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MEAN-FIELD OPTIMAL CONTROL AND OPTIMALITY
CONDITIONS IN THE SPACE OF PROBABILITY MEASURES\ast 

MARTIN BURGER\dagger , REN\'E PINNAU\ddagger , CLAUDIA TOTZECK\ddagger , AND OLIVER TSE\S 

Abstract. We derive a framework to compute optimal controls for problems with states in the
space of probability measures. Since many optimal control problems constrained by a system of
ordinary differential equations modeling interacting particles converge to optimal control problems
constrained by a partial differential equation in the mean-field limit, it is interesting to have a calculus
directly on the mesoscopic level of probability measures which allows us to derive the corresponding
first-order optimality system. In addition to this new calculus, we provide relations for the resulting
system to the first-order optimality system derived on the particle level and the first-order optimality
system based on L2-calculus under additional regularity assumptions. We further justify the use of
the L2-adjoint in numerical simulations by establishing a link between the adjoint in the space of
probability measures and the adjoint corresponding to L2-calculus. Moreover, we prove a convergence
rate for the convergence of the optimal controls corresponding to the particle formulation to the
optimal controls of the mean-field problem as the number of particles tends to infinity.

Key words. optimal control with ODE/PDE constraints, interacting particle systems, mean-
field limits

AMS subject classifications. 49K15, 49K20

DOI. 10.1137/19M1249461

1. Introduction. In the past few years, the growing interest in the (optimal)
control of interacting particle systems and their corresponding mean-field limits has
led to many contributions on their numerical behavior (see, e.g., [9, 27]) as well as their
analytical properties, e.g., [6, 17]. They can be found in various fields of applications,
for example, physical or biological models like crowd dynamics [5, 9, 16, 25], consensus
formation [4], or even global optimization [10, 24]. Meanwhile, there are also first
approaches for stochastic particle systems available [7, 23].

Since there are several points of view on this subject, the analytical techniques
vary from standard ODE and PDE theory over optimal transport to measure-valued
solutions. This induces also different variants for the derivation of first-order opti-
mality conditions and/or gradient information, which clearly also has some impact on
the design of appropriate numerical algorithms for the solution of the optimal control
problems at hand.

Before we discuss the novelty and advantages of our approach we recall some
recent contributions to the topic. In [17] the notion of mean-field optimal control
problems was introduced. The authors combine well-known mean-field limit results
with \Gamma -convergence to prove the convergence of optimal controls of the microscopic
problem with N interacting particles to a solution of the corresponding mean-field
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978 M. BURGER, R. PINNAU, C. TOTZECK, AND O. TSE

optimal controls. The article focuses on sparse controls and Caratheodory solutions,
where the controls act linearly and additive on the dynamic of the interacting parti-
cles. In contrast to the present paper, there is no discussion of first-order optimality
conditions, no statement of adjoints, and no discussion of a convergence rate.

Based on these observations, the derivation of a mean-field Pontryagin maximum
principle was shown in [6]. Starting from a Hamiltonian point of view, subdifferential
calculus is employed to derive a gradient flow structure and a corresponding forward-
backward system. Key ingredients of the proofs are semiconvexity of the functionals
along geodesics and a rescaling of the adjoint variable. The article considers a dynam-
ical system of interacting particles and additionally some policy makers. The controls
enter the dynamics through the policy makers, which remain finite as the number of
interacting particles tends to infinity. To illustrate their methodology, explicit com-
putations for the Cucker--Smale dynamics were presented. As in [17], discussions on
the optimality conditions, adjoints or convergence rate were absent.

Another Pontryagin maximum principle was derived via subdifferential calculus
on the space of probability measures and needle-like variations in [7] for a nonlocal
transport equation, where the control variable enters linearly in the velocity field
of the transport equation. The resulting first-order optimality system consists of a
forward-backward equation similar to the one in [6], and the corresponding measure
is identified by disintegration. Supplementary to the needle-like variations, we pro-
pose a different approach for the derivation of a corresponding linear system and, as
a by-product, provide a direct link between the particle adjoint and its mean-field
counterpart. Furthermore, the velocity fields considered in the present paper are
more general. In addition, we provide a convergence rate as the number of interacting
particles tends to infinity.

In contrast to these analytical results, [19] approaches the problem formally with
techniques from the field of optimization with PDE constraints. All assumptions
and computations are formal and the mean-field limit is established via a BBGKY
approach. Adjoints are dervided with formal L2-calculus and closed by moments
which can be interpreted as conditional expectations. A similar formal derivation can
be found in [1].

To summarize, the aim of our contribution is multifold:
\bullet We take an applied viewpoint and establish first-order optimality conditions,
in the KKT sense, on the space of probability measures via a Lagrangian ap-
proach which can be used for numerical implementations. While the deriva-
tion of the linearized system (see (24) in Lemma 3.4) bears similarities to
those made in [7], we provide an alternative strategy that circumvents the
explicit use of Lagrangian flows. Additionally, we provide a characterization
of the corresponding adjoint system, which takes the form of a momentum
equation (see Theorem 3.11). As the considerations can be lifted in a straight-
forward manner to second-order dynamical systems, we rigorously justify the
numerical results shown in [9].

\bullet We build the bridge between the Hamiltonian-based results discussed in [1,
6, 7, 17] and the ones obtained by Lagrangian approaches (see the chart in
section 4).

\bullet We prove the convergence, with rates, of the sequence of optimal controls, as
the number of interacting particles tends to infinity (cf. Theorem 5.1). The
convergence crucially relies on the optimality system obtained in (1).

The main ideas are discussed in the following model example before we present
our results in full details.
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MEAN-FIELD OPTIMAL CONTROL 979

1.1. An illustrative example: Controlling a single particle. Let us start
with an illustrative example from classical optimal control in order to illustrate the
idea without the complication of a mean-field limit. We denote the dimension of
the state space by d \geq 1 and the time interval of interest is [0, T ] for some T > 0.
We assume that the control variable u acts on the velocity of a single particle with
trajectory xt \in \BbbR d for t \in [0, T ] and we want to optimize a given functional depending
on the trajectory, i.e.,

(x, u) = argmin

\int T

0

g(xt) dt subject to
d

dt
xt = v(xt, ut),(1)

where g and v are given, sufficiently regular functions.
Then, the standard Pontryagin maximum principle yields the existence of an

adjoint variable \xi satisfying

d

dt
\xi t = \nabla xg(xt) +\nabla xv(xt, ut)\xi t(2)

with terminal condition \xi T = 0.
Moreover, the control u satisfies the optimality condition

\nabla uv(xt, ut) \cdot \xi t = 0 a.e. in (0, T ).

These conditions can be translated into the calculation of a saddle-point of the mi-
croscopic Lagrangian

\scrL micro(x, u, \xi ) =

\int T

0

g(xt) dt+

\int T

0

\biggl( 
d

dt
xt  - v(xt, ut)

\biggr) 
\cdot \xi t dt.(3)

On the other hand, the discrete ODE can be translated into a macroscopic formulation
via the method of characteristics: with initial value \mu 0 = \delta x0

the concentrated measure
\mu t = \delta xt

is the unique solution of

\partial t\mu t +\nabla x \cdot (v(xt, ut)\mu t) = 0.(4)

Since all measures are concentrated at xt we can reinterpret ut as the evaluation of a
feedback control u(x, t) at x = xt and equivalently obtain

\partial t\mu t +\nabla x \cdot (v(x, ut)\mu t) = 0, \mu 0 = \delta x(0).(5)

Since \int T

0

g(xt) dt =

\int T

0

\langle g, \mu t\rangle dt,

we can formulate an optimal control problem at the macroscopic level for the measure
\mu and the control variable u, i.e.,

(\mu , u) = argmin

\int T

0

\langle g, \mu t\rangle dt subject to (5).(6)

This macroscopic optimal control problem is in fact equivalent to the microscopic
one for a single particle, since we can choose the state space as the Banach space of
Radon measures and the control space as an appropriate space of reasonably smooth
functions on \BbbR d \times (0, T ). The uniqueness of solutions to the transport equation and
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980 M. BURGER, R. PINNAU, C. TOTZECK, AND O. TSE

the special initial value will always yield a concentrated measure and the identification
ut = u(xt, t) brings us back to the microscopic control.

However, with the macroscopic formulation we have another option to derive
optimality conditions in these larger spaces, based on the Lagrangian

\scrL macro(\mu , u, \varphi ) =

\int T

0

\langle g, \mu t\rangle dt+
\int T

0

\langle \varphi , \partial t\mu t +\nabla x \cdot (v(x, ut)\mu t)\rangle dt.(7)

Then, the macroscopic adjoint equation becomes

\partial t\varphi + v(x, ut) \cdot \nabla x\varphi = 0(8)

and the optimality condition is given by

 - \langle \nabla x\varphi ,\nabla uv(x, ut)\mu t\rangle = 0.

Due to the equivalence of the microscopic and macroscopic optimal control problem
it is natural to ask for the relation between the adjoint variables \xi and \varphi , which is not
obvious at a first glance and yet is only very little discussed. For first results in this
direction see [19]. Using the special structure of the solution \mu t and the identification
with the microscopic control we can rewrite the optimality condition as

\nabla uv(xt, ut) \cdot ( - \nabla x\varphi (xt, t)) = 0,

which induces the identification

\xi t =  - \nabla x\varphi (xt, t).(9)

Indeed, the method of characteristics confirms that  - \nabla x\varphi (xt, t) satisfies the micro-
scopic adjoint equation. This becomes more apparent if we consider only variations of
\mu that respect the nonnegativity and mass one condition of the probability measure,
i.e.,

\mu \prime =  - \nabla \cdot q,

with a vector-valued measure q being absolutely continuous with respect to \mu . Then,
an integration by parts argument directly reveals the relation to  - \nabla \varphi .

By using variations of this kind we reinterpret the state space as a Riemannian
manifold of Borel probability measures equipped with the 2-Wasserstein distance in-
stead of the flat Banach space of Radon measures. The analysis of particle systems and
limiting nonlinear partial differential equations in the 2-Wasserstein distance has been
a quite fruitful field of study in recent years following the seminal papers [20, 22]. It
is hence highly overdue to study such an approach also in the optimal control setting.

We mention that the values of \varphi outside the trajectory are irrelevant for the
specific control problem. Solving

\partial t\varphi + v(\cdot , ut) \cdot \nabla x\varphi = 0, \nabla uv(\cdot , ut) \cdot \nabla \varphi = 0 on \BbbR d \times (0, T ),

we obtain the adjoints for all possible microscopic control problems with initial value in
\BbbR d. This is just the well-known Hamilton--Jacobi--Bellmann equation, usually derived
with different arguments.

Remark 1.1. The above arguments can also be extended to a stochastic control
system (see, e.g., [26]):
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MEAN-FIELD OPTIMAL CONTROL 981

(X,u) = argmin

\int T

0

Ex[g(Xt)] dt, subject to dXt = v(Xt, ut) dt+ \sigma (Xt, ut) dWt,

(10)

withWt being a Wiener process and X the solution to the stochastic differential equa-
tion with initial condition X0 = x. In this case the state equation for the probability
density \mu becomes

\partial t\mu t +\nabla \cdot (v(x, ut)\mu t) =
1

2
\Delta (\sigma 2\mu t),(11)

and \mu does not necessarily remain a concentrated measure in time, which corresponds
to the stochasticity of the model.

