - - 

B.L.=Below Limit 

 

 

Table A.2.  Elemental Analysis of BOF/LMF Slags as Determined by XRF (Wt.%) 

Elements 
(as oxides) A1γ E1β-1 E2β-1 B1α C1α 
Slag Type LMF LMF LMF BOF BOF 
CaO 47.02 51.32 49.95 40.90 40.53 
MgO 10.03 4.32 4.32 11.98 13.81 
FeO 5.02 5.54 6.28 21.72 21.65 
SiO2 6.07 28.28 4.53 12.89 10.42 
Al2O3 26.55 4.91 32.32 5.22 6.65 
MnO 1.04 1.31 0.85 4.67 4.50 
TiO2 0.41 0.27 0.34 0.68 0.47 
ZrO2 0.20 - - 0.08 0.28 
Cr2O3 0.25 - - 0.31 0.42 
K2O B.L. 0.01 0.01 B.L. B.L. 
Na2O B.L. 0.02 0.01 B.L. B.L. 
S 1.35 1.60 1.03 0.12 0.11 
P 0.02 0.22 0.01 0.42 0.45 
C 0.38 - - 0.67 0.40 
Sr B.L. - - B.L. B.L. 
F 1.66 - - 0.33 0.33 
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Figure A.1.  EDS phase map and analysis of slag E1γ (EAF) 

 

 

 
Figure A.2.  EDS phase map and analysis of slag E1β (LMF) 
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Figure A.3.  EDS phase map and analysis of slag E2γ (EAF) 

 

 

 
Figure A.4.  EDS phase map and analysis of slag E2β (LMF) 

 

 

 

Standardless EDS Analysis 
58.1% CaO 
6.5% FeO 
22.0% Al2O3 
13.4% SiO2 
 

Fe/Mn 

Al2O3 

Al2O3 

MgO 



212 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B. 

ANALYSIS OF THERMOGRAVIMETRIC REACTOR RESULTS 

 

 



213 

 

The data from Figure 2.7a can be analyzed by plotting the data on a log-log scale. 

Figure B.1 shows the carbonation of CaO in dry (Figure B.1a) and humidified (Figure 

B.1b) CO2 from 200-500°C during a six-hour reaction time.  

 

 

 
(a) 

 

 
(b) 

 
Figure B.1.  Carbonation of CaO in (a) dry and (b) humidified gas streams (1 atm.) 
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Two distinct linear regions can be identified for each data set. An initial steep 

slope occurs from 100-200 seconds for the dry reaction and from 1000-2000 seconds for 

the humidified reaction. The slopes of each curve decrease after this time. Rapid 

carbonation takes place due to an initial mechanism, which is hypothesized to be the 

chemical reaction between CO2 and the CaO at the surface of the test disc. After the 

initial CaO is consumed, diffusion of CO2 through the CaCO3 product layer must take 

place for the reaction to proceed. Carbonation therefore takes place at a slower rate, 

resulting in a decreased slope. 

An Arrhenius analysis can be used to determine the activation energy of each 

mechanism. Figure B.2 shows a plot of 1/T (reaction temperature in Kelvin) versus 

ln(1/t), where t is the time in seconds to reach 0.3% carbonation for the first mechanism 

curve and 3.0% carbonation for the second mechanism curve. The slope of each curve 

yields the activation energy for each mechanism. The activation energy of the initial 

(chemical reaction) mechanism is 46.1 kJ/mole and 38.1 kJ/mole for the dry and 

humidified systems, respectively. The activation energy of the second (diffusion) 

mechanism is 121.5 kJ/mole and 63.9 kJ/mole for the dry and humidified systems, 

respectively. 

 

 

 
Figure B.2.  Arrhenius plots determined from the CaO carbonation data 
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