134,640 research outputs found

    A Mean Field Approach for Optimization in Particle Systems and Applications

    Get PDF
    This paper investigates the limit behavior of Markov decision processes made of independent particles evolving in a common environment, when the number of particles goes to infinity. In the finite horizon case or with a discounted cost and an infinite horizon, we show that when the number of particles becomes large, the optimal cost of the system converges to the optimal cost of a deterministic system. Convergence also holds for optimal policies. We further provide insights on the speed of convergence by proving several central limits theorems for the cost and the state of the Markov decision process with explicit formulas for the limit. Then, our framework is applied to a brokering problem in grid computing. Several simulations with growing numbers of processors are reported. They compare the performance of the optimal policy of the limit system used in the finite case with classical policies by measuring its asymptotic gain

    A Mean Field Approach for Optimization in Particles Systems and Applications

    Get PDF
    This paper investigates the limit behavior of Markov Decision Processes (MDPs) made of independent particles evolving in a common environment, when the number of particles goes to infinity. In the finite horizon case or with a discounted cost and an infinite horizon, we show that when the number of particles becomes large, the optimal cost of the system converges almost surely to the optimal cost of a discrete deterministic system (the ``optimal mean field''). Convergence also holds for optimal policies. We further provide insights on the speed of convergence by proving several central limits theorems for the cost and the state of the Markov decision process with explicit formulas for the variance of the limit Gaussian laws. Then, our framework is applied to a brokering problem in grid computing. The optimal policy for the limit deterministic system is computed explicitly. Several simulations with growing numbers of processors are reported. They compare the performance of the optimal policy of the limit system used in the finite case with classical policies (such as Join the Shortest Queue) by measuring its asymptotic gain as well as the threshold above which it starts outperforming classical policies

    Mean-field optimal control and optimality conditions in the space of probability measures

    Get PDF
    We derive a framework to compute optimal controls for problems with states in the space of probability measures. Since many optimal control problems constrained by a system of ordinary differential equations (ODE) modelling interacting particles converge to optimal control problems constrained by a partial differential equation (PDE) in the mean-field limit, it is interesting to have a calculus directly on the mesoscopic level of probability measures which allows us to derive the corresponding first-order optimality system. In addition to this new calculus, we provide relations for the resulting system to the first-order optimality system derived on the particle level, and the first-order optimality system based on L2L^2-calculus under additional regularity assumptions. We further justify the use of the L2L^2-adjoint in numerical simulations by establishing a link between the adjoint in the space of probability measures and the adjoint corresponding to L2L^2-calculus. Moreover, we prove a convergence rate for the convergence of the optimal controls corresponding to the particle formulation to the optimal controls of the mean-field problem as the number of particles tends to infinity

    Instantaneous control of interacting particle systems in the mean-field limit

    Full text link
    Controlling large particle systems in collective dynamics by a few agents is a subject of high practical importance, e.g., in evacuation dynamics. In this paper we study an instantaneous control approach to steer an interacting particle system into a certain spatial region by repulsive forces from a few external agents, which might be interpreted as shepherd dogs leading sheep to their home. We introduce an appropriate mathematical model and the corresponding optimization problem. In particular, we are interested in the interaction of numerous particles, which can be approximated by a mean-field equation. Due to the high-dimensional phase space this will require a tailored optimization strategy. The arising control problems are solved using adjoint information to compute the descent directions. Numerical results on the microscopic and the macroscopic level indicate the convergence of optimal controls and optimal states in the mean-field limit,i.e., for an increasing number of particles.Comment: arXiv admin note: substantial text overlap with arXiv:1610.0132
    • …
    corecore