1.2. Control in the mean-field limit. Having understood the relation be-
tween microscopic and macroscopic formulations of the optimal control problem, it
seems an obvious step to consider optimal control problems for a high number of
particles N and their mean-field limit as N \rightarrow \infty , which is also the motivation for
this paper. However, in the mean-field limit there is no microscopic particle system
and corresponding optimal control problem, hence an additional step is needed to
understand the connection in the limit. The basis for such a step is to understand
the characteristic flow, which replaces the particle dynamics and naturally leads to
an analysis in the Wasserstein distance. We will further investigate this mean-field
setting in the remainder of the paper.

Here, we restrict our considerations to first-order dynamics, but the present paper
can be seen as an analytical justification of the convergence shown numerically in [9].
It is an additional contribution to the field of optimization of particle systems and
their mean-field limits about which there has been lively discussion in recent years
(e.g., [1, 2, 4, 6, 10, 17, 24, 25]). Moreover, we would like to connect the fields of
optimal control and gradient flows as well as optimal transport. In particular, we
show relations between the adjoints derived by L2-calculus and adjoints derived in
the space of probability measures (W2-adjoints).

The paper is organized as follows. In section 2 the microscopic model for N
particles and the corresponding mean-field equation are introduced. Further, we for-
mulate the optimal control problems under investigation. The first main contribution
of the article is the derivation of the first-order optimality conditions in the mesoscopic
formulation given in section 3. A discussion of the relation of this new calculus to
the first-order optimality systems on the particle level and the first-order optimality
condition based on L2-calculus is the content of section 4. In section 5 we show the
second main result which is the convergence rate for the optimal controls as N \rightarrow \infty .

2. Optimal control problems. First, we generalize the one-particle case to
N \in \BbbN interacting particles, modeling, e.g., crowd dynamics [9]. Then, we derive its
corresponding mean-field limit, i.e., the mesoscopic approximation. These two are the
state systems for the respective optimal control problems. Further, we present the
assumptions which are necessary for the well-posedness of the state systems.

2.1. The state models. As before, d \geq 1 denotes the dimension of the state
space and [0, T ] \subset \BbbR with T > 0 is the time interval of interest.

2.1.1. The particle system. The considered particle system consists of N \in \BbbN 
particles of the same type and M \in \BbbN controls represented by the functions

xi, u\ell : [0, T ] \rightarrow \BbbR d for i = 1, . . . N and \ell = 1, . . . ,M.
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982 M. BURGER, R. PINNAU, C. TOTZECK, AND O. TSE

The vectors

x := (xi)i=1,...,N , u := (u\ell )\ell =1,...,M

denote the states of the particles and the controls, respectively.
The particle system reads explicitly

d

dt
xt = vN (xt,ut), x0 = \^x,(12)

with given \^x \in \BbbR dN defining the initial states of the particles. The operator vN on
the right-hand side strongly depends on the type of application.

In the following, we denote by \scrP 2(\BbbR d) the space of Borel probability measures on
\BbbR d with finite second moment and equipped with the 2-Wasserstein distance, which
makes \scrP 2(\BbbR d) a complete metric space, and by \scrP ac

2 (\BbbR d) the subset of \scrP 2(\BbbR d) con-
taining probability measures with Lebesgue density. For the sake of completeness we
recall the 2-Wasserstein distance:

W 2
2 (\mu , \nu ) := inf

\pi \in \Pi (\mu ,\nu )

\biggl\{ \int 
\BbbR d

| x - y| 2 d\pi (x, y)
\biggr\} 
, \mu , \nu \in \scrP 2(\BbbR d),

where \Pi (\mu , \nu ) denotes the set of all Borel probabililty measures on [0, T ] \times \BbbR 2d that
have \mu and \nu as first and second marginals respectively, i.e.,

\pi (B \times \BbbR d) = \mu (B), \pi (\BbbR d \times B) = \nu (B) for B \in \scrB (\BbbR d).

In the rest of the article we denote by m2(\mu ) the second moment of \mu \in \scrP 2(\BbbR d).
We further assume the following:

(A1) Let v : \scrP 2(\BbbR d) \times \BbbR dM \rightarrow Liploc(\BbbR d) be given such that for all (\mu ,u) \in 
\scrP 2(\BbbR d)\times \BbbR dM ,

\langle v(\mu ,u)(x) - v(\mu ,u)(y), x - y\rangle \leq Cl| x - y| 2, x, y \in \BbbR d,

where the constant Cl > 0 is independent of (\mu ,u).
We further define vN : \BbbR dN \times \BbbR dM \rightarrow \BbbR dN via

vNi (x,u) := v(\mu N ,u)(xi), i = 1, . . . , N,

where

\mu N
x (A) =

1

N

N\sum 
i=1

\delta xi(A), A \in \scrB (\BbbR d) (= Borel \sigma -algebra),

is the empirical measure for the state x \in \BbbR dN .
(A2) For any two (\mu ,u), (\mu \prime ,u\prime ) \in \scrP 2(\BbbR d)\times \BbbR dM , there exists a constant Cv > 0,

independent of (\mu ,u) and (\mu \prime ,u\prime ), such that

\| v(\mu ,u) - v(\mu \prime ,u\prime )\| sup \leq Cv

\Bigl( 
W2(\mu , \mu 

\prime ) + \| u - u\prime \| 2
\Bigr) 
.

Remark 2.1. By definition, \mu N
t assigns the probability \mu N

t (A) of finding particles
with states within a measurable set A \in \scrB (\BbbR d) on the state space \BbbR d at time t \geq 0.

Standard results from ODE theory yield the existence and uniqueness of a global
solution.
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Proposition 2.2. Assume (A1) and (A2). Then, for given u \in \scrC ([0, T ],\BbbR dM )
and \^x \in \BbbR dN there exists a unique global solution x \in \scrC 1([0, T ],\BbbR dN ) of (12).

Remark 2.3. In particular, for applications in the control of crowds we have
that vN models interactions, i.e., particle-particle and particle-control interactions,
by means of forces (see [12] and the references therein). Then, vN is often given by

vNi (x,u) =  - 1

N

N\sum 
j=1

K1(x
i  - xj) - 

M\sum 
\ell =1

K2(x
i  - u\ell )(13)

for given interaction forces K1 and K2 modeling the interactions within the cloud of
particles itself and of the particles with the controls, respectively.

2.1.2. The mean-field model. In order to define the limiting problem for an
increasing number of particles N \rightarrow \infty explicitly, we consider the empirical measure
\mu N .

Using the ideas from [8, 14, 21] we derive the corresponding PDE formally as

\partial t\mu t +\nabla \cdot 
\bigl( 
v(\mu t,ut)\mu t

\bigr) 
= 0, \mu 0 = \^\mu ,(14)

which is the mean-field one-particle distribution evolution equation, supplemented
with the initial condition \^\mu \in \scrP ac

2 (\BbbR d), i.e., \^\mu has Lebesgue density.

Remark 2.4. Here v(\mu ,u) denotes the mean-field representation of vN (x,u). In
fact, for the structure given by (13), we obtain

(t, x) \mapsto \rightarrow v(\mu t,ut)(x) =  - (K1 \ast \mu t)(x) - 
M\sum 
\ell =1

K2(x - u\ell t).(15)

In the mean-field setting we consider the following notion of solution.

Definition 2.5. We call \mu \in \scrC ([0, T ],\scrP 2(\BbbR d)) a weak measure solution of (14)
with initial condition \^\mu \in \scrP 2(\BbbR d) iff for any test function h \in \scrC \infty 

0 ([0, T ) \times \BbbR d) we
have \int T

0

\int 
\BbbR d

\bigl( 
\partial tht + v(\mu t,ut) \cdot \nabla ht

\bigr) 
d\mu t dt+

\int 
\BbbR d

h0 d\^\mu = 0.

An existence and uniqueness result for solutions of (14) may be found, e.g., in
[8, 11, 14, 18], where the notion of solution is established in the Wasserstein space
\scrP 2(\BbbR d).

Proposition 2.6. Assume (A1) and (A2) and let \^\mu \in \scrP 2(\BbbR d). Then, for u \in 
\scrC ([0, T ],\BbbR dM ) there exists a unique global (weak measure) solution \mu \in \scrC ([0, T ],\scrP 2(\BbbR d))
of (14). If additionally \^\mu \in \scrP ac

2 (\BbbR d), then also \mu \in \scrC ([0, T ],\scrP ac
2 (\BbbR d)).

Further, for \^\mu \^x = 1/N
\sum N

i=1 \delta \^xi we have \mu x,t = \mu N
x,t, where \^x is the initial condi-

tion of (12).

Remark 2.7. Under the assumptions (A1) and (A2) we have enough regularity to
use the classical method of characteristics to deduce for any s \in [0, T ] the existence
of a unique global flow Q\cdot (\cdot , s) \in \scrC ([0, T ]\times \BbbR d;\BbbR d) satisfying

d

dt
Qt(x, s) = v(\mu t,ut) \circ Qt(x, s), Qs(x, s) = x.(16)

In particular, for s = 0 we obtain the nonlinear flow with a random initial condition
Q0(x, 0) distributed according to \^\mu , i.e., law(Q0(x, 0)) = \^\mu . The solution \mu of (14)
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984 M. BURGER, R. PINNAU, C. TOTZECK, AND O. TSE

may then be explicitly expressed as \mu t = Qt(\cdot , 0)\#\mu 0 for all t \geq 0. We shall make
use of this representation at several points in the remainder. For simplicity we set
Qt(x) := Qt(x, 0).

The following stability statement will be useful in the coming results. Its proof
may be found in Appendix A.

Lemma 2.8. Let the assumptions (A1) and (A2) hold, and let \mu and \mu \prime be solu-
tions to the continuity equation (20) for given controls u, u\prime and initial data \^\mu , \^\mu \prime ,
respectively. Then, there exist positive constants a and b such that

W 2
2 (\mu t, \mu 

\prime 
t) \leq 

\Bigl( 
W 2

2 (\^\mu , \^\mu 
\prime ) + b\| u - u\prime \| 2L2((0,T ),\BbbR dM )

\Bigr) 
eat for all t \in [0, T ].

We end this section with an important observation.

Remark 2.9. We emphasize that the particle problem is just a special case of the
mean-field problem specified by the inital condition. Indeed, for the initial condi-
tion \^\mu = 1/N

\sum N
i=1 \delta \^xi we have \mu t = \mu N

t , where \^x is the initial condition of (12).
Strictly speaking, we have only one optimization problem to consider in the following.
Whether the problem at hand is of microscopic or mesoscopic type is determined by
the initial condition.

2.2. Optimal control problem. We define the set of admissible controls as

\scrU ad = \{ u \in H1((0, T ),\BbbR dM ) : u0 = \^u\} with \^u \in \BbbR dM given.(17)

This choice of \scrU ad ensures the continuity of the controls (compare also the previous
existence results).

For the study of the respective optimal control problem we require the following:
(A3) The cost functional is of separable type, i.e.,

J(\mu ,u) =

\int T

0

J1(\mu t) dt+ J2(u),(18)

where J2 is continuously differentiable, weakly lower semicontinuous, and
coercive on \scrU ad. Further, J1(\mu ) is a cylindrical function of the form

J1(\mu ) = j(\langle g1, \mu \rangle , . . . , \langle gL, \mu \rangle ),
where j \in \scrC 1(\BbbR L) and g\ell \in \scrC 1(\BbbR d), \ell = 1, . . . , L, such that \langle g\ell , \mu \rangle :=\int 
\BbbR d g\ell d\mu <\infty , and

| \nabla g\ell | (x) \leq Cg(1 + | x| ) for all x \in \BbbR d and \ell = 1, . . . , L,

for some constant Cg > 0.
(A4) For the microscopic case, we define JN

1 (x) := J1(\mu 
N
x ) as well as

JN (x,u) :=

\int T

0

JN
1 (xt) dt+ J2(u)(19)

and assume that JN
1 is continuously differentiable.

Remark 2.10. Note that the differentiability properties in the previous assump-
tions are only necessary for the derivation of the optimality conditions in the next
sections, and not for the existence of the respective optimal controls. Further, (A4)
essentially restricts the type of costs that can be considered for the particle system. In
particular, the microscopic cost should have a corresponding mean-field counterpart.
This is indeed the case whenever JN

1 (x) may be written as a function acting on its
corresponding empirical measure \mu N

x .
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A direct consequence of assumption (A3) is the continuity of J1 in the Wasserstein
metric.

Lemma 2.11. Assume (A3) and let \mu , \nu \in \scrC ([0, T ],\scrP 2(\BbbR d)) with

M1 := max
\ell =1,...,L

sup
t\in [0,T ]

\{ | \langle g\ell , \mu t\rangle | + | \langle g\ell , \nu t\rangle | \} <\infty , M2 := sup
t\in [0,T ]

\{ m2(\mu t)+m2(\nu t)\} <\infty .

Then, there exists a constant Cj > 0, independent of t \in [0, T ] such that

| J1(\mu t) - J1(\nu t)| \leq CjW2(\mu t, \nu t) for all t \in [0, T ].

Proof. Let \mu and \nu \in \scrP 2(\BbbR d) be arbitrary. Then, for each \ell = 1, . . . , L, we have
by (A3), the mean-value theorem, and H\"older's inequality that

| \langle g\ell , \mu \rangle  - \langle g\ell , \nu \rangle | \leq 
\int \int 

\BbbR d\times \BbbR d

| g\ell (x) - g\ell (y)| d\pi 

\leq 
\int \int 

\BbbR d\times \BbbR d

\int 1

0

| \nabla g\ell | ((1 - \tau )x+ \tau y)| y  - x| d\tau d\pi 

\leq 
\int \int 

\BbbR d\times \BbbR d

\int 1

0

Cg(1 + | (1 - \tau )x+ \tau y| )| y  - x| d\tau d\pi 

\leq Cg

\Bigl[ 
1 +

\Bigl( \sqrt{} 
m2(\mu ) +

\sqrt{} 
m2(\nu )

\Bigr) \Bigr] 
W2(\mu , \nu ),

where \pi is the optimal coupling between \mu and \nu . In particular, the estimate above
shows that the mapping \langle g\ell , \cdot \rangle : \scrP 2(\BbbR d) \rightarrow \BbbR is locally Lipschitz for every \ell = 1, . . . , L.

Denote pt = (\langle g1, \mu t\rangle , . . . , \langle gL, \mu t\rangle ) and qt = (\langle g1, \nu t\rangle , . . . , \langle gL, \nu t\rangle ). The assump-
tions on \mu and \nu , and the previous estimate, yield

| J1(\mu t) - J1(\nu t)| \leq 
\int 1

0

| Dj(qt + \tau (pt  - qt))| | pt  - qt| d\tau 

\leq LCg

\Bigl( 
1 + 2

\sqrt{} 
M2

\Bigr) \Bigl( 
supp\in BLM1

| Dj(p)| 
\Bigr) 
W2(\mu t, \nu t),

where we used the fact that | (1 - \tau )qt + \tau pt| \leq LM1 for all \tau \in [0, 1], t \in [0, T ].

Remark 2.12. Note that cost functionals that track the center of mass and the
variance of a crowd satisfy (A3) and (A4). In fact, for \lambda 1, \lambda 2, \lambda 3 > 0,

j(y1, y2) =
\lambda 1
2
| y1  - xdes| 2 +

\lambda 2
4
| y2  - y1| 2, g1(x) = x, g2(x) = | x| 2,

J2(u) =
\lambda 3
2

M\sum 
m=1

\int T

0

\bigm| \bigm| \bigm| \bigm| d

dt
umt

\bigm| \bigm| \bigm| \bigm| 2 dt

fit into the setting. Therefore, the assumptions are rather general and not restrictive
for applications (cf. [9]).

The well-posedness of the state problem justifies the notation \mu (u) assigning the
unique solution of the state equation to the control. Then, the optimal control problem
we investigate in the following is given as follows.

Problem 1. Find \=u \in \scrU ad such that

(\mu (\=u), \=u) = argmin
\mu ,u

J(\mu ,u) subject to (14).(P\infty )
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986 M. BURGER, R. PINNAU, C. TOTZECK, AND O. TSE

For later use, we note that in the particle case, i.e., for discrete initial data (cf.
Remark 2.9), we can rewrite the optimization problem as follows: For N \in \BbbN fixed,
find \=uN \in \scrU ad such that

(\=xN (\=uN ), \=uN ) = argmin
x,u

JN (x,u) subject to (12).(PN)

Using the standard argument based on the boundedness of a minimizing sequence
in \scrU ad and continuity properties of J stated in (A3) and (A4), we obtain the following
existence result.

Theorem 2.13. Assume (A1)--(A4). Then, the optimal control problem (P\infty )
has a solution (\mu (\=u), \=u) \in \scrC ([0, T ],\scrP 2(\BbbR d))\times \scrU ad.

Remark 2.14. The well-posedness of (PN) follows directly from the above theo-
rem, as the particle problem is a special case of (P\infty ); see Remark 2.9. Nevertheless,
one can prove the well-posedness of (PN) also directly using classical techniques in
the optimal control of ODEs.

3. First-order optimality conditions in the Wasserstein space \bfscrP 2(\BbbR \bfitd ).
The main objective of this section is to derive the first-order optimality conditions
for the optimal control problem (P\infty ) in the framework of probability measures with
bounded second moment equipped with the 2-Wasserstein distance. For the sake of
a smooth presentation we restrict the interaction terms to the special ones defined in
(13) and (15), respectively. This allows us to pose the following regularity assumption:

(A5) K1,K2 \in \scrC 2
b (\BbbR d).

Remark 3.1. Note that assumption (A5) directly implies that (t, x) \mapsto \rightarrow v(\mu t,ut)(x)
defined by (15) is an element of \scrC 1

b ([0, T ]\times \BbbR d,\BbbR d) for every \mu \in \scrC ([0, T ],\scrP 2(\BbbR d)) and
u \in \scrC ([0, T ],\BbbR dM ) with

Kv := sup
\mu ,u

\bigl\{ 
\| v(\mu ,u)\| \infty + \| Dv(\mu ,u)\| \infty 

\bigr\} 
<\infty .

In particular, the flow (t, x) \mapsto \rightarrow Qt(x) is \scrC 1
b ([0, T ] \times \BbbR d,\BbbR d) by standard arguments

(cf. [15]).

For given initial condition \^\mu we define the state space as

\scrY =
\Bigl\{ 
\mu \in \scrC ([0, T ],\scrP 2(\BbbR d)) : \mu t | t=0 = \^\mu \in \scrP ac

2 (\BbbR d)
\Bigr\} 
.

As the optimization in theW2 setting is not well-known, we begin by discussing known
results (see [3, Chapter 8.1]) regarding the constraint

\partial t\mu t +\nabla \cdot (v(\mu t,ut)\mu t) = 0, \mu t | t=0 = \^\mu \in \scrP ac
2 (\BbbR d).(20)

Recall Proposition 2.6 that provides for each u \in \scrU ad a unique solution \mu \in \scrC ([0, T ],
\scrP ac
2 (\BbbR d)) of (20). In particular, \mu satisfies

E(\mu ,u)[\varphi ] := \langle \varphi T , \mu T \rangle  - \langle \varphi 0, \^\mu \rangle  - 
\int T

0

\langle \partial t\varphi + v(\mu t,ut) \cdot \nabla \varphi t, \mu t\rangle dt = 0(21)

for all \varphi \in \scrA := \scrC 1
c ([0, T ] \times \BbbR d). Therefore, there is a well-defined solution operator

S : u \mapsto \rightarrow \mu , which allows us to recast the constrained minimization problem as

min \^J(u) := J(Su,u), u \in \scrU ad,

where \^J is the so-called reduced functional.
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Definition 3.2. A pair (\mu ,u) \in \scrY \times \scrU ad is said to be admissible if E(\mu ,u)[\varphi ] = 0
for all \varphi \in \scrA .

Unfortunately, the reduced cost functional is not handy in deriving the first-order
optimality conditions for (P\infty ). For this reason, we will take an extended-Lagrangian
approach. We begin by observing that (P\infty ) may be recast as

min
(\mu ,u)

\scrI (\mu ,u) with \scrI (\mu ,u) :=

\Biggl\{ 
J(\mu ,u) if E(\mu ,u)[\varphi ] = 0 for every \varphi \in \scrA ,
+\infty otherwise,

which may be further reformulated as

min
(\mu ,u)

\scrI (\mu ,u) = min
(\mu ,u)

\Bigl\{ 
J(\mu ,u) + sup

\varphi \in \scrA 
E(\mu ,u)[\varphi ]

\Bigr\} 
.(22)

Indeed, notice that sup\varphi \in \scrA E(\mu ,u)[\varphi ] \geq 0, since \varphi \equiv 0 implies E(\mu ,u)[0] = 0
for every (\mu ,u). Therefore, if E(\mu ,u)[\varphi ] > 0 for some \varphi , the linearity in \varphi of E
yields E(\mu ,u)[\alpha \varphi ] = \alpha E(\mu ,u)[\varphi ] for every \alpha > 0, which consequently shows that
sup\varphi E(\mu ,u)[\varphi ] = +\infty .

Under the separation assumption on J , i.e., J(\mu ,u) = J1(\mu )+J2(u), (22) becomes

min
(\mu ,u)

\scrI (\mu ,u) = min
u

\biggl\{ 
J2(u) + min

\mu 
sup
\varphi \in \scrA 

\Bigl\{ 
J1(\mu ) + E(\mu ,u)[\varphi ]

\Bigr\} \biggr\} 
= min

u

\Bigl\{ 
J2(u) + \chi (u)

\Bigr\} 
with

\chi (u) = min
\mu 

sup
\varphi \in \scrA 

\Bigl\{ 
J1(\mu ) + E(\mu ,u)[\varphi ]

\Bigr\} 
.

In the following we derive a necessary condition for (\mu ,u) to be a stationary point.
Let (\=\mu , \=u) be an optimal pair, and let \delta \geq 0 and u\delta = \=u+ \delta h be a perturbation of \=u
for an arbitrary smooth map h : (0, T ) \rightarrow \BbbR dM such that u\delta \in \scrU ad and there exists a
unique \mu \delta \in \scrC ([0, T ],\scrP ac

2 (\BbbR d)) satisfying E(\mu \delta ,u\delta )[\varphi ] = 0 for all \varphi \in \scrA . Then

\chi (u\delta ) = min
\mu 

sup
\varphi \in \scrA 

\Bigl\{ 
J1(\mu ) + E(\mu ,u\delta )[\varphi ]

\Bigr\} 
= J1(\mu 

\delta )

= J1(\mu 
\delta ) - J1(\=\mu ) + min

\mu 
sup
\varphi \in \scrA 

\Bigl\{ 
J1(\mu ) + E(\mu , \=u)[\varphi ]

\Bigr\} 
= J1(\mu 

\delta ) - J1(\=\mu ) + \chi (\=u),

and the directional derivative of \scrG := J2 + \chi at \=u along h is given by

lim
\delta \rightarrow 0

\scrG (u\delta ) - \scrG (\=u)
\delta 

= lim
\delta \rightarrow 0

[J1(\mu 
\delta ) - J1(\=\mu )] + [J2(u

\delta ) - J2(\=u)]

\delta 
,

which requires us to know the relationship between \mu \delta and \=\mu .

Remark 3.3. Note that Lemma 2.8 above provides a stability estimate of the form

W2(\mu 
\delta 
t , \mu t) \leq \delta 

\surd 
beaT/2\| h\| L2((0,T ),\BbbR dM ) for all t \in [0, T ]

for appropriate constants a, b > 0. Hence, for each t \in [0, T ], the curve [0,\infty ) \ni 
\delta \mapsto \rightarrow \mu \delta 

t \in \scrP 2(\BbbR d) starting from \mu t at \delta = 0 is absolutely continuous w.r.t. the 2-
Wasserstein distance. In this case, there exists a vector field \psi t \in L2(\mu t,\BbbR d) for each
t \in [0, T ] satisfying [3, Proposition 8.4.6]
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lim
\delta \rightarrow 0

W2(\mu 
\delta 
t , (id+ \delta \psi t)\#\mu t)

\delta 
= 0.(23)

Furthermore,

W 2
2 ((id+ \delta \psi t)\#\mu t, \mu t) \leq 

\int 
\BbbR d

| x+ \delta \psi t(x) - x| 2 d\mu t(x) = \delta 2
\int 
\BbbR d

| \psi t(x)| 2 d\mu t(x),

where the explicit coupling \pi t = (id + \delta \psi t, id)\#\mu t was used. In particular, we have
that

lim sup
\delta \rightarrow 0

W2(\mu 
\delta 
t , \mu t)

\delta 
= lim sup

\delta \rightarrow 0

W2((id+ \delta \psi t)\#\mu t, \mu t)

\delta 
\leq 

\sqrt{} \int \int 
\BbbR d\times \BbbR d

| \psi t| 2 d\mu t.

The previous remark allows us to establish an explicit relationship between \psi t and h.

Lemma 3.4. Let (\mu ,u) be an admissible pair, h \in \scrC \infty 
c ((0, T ),\BbbR dM ), and u\delta =

u+ \delta h such that
(i) u\delta \in \scrU ad, and
(ii) there exists \mu \delta \in \scrC ([0, T ],\scrP ac

2 (\BbbR d)) satisfying E(\mu \delta ,u\delta ) = 0,
for 0 < \delta \ll 1 sufficiently small. If \psi \in \scrC 1

b ((0, T )\times \BbbR d) with \psi 0 \equiv 0 satisfies

\partial t\psi t +D\psi t v(\mu t,ut) = \scrK (\mu t,ut)[\psi t,ht] for \mu t-almost every x \in \BbbR d,(24)

for a bounded Borel map (t, x) \mapsto \rightarrow \scrK (\mu t,ut)[\psi t,ht](x) satisfying

\mathrm{l}\mathrm{i}\mathrm{m}
\delta \rightarrow 0

\int T

0

\int \bigm| \bigm| \bigm| \bigm| v(\nu \delta t ,u\delta 
t ) \circ (id+ \delta \psi t)(x) - v(\mu t,ut)(x)

\delta 
 - \scrK (\mu t,ut)[\psi t,ht](x)

\bigm| \bigm| \bigm| \bigm| 2 \mathrm{d}\mu t(x) \mathrm{d}t = 0,

(25)

then (23) holds with this \psi , i.e.,

lim
\delta \rightarrow 0

W2(\mu 
\delta 
t , (id+ \delta \psi t)\#\mu t)

\delta 
= 0.

Proof. For each t \in [0, T ], we set \nu \delta t := (id+ \delta \psi t)\#\mu t. We begin by showing that
the curve t \mapsto \rightarrow \nu \delta t \in \scrP 2(\BbbR d) is absolutely continuous. Due to the assumed regularity
on \psi satisfying (24), the chain-rule applies, and we obtain for any F \in \scrC \infty 

c (\BbbR d), and
almost every t \in (0, T ),

d

dt

\int 
F \mathrm{d}\nu \delta t =

d

dt

\int 
F \circ (id+ \delta \psi t) \mathrm{d}\mu t

=

\int 
\langle (\nabla F ) \circ (id+ \delta \psi t), \delta \partial t\psi t\rangle \mathrm{d}\mu t +

\int 
\langle \nabla (F \circ (id+ \delta \psi t)), v(\mu t,\bfu t)\rangle \mathrm{d}\mu t

=

\int 
\langle (\nabla F ) \circ (id+ \delta \psi t), \delta \scrK (\mu t,\bfu t)[\psi t,\bfh t] + v(\mu t,\bfu t)\rangle \mathrm{d}\mu t

=

\int 
\langle \nabla F, [\delta \scrK (\mu t,\bfu t)[\psi t,\bfh t] + v(\mu t,\bfu t)] \circ (id+ \delta \psi t)

 - 1\rangle \mathrm{d}\nu \delta t =:

\int 
\langle \nabla F, b\delta t \rangle \mathrm{d}\nu \delta t .

Furthermore, by the assumption on \scrK , we have that\int 
| b\delta t | 2 d\nu \delta t =

\int 
| \delta \scrK (\mu t,ut)[\psi t,ht]+v(\mu t,ut)| 2 d\mu t <\infty for almost every t \in (0, T ) .

Along with the previous computation, we find that t \mapsto \rightarrow \nu \delta t \in \scrP 2(\BbbR d) is an absolutely
continuous curve satisfying the continuity equation

\partial t\nu 
\delta 
t +\nabla \cdot (b\delta t\nu \delta t ) = 0 in the sense of distributions.
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Consequently, we can consider the temporal derivative of t \mapsto \rightarrow W 2
2 (\mu 

\delta 
t , \nu 

\delta 
t ) to obtain

1

2

d

dt
W 2

2 (\mu 
\delta 
t , \nu 

\delta 
t ) =

\int \int 
\langle x - y, v(\mu \delta 

t ,u
\delta 
t )(x) - b\delta t (y)\rangle d\pi \delta 

t

=

\int \int 
\langle x - y, v(\mu \delta 

t ,u
\delta 
t )(x) - v(\nu \delta t ,u

\delta 
t )(y)\rangle d\pi \delta 

t

+

\int \int 
\langle x - y, v(\nu \delta t ,u

\delta 
t )(y) - b\delta t (y)\rangle d\pi \delta 

t =: (I) + (II).

To estimate (I), we use assumptions (A1) and (A2) to obtain

(I) \leq (Cv + Cl)W
2
2 (\mu 

\delta 
t , \nu 

\delta 
t ).

As for (II), we have

(\mathrm{I}\mathrm{I}) \leq W2(\mu 
\delta 
t , \nu 

\delta 
t )

\biggl( \int 
| v(\nu \delta t ,\bfu \delta 

t )(y) - b\delta t (y)| 2 \mathrm{d}\nu \delta t
\biggr) 1/2

=W2(\mu 
\delta 
t , \nu 

\delta 
t )

\biggl( \int 
| v(\nu \delta t ,\bfu \delta 

t ) \circ (id+ \delta \psi t)(y) - v(\mu t,\bfu t)(y) - \delta \scrK (\mu t,\bfu t)[\psi t,\bfh t](y)| 2 \mathrm{d}\mu t

\biggr) 1/2

,

which, together with the estimate for (I), gives

d

dt
W 2

2 (\mu 
\delta 
t , \nu 

\delta 
t ) \leq CW 2

2 (\mu 
\delta 
t , \nu 

\delta 
t ) + \delta 2\sanse \delta t ,

for some constant C > 0, and where

\sanse \delta t :=

\int \bigm| \bigm| \bigm| \bigm| v(\nu \delta t ,u\delta 
t ) \circ (id+ \delta \psi t)(y) - v(\mu t,ut)(y)

\delta 
 - \scrK (\mu t,ut)[\psi t,ht](y)

\bigm| \bigm| \bigm| \bigm| 2 d\mu t.

Since W2(\mu 
\delta 
0, \nu 

\delta 
0) = 0, an application of Gronwall's inequality yields

sup
t\in [0,T ]

W 2
2 (\mu 

\delta 
t , \nu 

\delta 
t )

\delta 2
\leq eCT

\int T

0

\sanse \delta s ds  - \rightarrow 0 as \delta \rightarrow 0,

due to the assumption on \scrK in (25), thereby concluding the proof.

Remark 3.5. We mention that for any h \in \scrC \infty 
c ((0, T ),\BbbR dM ) and any sufficiently

smooth mapping F : \BbbR d \rightarrow \BbbR d, we have for x\delta = x+ \delta h

F (x\delta ,m) = F (xm) + \delta (DF )(xm)[hm] +O(\delta 2) for m = 1, . . . ,M.

In particular, for the velocity field v given in (15) one deduces

\scrK (\mu ,u)[\psi ,h] = Dv(\mu ,u)\psi +

\int 
(DK1)(\cdot  - y)\psi (y) d\mu (y) +

M\sum 
m=1

(DK2)(\cdot  - um)hm,

(26)

which satisfies

sup
t\in (0,T )

\| \scrK (\mu t,ut)[\psi t,ht]\| \infty \leq C
\Bigl( 
\| \psi \| L\infty ((0,T )\times \BbbR d) + \| h\| L\infty ((0,T ))

\Bigr) 
.

From assumption (A5), it is not difficult to see that (25) is satisfied.
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990 M. BURGER, R. PINNAU, C. TOTZECK, AND O. TSE

The existence of a \psi \in \scrC 1
b ((0, T )\times \BbbR d) satisfying the assumptions of Lemma 3.4

is provided in the following statement.

Theorem 3.6. Let the assumptions of Lemma 3.4 hold. For the velocity field
v : \scrP 2(\BbbR d) \times \BbbR dM \rightarrow Liploc(\BbbR d) given in (15) there exists \psi \in \scrC 1

b ((0, T ) \times \BbbR d) with
\psi 0 = 0 satisfying

\partial t\psi t +D\psi t v(\mu t,ut) = \scrK (\mu t,ut)[\psi t,ht] for \mu t dt-almost every (t, x) \in (0, T )\times \BbbR d,

where \scrK is given in (26).

Proof. We consider \Gamma = \scrC ([0, T ], \scrC 1
b (\BbbR d,\BbbR d)) and the operator

\Gamma \ni \omega \mapsto \rightarrow H(\omega ) with H(\omega )(t, x) =

\int t

0

\scrK (\mu s,us)[\omega s,hs](Qs(x, t)) ds.

First, we have to show that H(\omega ) \in \Gamma . Due to (15), (A5), and the properties of the
flow discussed in Remark 3.1, we have DH(\omega )(t) \in \scrC b(\BbbR d) and continuous w.r.t. t.
Therefore, it holds that H(\omega ) \in \scrC ([0, T ], \scrC 1

b (\BbbR d)). In particular, H : \Gamma \rightarrow \Gamma is well-
defined.

To establish the contraction property of H, we equip \scrC ([0, T ], \scrC 1
b (\BbbR d,\BbbR d)) with

the weighted norm

\| \omega \| exp := max
t\in [0,T ]

\Bigl\{ 
e - \lambda 

\bigl( 
\| \omega (t)\| sup + \| D\omega (t)\| sup

\bigr) \Bigr\} 
for some \lambda > 0 to be specified below. Note that (\scrC ([0, T ], \scrC 1

b (\BbbR d,\BbbR d)), \| \cdot \| exp) is
complete.

Using the structure of \scrK in Remark 3.5, we obtain

| H(\omega 1) - H(\omega 2)| (t, x) \leq 
\int t

0

| \scrK (\mu s,us)[\omega 
1
s  - \omega 2

s ,hs](Qs(x, t))| ds

\leq 
\int t

0

(\| Dv\| sup + \| DK1\| sup)\| \omega 1
s  - \omega 2

s\| ds.

As for the space derivative we obtain

| DH(\omega 1) - DH(\omega 2)| (t, x) \leq 
\int t

0

| D\scrK (\mu s,us)[\omega 
1
s  - \omega 2

s ,hs](Qs(x, t))| | DQs(x, t)| ds

\leq 
\int t

0

\Bigl( 
\| D2v\| sup + \| Dv\| sup + \| D2K1\| sup

\Bigr) \Bigl( 
\| \omega 1

s  - \omega 2
s\| sup + \| D\omega 1

s  - D\omega 2
s\| sup

\Bigr) 
ds.

We define Cv = 2\| Dv\| \infty +\| DK1\| \infty +\| D2v\| \infty +\| D2K1\| \infty and add the two inequal-
ities to obtain

| H(\omega 1) - H(\omega 2)| (t, x) + | DH(\omega 1) - DH(\omega 2)| (t, x)

\leq 
\int t

0

Cv

\Bigl( 
\| \omega 1

s  - \omega 2
s\| sup + \| D\omega 1

s  - D\omega 2
s\| sup

\Bigr) 
ds \leq Cv

\lambda 
e\lambda t\| \omega 1  - \omega 2\| exp .

Multiplying each of the above estimates with e - \lambda and taking the supremum over t
and x leads to

\| H(\omega 1) - H(\omega 2)\| exp \leq Cv

\lambda 
\| \omega 1  - \omega 2\| exp.
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MEAN-FIELD OPTIMAL CONTROL 991

Choosing \lambda > Cv allows us to conclude the contraction property of H. An application
of the Banach fixed-point theorem yields a solution \psi \in \scrC ([0, T ], \scrC 1

b (\BbbR d,\BbbR d)) given by

\psi t(x) =

\int t

0

\scrK (\mu s,us)[\psi s,hs](Qs(x, t)) ds.

It is straightforward to see that

\Gamma \cap \scrC 1((0, T ), \scrC b(\BbbR d,\BbbR d)) \lhook \rightarrow \scrC 1
b ((0, T )\times \BbbR d,\BbbR d).

Finally, a direct computation shows that \psi satisfies the evolution equation.

Now, we are able to state the first-order necessary condition for (\mu ,u) to be a
stationary point.

Theorem 3.7. Let (\=\mu , \=u) be an optimal pair, J2 be G\^ateaux-differentiable, and J1
be a cylindrical function of the form given in (A3). Then, for any h \in \scrC \infty 

c ((0, T ),\BbbR dM )
it holds that

dJ2(\=u)[h] +

\int T

0

\int 
\langle \delta \mu J1(\=\mu t), \psi t\rangle d\=\mu t dt = 0,(27)

where

\delta \mu J1(\mu )(x) :=

L\sum 
\ell =1

(\partial \ell j)(\langle g1, \mu \rangle , . . . , \langle gL, \mu \rangle )(\nabla g\ell )(x),(28)

and t \mapsto \rightarrow \psi t \in L2(\mu t,\BbbR d) satisfying (24) with initial condition \psi 0 = 0.

Proof. Since J1(\mu ) is a cylindrical function, we have that

J1(\mu 
\delta 
t ) - J1(\=\mu t) = J1((id+ \delta \psi t)\#\=\mu t) - J1(\=\mu t) + o(\delta )

= \delta 

\int L\sum 
\ell =1

(\partial \ell j)(\langle g1, \=\mu t\rangle , . . . , \langle gL, \=\mu t\rangle )\langle \nabla g\ell , \psi t\rangle d\=\mu t + o(\delta ),

where \psi satisfies (24) with \psi 0 = 0. Therefore, owing to the minimality of \=u, we find

0 \leq \scrG (u\delta ) - \scrG (\=u)
\delta 

= dJ2(\=u)[h] +

\int T

0

\int 
\langle \delta \mu J1(\=\mu t), \psi t\rangle d\=\mu t dt+O(\delta ).

Passing to the limit \delta \rightarrow 0+ yields

0 \leq dJ2(\=u)[h] +

\int T

0

\int 
\langle \delta \mu J1(\=\mu t), \psi t\rangle d\=\mu t dt

for any h \in \scrC \infty 
c ((0, T ),\BbbR dM ). Notice, however, that changing the sign of h leads to a

change of sign of \psi , which then provides the equality (27).

In order to provide an adjoint-based first-order optimality system, we now derive
the equation for the dual variable. We consider the dual problem corresponding to
(24) by testing (24) with a family of vector-valued measures (mt)t\in (0,T ) to obtain\int T

0

\int \Bigl( 
\partial t\psi t +D\psi t v(\=\mu t, \=ut) - \scrK (\=\mu t, \=ut)[\psi t, ht]

\Bigr) 
\cdot dmt dt = 0
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992 M. BURGER, R. PINNAU, C. TOTZECK, AND O. TSE

and set \scrK (\mu ,u)[\psi , h] = \scrK 1(\mu ,u)[\psi ] +\scrK 2(u)[h], where

\scrK 1(\mu ,u)[\psi ] := Dv(\mu ,u)\psi +

\int 
(DK1)(\cdot  - y)\psi (y) d\mu (y),

\scrK 2(u)[h] :=
\sum 

\ell 
(DK2)(\cdot  - u\ell )h\ell .

Using \psi 0 = 0 and integrating by parts, we obtain\int T

0

\int 
\langle \partial tmt +\nabla \cdot 

\bigl( 
v(\=\mu t, \=ut)\otimes mt

\bigr) 
+\scrK 1,\ast (\=\mu t, \=ut)[mt], \psi t\rangle dt

=

\int 
\psi T \cdot dmT  - 

\int T

0

\int 
\scrK 2(\=ut)[ht] \cdot dmt dt,

where

\scrK 1,\ast (\mu ,u)[m] = \nabla v(\mu ,u)m+ \mu 

\int 
(\nabla K1)(y  - \cdot ) dm(y).(29)

By choosing \=m to satisfy the dual problem

\partial t \=mt +\nabla \cdot 
\bigl( 
v(\=\mu t, \=ut)\otimes \=mt

\bigr) 
+\scrK 1,\ast (\=\mu t, \=ut)[ \=mt] = \=\mu t\delta \mu J1(\=\mu t),(30)

subject to the terminal condition \=mT = 0, we find with the help of the optimality
condition (27) that

dJ2(\=u)[h] - 
\int T

0

\int 
\scrK 2(\=ut)[ht] \cdot d \=mt dt = 0 for all h \in \scrC \infty 

c ((0, T ),\BbbR dM ).(31)

Remark 3.8. If | \=mt| \ll \=\mu t for every t \in [0, T ], i.e., there is a vector field \=\xi t : \BbbR d \rightarrow 
\BbbR d such that \=mt = \=\xi t\=\mu t, where \=\mu satisfies (20), then (30) formally reduces to

\partial t \=\xi t +D\=\xi t v(\=\mu t, \=ut) =  - \nabla v(\=\mu t, \=ut) \=\xi t  - 
\int 

(\nabla K1)(y  - \cdot ) \=\xi t(y) d\=\mu t(y) + \delta \mu J1(\=\mu t).

(32)

Remark 3.9. If we further assume thatK1 andK2 are gradients of potential fields,
then \nabla K1 and \nabla K2 are symmetric and the previous equation takes the simpler form

\partial t \=\xi t +\nabla (v(\=\mu t, \=ut) \cdot \=\xi t) =  - 
\int 

\=\xi t(y) \cdot (\nabla K1)(y  - \cdot ) d\=\mu t(y) + \delta \mu J1(\=\mu t).

In this case, one can expect \=\xi to be a gradient of a potential field (compare also the
results in [19]), i.e., \=\xi = \nabla \=\phi for a function \=\phi satisfying the scalar equation

\partial t \=\phi t + v(\=\mu t, \=ut) \cdot \nabla \=\phi t =

\int 
\nabla \=\phi t(y) \cdot K1(y  - \cdot ) d\mu t(y)(33)

+

L\sum 
i=1

(\partial ij)(\langle g1, \mu t\rangle , . . . , \langle gL, \mu t\rangle )gi.

3.1. Well-posedness of the adjoint equation. To obtain the well-posedness
of the adjoint equation (30) we make use of (32). Indeed, due to assumptions (A3)
and (A5), we can make use of the method of characteristics and Banach's fixed-point
theorem.
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Theorem 3.10. Let assumptions (A1)--(A5) hold and (\mu ,u) be admissible with
initial condition \^\mu \in \scrP (\BbbR d) having compact support. Then, the equation

\partial t\xi t +D\xi t v(\mu t,ut) = \Psi (\mu t,ut)[\xi t], \xi T = p \in \scrC b(\BbbR d,\BbbR d),

with

\Psi (\mu ,u)[\xi ] =  - \nabla v(\mu ,u) \xi  - 
\int 
(\nabla K1)(y  - \cdot ) \xi (y) d\mu (y) + \delta \mu J1(\mu )(34)

has a unique solution \xi \in \scrC ([0, T ]\times \BbbR d,\BbbR d) with the representation

\xi t(x) = p(QT (x, t)) - 
\int T

t

\Psi (\mu s,us)[\xi s](Qs(x, t)) ds,(35)

where Q satisfies (16). In particular, m = \xi \mu yields a distributional solution of (30).

Proof. We begin by recalling that the Lagrangian flow satisfies

Q\cdot (\cdot , t) \in \scrC (\BbbR d \times [t, T ],\BbbR d) for every t \in [0, T ),

\exists \Omega \subset \BbbR d compact : Qs(x, t) \in \Omega for all t \in [0, T ), s \in [t, T ] and x \in supp(\^\mu ).

For any \omega \in \Gamma := \scrC ([0, T ]\times \BbbR d,\BbbR d), we define the operator

H(\omega )(t, x) := p(QT (x, t)) - 
\int T

t

\Psi (\mu s,us)[\omega s](Qs(x, t)) ds.

Observe that H(\omega ) \in \Gamma due to the properties of the Lagrangian flow and the fact that
p \in \scrC b(\Omega ) and K1,K2 \in \scrC 1

b (\BbbR d) by assumption (A5). In particular, H : \Gamma \rightarrow \Gamma is a
well-defined mapping.

To show that H is a contraction on \Gamma , we first define a norm on \Gamma given by

\| \omega \| exp := sup
\bigl\{ 
e - 4cK(T - t)\| \omega t\| sup : t \in (0, T )

\bigr\} 
,

where cK = \| DK1\| sup + \| DK2\| sup. We note that (\Gamma , \| \cdot \| exp) is complete and the
estimate

| H(\omega 1) - H(\omega 2)| (t, x) \leq 
\int T

t

| \nabla v(\mu s,us)| (Qs(x, t))| \omega 1
s  - \omega 2

s | (Qs(x, t)) ds

+

\int T

t

\int 
\BbbR d

(\nabla K1)(y  - Qs(x, t)) | \omega 1
s  - \omega 2

s | (y) d\mu s(y) ds

\leq 2cK\| \omega 1  - \omega 2\| exp
\int T

t

e4cK(T - s) ds

= (1/2)\| \omega 1  - \omega 2\| exp(e4cK(T - t)  - 1)

holds true for any \omega 1, \omega 2 \in \Gamma . Taking the supremum over x \in \BbbR d in the inequality
above, multiplying with e - 4cK(T - t), and then taking the supremum over t \in [0, T ]
yields

\| H(\omega 1) - H(\omega 2)\| exp \leq (1/2)\| \omega 1  - \omega 2\| exp.

Therefore, the Banach fixed-point theorem provides a unique \xi \in \Gamma satisfying (35).

Summarizing the above computations, we end up at the following result.

D
ow

nl
oa

de
d 

07
/2

8/
21

 to
 1

31
.1

55
.1

44
.3

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

994 M. BURGER, R. PINNAU, C. TOTZECK, AND O. TSE

Theorem 3.11. A minimizing pair (\=\mu , \=u) of the problem (P\infty ) satisfies

\partial t\=\mu t +\nabla \cdot (\=\mu t v(\=\mu t, \=ut)) = 0,

\delta \=uJ2(\=u) =
1

\lambda 

\int 
\BbbR d

(\nabla K2)(x - \=u\ell t) d \=mt(x),

where the adjoint variable \=m satisfies

\partial t \=mt +\nabla \cdot (v(\=\mu t, \=ut)\otimes \=mt) =  - \nabla v(\=\mu t, \=ut) \=mt  - \=\mu t

\int 
\BbbR d

(\nabla K1)(y  - x) d \=mt(y)

+ \=\mu t

k\sum 
i=1

(\partial ij)(\langle g1, \=\mu t\rangle , . . . , \langle gk, \=\mu t\rangle )\nabla gi

subject to the conditions

\=\mu t| t=0 = \^\mu , \=mt| t=T = 0, \=ut| t=0 = \^u,
d\=ut

dt

\bigm| \bigm| \bigm| \bigm| 
t=T

= 0.

Note that in the case of the cost functional given in Remark 2.12 the optimality
condition turns out to be a boundary value problem in time. In fact, we obtain as
explicit representation

du\ell J2(u)[h
\ell ] = \lambda 

\int T

0

\biggl\langle 
d

dt
u\ell t,

d

dt
h\ell t

\biggr\rangle 
L2

dt

= \lambda 

\biggl[ 
d

dt
u\ell t \cdot h\ell t

\biggr] T
0

 - \lambda 

\int T

0

\biggl\langle 
d2

dt2
u\ell t, h

\ell 
t

\biggr\rangle 
H - 1,H1

dt

for h = (h\ell )\ell =1,...,M \in H1((0, T ),\BbbR dM ) with h0 = 0. In particular, the variational
lemma yields

\delta u\ell 
t
J2(ut) =

d2

dt2
u\ell t =

\int 
\BbbR d

(\nabla K2)(x - u\ell t) dmt(x) in H - 1((0, T ),\BbbR d),

u\ell 0 = \^u\ell 
0 and

d

dt
u\ell T = 0 for all \ell = 1, . . . ,M and u \in \scrU ad.

4. Relations between first-order optimality systems. In order to discuss
the links of the first-order optimality system in the space of probability measures
derived in the previous section to the one of the ODE constrained problem and the
optimization problem based on a classical L2-approach, we shall give the respective
first-order optimality systems in the interest of completeness.

4.1. First-order optimality conditions in the microscopic setting. We
derive the first-order optimality conditions for the microscopic case by the classical
L2-approach. Again, the set of admissible controls \scrU ad is defined as above. The state
space Y is the Hilbert space

Y = H1((0, T ),\BbbR Nd) \lhook \rightarrow \scrC ([0, T ],\BbbR Nd).

Further, we define

Z := L2((0, T ),\BbbR Nd)\times \BbbR Nd

D
ow

nl
oa

de
d 

07
/2

8/
21

 to
 1

31
.1

55
.1

44
.3

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MEAN-FIELD OPTIMAL CONTROL 995

the space of Lagrange multipliers with the dual Z\ast = Z. This allows us to define the
state operator eN : Y \times \scrU ad \rightarrow Z for the microscopic system as

eN (x,u) =

\biggl( 
d
dtxt  - vN (xt,ut)

x0  - \^x

\biggr) 
,

and the weak form

\langle eN (x,u), (\bfitxi ,\bfiteta )\rangle Z =

\int T

0

\biggl( 
d

dt
xt  - vN (xt,ut)

\biggr) 
\cdot \bfitxi t dt+ (x0  - \^x) \cdot \bfiteta .

We note that due to Y \lhook \rightarrow \scrC ([0, T ],\BbbR dN ) the evaluation of x0 is justified. Let (\bfitxi ,\bfiteta ) \in Z
denote the Lagrange multipliers. Then, the Lagrangian corresponding to (PN) with
N \in \BbbN fixed reads

\scrL N
micro(x,u, \bfitxi ,\bfiteta ) = NJN (x,u) + \langle eN (x,u), (\bfitxi ,\bfiteta )\rangle Z .

Remark 4.1. Note that the JN is multiplied with N to obtain the appropriate
balance between the two terms in the Lagrangian as N \rightarrow \infty .

As usual, the first-order necessary optimality condition is derived by solving

d\scrL N
micro(x,u, \bfitxi ,\bfiteta )

!
= 0.

Exploiting (A3)--(A5) we can calculate for any h = (hx, hu) \in Y \times \scrU ad the G\^ateaux
derivatives of the cost functional

dxJN (x,u)[hx] =

\int T

0

dxJ
N
1 (xt)[h

x
t ] dt, duJN (x,u)[hu] =

\int T

0

duJ2(ut)[h
u
t ] dt,

and for the second part of the Lagrangian

\langle dxeN (x,u)[hx], (\bfitxi ,\bfiteta )\rangle =
\int T

0

\biggl( 
d

dt
hxt  - Dxv

N (xt,ut)[h
x
t ]

\biggr) 
\cdot \bfitxi t dt+ hx0 \cdot \bfiteta ,(36a)

\langle dueN (x,u)[hu], (\bfitxi ,\bfiteta )\rangle =  - 
\int T

0

Duv
N (xt,ut)[h

u
t ] \cdot \bfitxi t dt.(36b)

Assuming further that \bfitxi \in Y , one may formally derive the strong formulation of the
adjoint system. Indeed, using integration by parts we arrive at the following result.

Theorem 4.2. Let (\=xN , \=uN ) be an optimal pair. The optimality condition corre-
sponding to (PN), with N \in \BbbN fixed, reads

\int T

0

NduJ2(\=u
N
t )[hut ] - Duv

N (\=xNt , \=u
N
t )[hut ] \cdot \=\bfitxi 

N
t dt = 0 for all hu \in \scrC \infty 

c ((0, T ),\BbbR dM ),

(37)

where \=\bfitxi 
N \in Y satisfies the adjoint system given by

d

dt
\=\bfitxi 
N
t =  - \nabla xv

N (\=xNt , \=u
N
t ) \=\bfitxi 

N
t +N\nabla xJ

N
1 (\=xNt )(38)

supplemented with the terminal condition \=\xi NT = 0.
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Similar to the previous case, we obtain for the cost functional given in Remark 2.12
the boundary value problem

d2

dt2
u\ell t =

1

\lambda N

N\sum 
i=1

\nabla K2(x
N,i
t  - u\ell t) \xi 

N,i
t in H - 1((0, T ),\BbbR d),

u\ell 0 = \^u\ell 
0 and

d

dt
u\ell T = 0 for all \ell = 1, . . . ,M and u \in \scrU ad.

Further, for the special structure of the interaction forces defined in (13) and J given
by (A3) we obtain for the adjoint equation

d

dt
\xi it =

1

N

N\sum 
j=1

\nabla K1(x
i
t  - xjt )\xi 

i
t  - 

1

N

N\sum 
j=1

\nabla K1(x
j
t  - xit)\xi 

j
t +

M\sum 
\ell =1

\nabla K2(x
i
t  - u\ell t) \xi 

i
t

+

L\sum 
l=1

\partial lj
\bigl( 
\langle g1, \mu N

t \rangle , . . . , \langle gL, \mu N
t \rangle 

\bigr) 
\nabla gl(xit), i = 1, . . . , N,

(39)

with terminal condition \xi iT = 0.

Remark 4.3. Using a similar idea as in the proof in the appendix (Gronwall in-
equality), it is not difficult to see that under assumption (A5), \bfitxi N satisfying (39)
enjoys the uniform bound

sup
t\in [0,T ]

1

N

N\sum 
i=1

| \xi N,i
t | 2 =: C\xi <\infty ,

where C\xi > 0 is independent of N \in \BbbN , and depends only on DKi, Dj, and Dg.

Remark 4.4. Defining the vector-valued measure mN
t := (1/N)

\sum N
i=1 \xi 

i
t\delta xi

t
, we

have by construction that mt satisfies

d

dt

\int 
\BbbR d

\nabla \varphi \cdot \mathrm{d}mN
t =  - 

\int 
\BbbR d

\nabla \varphi \cdot \nabla v(\mu N
t ,\bfu 

N
t ) \mathrm{d}mN

t  - 
\int 
\BbbR d

\nabla \varphi \cdot 
\int 
\BbbR d

\nabla K1(y  - \cdot ) \mathrm{d}mN
t (y) \mathrm{d}\mu N

t

+
L\sum 

l=1

\int 
\BbbR d

\partial lj
\bigl( 
\langle g1, \mu N

t \rangle , . . . , \langle gL, \mu N
t \rangle 

\bigr) 
\nabla \varphi \cdot \nabla gl \mathrm{d}\mu N

t +

\int 
\BbbR d

\nabla 2\varphi v(\mu N
t ,\bfu 

N
t ) \cdot \mathrm{d}mN

t

for all \varphi \in \scrC \infty 
c (\BbbR d). In other words, mN

t is a distributional solution of the equation

\partial tmt +\nabla \cdot 
\bigl( 
v(\mu N

t ,u
N
t )\otimes mt

\bigr) 
=  - \nabla v(\mu N

t ,u
N
t )mt  - \mu N

t

\int 
\BbbR d

\nabla K1(y  - \cdot ) dmt(y)

+ \mu N
t

L\sum 
l=1

\partial lj
\bigl( 
\langle g1, \mu N

t \rangle , . . . , \langle gL, \mu N
t \rangle 

\bigr) 
\nabla gl.

(40)

We emphasize that (40) coincides with the adjoint equation in the mean-field
setting (30).

4.2. First-order optimality conditions in the mean-field setting: \bfitL 2-
approach. To be able to work in the classical L2-setting, we will need additional
assumptions to obtain Lebesgue integrable solutions:
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(A6) There exists a compact \Omega 0 \subset \BbbR d such that the initial condition satisfies
supp(\^\mu ) \in \Omega 0.

(A7) The initial measure \^\mu has a Lebesgue density \^f \in L2(\Omega 0).
In particular, (A5)--(A7) ensure the boundedness of the support of \mu t for all

times t \in [0, T ]. Hence, we can fix a bounded domain \Omega \subset \BbbR d with smooth boundary
containing the support of \mu t for all times t \in [0, T ]. In this section we strongly use
that \mu is absolutely continuous w.r.t. the Lebesgue measure and denote its density
by ft = d\mu t/dx with initial condition f0 = \^f . Then, we define the state space of the
PDE optimization problem as

\scrY =
\Bigl\{ 
f \in L2((0, T ), H1(\Omega )) : \partial tf \in L2((0, T ), H - 1(\Omega ))

\Bigr\} 
.

Let \scrX = L2((0, T ), H1(\Omega )) and \scrZ = \scrX \times L2(\Omega ) be the space of adjoint states with
dual \scrZ \ast . The control space \scrU ad was already defined in (17). For the derivation of the
adjoints we consider here only the special case given by (13) and (A4). We define the
mapping e\infty : \scrY \times \scrU ad \rightarrow \scrZ \ast by

\langle e(\mu ,u), (q, \eta )\rangle \scrZ \ast ,\scrZ =

\int T

0

\langle \partial tft, qt\rangle H - 1,H1 +

\int 
\Omega 

\nabla \cdot 
\bigl( 
v(ft,ut)ft

\bigr) 
qt dxdt

 - 
\int 
\Omega 

(f0  - \^f)\eta dx

with adjont state (q, \eta ) \in \scrZ . The Lagrangian corresponding to (P\infty ) reads

\scrL macro(\mu ,u, q, \eta ) = J(\mu ,u) + \langle e(\mu ,u), (q, \eta )\rangle \scrZ \ast ,\scrZ .

Analogously to the microscopic case, we derive the adjoint system and the optimality
condition by calculating the derivatives of \scrL meso w.r.t. the state variable and the
control. The standard L2-calculus yields

dfJ(\mu ,u)[h
f ] =

\int T

0

dfJ1(\mu t)[h
f
t ] dt, duJ(\mu ,u)[h

u] =

\int T

0

duJ2(ut)[h
u
t ] dt

for the cost functional and

\langle dfe(\mu ,u)[hf ], (q, \eta )\rangle =
\int T

0

\langle \partial thft , qt\rangle H - 1,H1 +

\biggl\langle \int 
\Omega 

K1(y - x) \cdot \nabla qt(y)ft(y) dy, ht
\biggr\rangle 
dt

 - 
\int T

0

\langle v(ft,ut) \cdot \nabla q, ht\rangle dt - \langle h0, \eta \rangle ,

\langle due(\mu ,u)[hu], (q, \eta )\rangle =  - 
\int T

0

\int 
\Omega 

Duv(ft,ut)[h
u
t ] \cdot \nabla qt ft dx dt

for the state operator. Assuming additionally q \in \scrY , we may integrate by parts to
obtain a strong formulation of the adjoint system. This yields the following optimality
system.

Theorem 4.5. Let (f, u) be an optimal pair. The optimality condition corre-
sponding to (P\infty ) reads\int T

0

duJ2(ut)[h
u
t ] - 

\int 
\Omega 

Duv(ft,ut)[h
u
t ] \cdot \nabla qt ft dxdt = 0 for all hu \in C\infty 

0 (\BbbR dM ),

where q \in \scrY satisfies the adjoint PDE given by
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998 M. BURGER, R. PINNAU, C. TOTZECK, AND O. TSE

\partial tqt  - 
\int 
\Omega 

K1(y  - x) \cdot \nabla qt(y)ft(y) dy + v(ft,ut) \cdot \nabla qt =
L\sum 

i=1

\partial ij(\langle g1, \mu \rangle , . . . , \langle gL, \mu \rangle ) gi

(41)

supplemented with the terminal condition gT = 0.

The adjoint equation (41) derived via the L2-approach clearly resembles (33).

Remark 4.6. As before, in the case (13) the optimality conditions can be given
explicity as

d2

dt2
\=u\ell =

1

\lambda 

M\sum 
\ell =1

\int 
\Omega 

\nabla K2(x - \=u\ell t)\nabla qt(x)ft(x) dx,

\=u\ell 0 = 0 =
d

dt
\=u\ell T for all \ell = 1, . . . ,M.

A comparison with the optimality condition on the micro indicates a relation between
\nabla q and \xi which will be further discussed in the following.

4.3. Relations between the approaches. In this section we discuss the rela-
tion between the adjoint derived w.r.t. the 2-Wasserstein distance and the gradient
flow equation corresponding to the Hamiltonian approach (cf. [17]). In order to define
the probability measure containing forward and backward information we first recall
the flow formulation of the state system

d

dt
Qt(x) = v(Qt\#\mu 0,ut) \circ Qt(x), Q0(x) = x, \mu 0 = law(x).(42)

Further, we introduce the adjoint flow At corresponding to \xi t, defined by At = \xi t \circ Qt.
Its evolution equation is given by

d

dt
At(x) =  - 

\bigl( 
\nabla v(Qt\#\mu 0,ut) \circ Qt(x)

\bigr) 
At(x)

 - 
\int 
\BbbR d

(\nabla K1)(Qt(y) - Qt(x))At(y) d\mu 0(y) - \delta \mu J1(Qt\#\mu 0)
(43)

with terminal condition AT (x) = 0.

Remark 4.7. We would like to point out that (43) can also be derived directly from
the state flow with the help of a Lagrangian-approach w.r.t. the L2-scalar product. A
change of coordinates from the Lagrangian to the Eulerian perspective leads to (32).

Due to the strong dependence of the adjoint flow on the forward flow, one may un-
derstand (42) and (43) as a coupled system of equations. Let us consider the mea-
sure \nu \in \scrC ([0, T ],\scrP 1(\BbbR d \times \BbbR d)) defined by the push-forward of \mu 0 along the map
St(x) = (Qt(x), At(x)) for all x \in \BbbR d and t \in [0, T ]:\int \int 

\BbbR d\times \BbbR d

\varphi (x, r) d\nu t(x, r) =

\int 
\BbbR d

(\varphi \circ St)(x) d\mu 0(x) for all \varphi \in \scrC b(\BbbR d \times \BbbR d).

Notice that since\int \int 
\BbbR d\times \BbbR d

\varphi (x) d\nu t(x, r) =

\int 
\BbbR d

(\varphi \circ Qt)(x) d\mu 0(x) =

\int 
\BbbR d

\varphi (x) d\mu t(x),

the first marginal of \nu t corresponds to \mu t. In particular,
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v(\mu t,ut) = v(\nu t,ut), \nabla v(\mu t,ut) = \nabla v(\nu t,ut), \delta \mu J1(\mu t) = \delta \mu J1(\nu t),\int 
\BbbR d

(\nabla K1)(Qt(y) - x)At(y) d\mu 0(y) =

\int \int 
\BbbR d\times \BbbR d

(\nabla K1)(y  - x)\eta d\nu t(y, \eta ).

Furthermore, \int \int 
\BbbR d\times \BbbR d

\varphi (r) d\nu T (x, r) =

\int 
\BbbR d

(\varphi \circ AT )(x) d\mu 0(x) = \varphi (0),

i.e., \nu T (\BbbR d \times B) = \delta 0(B) for all B \in \scrB (\BbbR d).
From the definition of \nu , it is not difficult to see that \nu satisfies

\partial t\nu t +\nabla x \cdot 
\Bigl( 
\nabla \xi \scrH (\nu t,ut)\nu t

\Bigr) 
 - \nabla \xi \cdot 

\Bigl( 
\nabla x\scrH (\nu t,ut)\nu t

\Bigr) 
= 0(44)

with mixed initial and terminal data given by

\nu 0(B \times \BbbR d) = \mu 0(B), \nu T (\BbbR d \times B) = \delta 0(B) for any B \in \scrB (\BbbR d),

where the Hamiltonian (cf. [6]) corresponding to (P\infty ) is given by

\scrH (\nu ,u)(x, \xi ) = v(\nu ,u)(x) \cdot \xi +
\int \int 

\BbbR d\times \BbbR d

K1(y  - x) \cdot \eta d\nu (y, \eta )

 - 
L\sum 

i=1

(\partial ij)(\langle g1, \nu \rangle , . . . , \langle gL, \nu \rangle )gi(x).
(45)

On the other hand, (44) can also be derived from a mean-field Ansatz [17]. Indeed,
starting from the system of forward and adjoint ODEs, leads to the empirical measure
\nu N defined as

\nu Nt ( dx d\xi ) =
1

N

N\sum 
i=1

\delta (xi
t,\xi 

i
t)
( dxd\xi )(46)

which satisfies (44). More details can be found in, e.g., [9, 27].
We conclude this section with a discussion of the relation of \nu and the vector-

valued adjoint variable m defined by (30). More precisely, we show that m satisfying
(30) can be characterized as first moment of \nu with respect to \xi . We use the notation
\omega t( dx) :=

\int 
\BbbR d \xi \nu t( dx, d\xi ). Since by construction,\int 

\BbbR d

\varphi (x) d| \omega t| (x) \leq 
\int \int 

\BbbR d\times \BbbR d

\varphi (x)| \xi | d\nu t( dx d\xi ) =
\int 
\BbbR d

(\varphi \circ Qt)(x)| At(x)| d\mu 0(dx)

\leq \| \varphi \| sup\| \xi t\| sup \leq \| \varphi \| sup supt\in [0,T ] \| \xi t\| sup for all \varphi \in \scrC b(\BbbR d),

the measure \omega t is well-defined and satisfies (30) with the terminal condition \omega T = 0,
which holds due to

\int 
\BbbR d | \xi | \nu T (\BbbR d, d\xi ) = 0. The above discussion yields the following

result.

Proposition 4.8. The adjoint corresponding to (P\infty ) derived in the Wasser-
stein space \scrP 2(\BbbR d) solves (32) and can be characterized as the first moment w.r.t. \xi 
of the probability measure \nu corresponding to the Hamiltonian flow (44) of (P\infty )
with Hamiltonian given by (45).
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Fig. 1. Flow chart showing the relations between the different adjoint approaches discussed in
this section.

The findings of this section are summarized in Figure 1. On the ODE level the
adjoints can be computed using the L2-approach. Passing to the mean-field limit with
the empirical measure (46) yields an evolution equation for a probability measure on
the state and adjoint space (44). The first \xi -moment of \nu satisfies the same equation
as the adjoint equation derived in the space of probability measures equipped with
the 2-Wasserstein distance, i.e., (30). The evolution of point masses following the
characteristics of the mean-field adjoint equation equals the solution of the adjoint
ODE with states initialized at the corresponding points. Moreover, we formally obtain
a relation of the L2-adjoint (41) and (32), whenever K1 and K2 are gradients of
potential fields. Indeed, taking the gradient of the evolution equation of g yields (32)
for \nabla g = \xi (see Remarks 3.9 and 4.6).

Remark 4.9. As the adjoint equation obtained using the calculus in the space of
probability measures is vector-valued, it may be infeasible for numerical simulations
for higher space dimensions. The link between the vector-valued adjoint and the L2-
adjoint discussed in this section can be seen as justification to use the L2-adjoint for
numerics. Indeed, in [9] this procedure leads to very convincing results.

5. Convergence rate. In this section we investigate the convergence of the
microscopic optimal controls to the optimal control of the mean-field problem as
N \rightarrow \infty . Our strategy for the proof is to use flows to pull the information back to
the initial data. For simplicity we assume that J2(u) and v have the structures given
in Remark 2.12 and (15), respectively, in more detail:

J2(u) =
\lambda 

2

\bigm\| \bigm\| \bigm\| \bigm\| dudt
\bigm\| \bigm\| \bigm\| \bigm\| 2
L2((0,T ),\BbbR dM )

, v(\mu ,u) =  - K1 \ast \mu  - 
M\sum 
\ell =1

K2(x - u\ell ).

For the initial data we assume convergence as N \rightarrow \infty . This can be realized by
drawing samples from the initial measure \^\mu for the particles (see Remark 5.3).

To summarize, the goal of this section is to prove the following.

Theorem 5.1. Let the assumptions (A1)--(A6) hold and J2(u) as above. Fur-
ther, let (\=xN , \=uN ) and (\=\mu , \=u) be optimal pairs for (PN) and (P\infty ) with initial data
\^xN , \^\mu , respectively. Moreover, let the adjoint velocity for the pair (\=\mu , \=u) satisfy
\=\xi \in \scrC ([0, T ],Lipb(\BbbR d)). Then there exists a constant \gamma > 0 depending only on T ,
K1, K2, J1, and Lipschitz bounds on \=\xi , such that for \lambda > \gamma it holds that

\| uN  - \=u\| 2L2((0,T ),\BbbR dM ) \leq 
\gamma 

\lambda  - \gamma 
W 2

2 (\mu 
N
\^xN , \^\mu ),
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where \mu N
\^xN denotes the empirical measures corresponding to the initial configurations

\^xN .

Remark 5.2. Note that we cannot expect that the solutions of the respective
optimal control problems are unique. Hence, we need to ensure that our problem
is convex enough, i.e., \lambda is large enough. Essentially, we require here some kind of
second-order sufficient condition or, equivalently, a quadratic growth condition near
to the optimal state (see also [13]).

Remark 5.3. Theorem 5.1 show that the convergence rate strongly depends on
the convergence of the initial measures W2(\mu 

N
\^xN , \^\mu ) \rightarrow 0. Since \mu is assumed to have

compact support, we obtain a convergence of order
\surd 
N (cf. [28]) if one chooses \^xN

as random variables with distribution \^\mu .

Remark 5.4. The proof of the convergence rate can be obtained as well in a
slightly different setting, i.e., without fixing the initial positions of the controls. In-
deed, for

J2(u) :=
\lambda 

2

\int T

0

\bigm| \bigm| \bigm| \bigm| dut

dt

\bigm| \bigm| \bigm| \bigm| 2 + | ut  - u0| 2 dt and \scrU ad = H1(0, T ;\BbbR dM ),

one obtains a similar proof without using a Poincar\'e inequality.

We begin with a simple result (without proof) on v = v(\mu ,u) and J1.

Lemma 5.5. (i) Under assumption (A5), the mapping v : \scrP 2(\BbbR d)\times \BbbR dM \rightarrow 
\scrC 2
b (\BbbR d) defined by (15) satisfies for any \mu , \mu \prime \in \scrP 2(\BbbR d) and u,u\prime \in \BbbR dM

\| v(\mu ,u) - v(\mu \prime ,u\prime )\| sup+\| Dv(\mu ,u) - Dv(\mu \prime ,u\prime )\| sup \leq Cv

\Bigl( 
W2(\mu , \mu 

\prime )+| u - u\prime | 
\Bigr) 

for some constant Cv, independent of (\mu ,u) and (\mu \prime ,u\prime ).
(ii) If in addition to (A3), j \in \scrC 2(\BbbR K) and gl \in \scrC 2(\BbbR d), l = 1, . . . ,K, then \delta \mu J1

defined in (28) satisfies

\| \delta \mu J1(\mu ) - \delta \mu J1(\mu 
\prime )\| sup \leq CJ1W2(\mu , \mu 

\prime )

for some constant CJ1
, depending only on J1, m2(\mu ), and m(\mu \prime ).

Remark 5.6. Note that if supt\in [0,T ]\{ m2(\mu t) + m2(\mu 
\prime 
t)\} < \infty , then the time-

dependent constants CJ1
(t) in Lemma 5.5 are uniformly bounded in t, i.e., supt\in [0,T ]

CJ1
(t) <\infty .

We now proceed with a stability estimate for the adjoint velocities \bfitxi N and \xi 
corresponding to (39) and (32), respectively.

Remark 5.7. Equation (39) can be written in the concise integral form

\xi N,i
t =  - 

\int T

t

\Psi N
i (\mu N

s ,us)[\=\bfitxi 
N
s ] ds, \xi N,i

T = 0, i = 1, . . . , N,(47)

where \Psi N
i is given by

\Psi N
i (\mu N ,\bfu N )[\bfitxi N ] =  - \nabla v(\mu N ,\bfu N )(xN,i) \xi N,i - 1

N

N\sum 
j=1

\nabla K1(x
N,j - xN,i)\xi N,j+\delta \mu J1(\mu 

N )(xN,i),

in connection to the operator \Psi defined in (34).
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Lemma 5.8. Let the assumptions (A1)--(A6) hold. Further, let xN and \mu be solu-
tions to (12) and (20) for given controls uN , u and initial data \^xN , \^\mu , respectively.
If \bfitxi N satisfies (39) for the pair (xN ,uN ) and \xi \in \scrC ([0, T ],Lipb(\BbbR d)) satisfies (32) for
the pair (\mu ,u), then there exist positive constants a and b, independent of N \in \BbbN such
that

sup
t\in [0,T ]

1

N

N\sum 
i=1

| \xi N,i
t  - \xi t(x

N,i
t )| \leq beaT

\int T

0

\Bigl( 
W2(\mu 

N
s , \mu s) + | uN

s  - us| 
\Bigr) 
ds.

Proof. Denote by \mu N the empirical measure corresponding to the particles xN .
We further denote Cv,J1

:= Cv+supt\in [0,T ] CJ1
(t) with Cv and CJ1

(t) given in Lemma

5.5 for each t \in [0, T ]. Due to Remark 5.6, Cv,J1
<\infty . From Remark 5.7, we see that

\bfitxi N satisfies (47), and therefore,

\xi N,i
t  - \xi (xN,i

t ) =  - 
\int T

t

\Bigl[ 
\Psi N

i (\mu N
s ,\bfu s)[\bfitxi 

N
s ] - \Psi (\mu s,\bfu s)[\xi s](x

N,i
s )

\Bigr] 
\mathrm{d}s =  - 

\int T

t

(\mathrm{I})+(\mathrm{I}\mathrm{I})+(\mathrm{I}\mathrm{I}\mathrm{I}) ds,

where

(I) =  - \nabla v(\mu N
s ,u

N
s )(xN,i

s ) \xi N,i
s +\nabla v(\mu s,us)(x

N,i
s ) \xi s(x

N,i
s ),

(II) =  - 1

N

N\sum 
j=1

\nabla K1(x
N,j
s  - xN,i

s )\xi N,j
s +

\int 
\nabla K1(y  - xN,i

s )\xi s(y) d\mu (y),

(III) = \delta \mu J1(\mu 
N
s )(xN,i

s ) - \delta \mu J1(\mu s)(x
N,i
s ).

From Lemma 5.5, we easily deduce that

| (I)| \leq Cv,J1

\Bigl( 
W2(\mu 

N
s , \mu s) + | uN

s  - us| 
\Bigr) 
| \xi N,i

s | + \| \nabla v(\mu s,us)\| sup| \xi N,i
s  - \xi s(x

N,i
s )| ,

| (III)| \leq Cv,J1
W2(\mu 

N
s , \mu s).

As for (II), we have

| (II)| \leq 1

N

N\sum 
j=1

\bigm| \bigm| \nabla K1(x
N,j
s  - xN,i

s )
\bigm| \bigm| \bigm| \bigm| \xi N,j

s  - \xi s(x
N,j
s )

\bigm| \bigm| 
+

\int \int \bigm| \bigm| \nabla K1(y  - xN,i
s )\xi s(y) - \nabla K1(y

\prime  - xN,i
s )\xi s(y

\prime )
\bigm| \bigm| d\pi s(y, y\prime )

\leq \| DK1\| sup
1

N

N\sum 
j=1

| \xi N,j
s  - \xi s(x

N,j
s )| 

+
\Bigl( 
\| D2K1\| sup\| \xi s\| sup + \| DK1\| supLip(\xi s)

\Bigr) 
W2(\mu 

N
s , \mu s),

where \pi s is an optimal coupling between \mu N
s and \mu s.

Defining

Y N
t :=

1

N

N\sum 
i=1

| \xi N,i
t  - \xi t(x

N,i
t )| ,

we find positive constants a, b > 0, independent of N (cf. Remark 4.3) such that

Y N
t \leq a

\int T

t

Y N
s ds+ b

\int T

t

\Bigl( 
W2(\mu 

N
s , \mu s) + | uN

s  - us| 
\Bigr) 
ds.

D
ow

nl
oa

de
d 

07
/2

8/
21

 to
 1

31
.1

55
.1

44
.3

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MEAN-FIELD OPTIMAL CONTROL 1003

An application of Gronwall's inequality gives

Y N
T - t \leq beat

\int t

0

\Bigl( 
W2(\mu 

N
T - s, \mu ts) + | uN

T - s  - uT - s| 
\Bigr) 
ds.

Taking the supremum over t \in [0, T ] yields the required estimate.

Remark 5.9. Putting Lemma 5.8 and Lemma 2.8 together, we obtain the estimate

sup
t\in [0,T ]

1

N

N\sum 
i=1

| \xi N,i
t  - \xi t(x

N,i
t )| 2 \leq CT

\Bigl( 
W 2

2 (\^\mu 
N , \^\mu ) + \| uN  - u\| 2L2((0,T ),\BbbR dM )

\Bigr) 
for some positive constant CT , independent of N \in \BbbN .

Proof of Theorem 5.1. In the following, let (\=xN , \=uN ) and (\=\mu , \=u) be optimal pairs

for (PN) and (P\infty ), respectively. Further, let \=\bfitxi 
N

and \=\xi be adjoint velocities of the N -
particle trajectories and mean-field limit corresponding to (39) and (32), respectively.
We also denote by \=\mu N the empirical measure corresponding to the particles \=xN .

Recall the optimality conditions for \=uN and \=u, given by (37) and (31), respectively.
Taking their differences and using hN = \=uN  - \=u as a test function, we arrive at

\lambda 

2

\bigm\| \bigm\| \bigm\| \bigm\| ddthN

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2((0,T ),\BbbR dM )

=
\bigl( 
dJ2(\=u

N ) - dJ2(\=u)
\bigr) 
[hN ] =

M\sum 
\ell =1

\int T

0

hN,\ell 
t \cdot fN,\ell 

t dt

with

fN,\ell 
t =

1

N

N\sum 
i=1

(\nabla K2)(\=x
N,i
t  - \=uN,\ell 

t ) \=\xi N,i
t  - 

\int 
\BbbR d

(\nabla K2)(x - \=u\ell 
t)

\=\xi t d\=\mu t = (I) + (II),

where

(I) =
1

N

N\sum 
i=1

(\nabla K2)(\=x
N,i
t  - \=uN,\ell 

t )
\Bigl[ 
\=\xi N,i
t  - \=\xi t(\=x

N,i
t )

\Bigr] 
,

(II) =

\int 
\BbbR d

(\nabla K2)(x - \=uN,\ell 
t ) \=\xi t d\=\mu 

N
t  - 

\int 
\BbbR d

(\nabla K2)(x - \=u\ell 
t)

\=\xi t d\=\mu t.

For (I), we obtain from Remark 5.9

| (I)| \leq 
\sqrt{} 
CT \| DK2\| sup

\Bigl( 
W2(\^\mu , \^\mu 

\prime ) + \| hN\| L2((0,T ),\BbbR dM )

\Bigr) 
.

As for (II), we obtain in a similar manner as in the proof of Lemma 5.8

| (II)| \leq 
\Bigl( 
\| D2K2\| sup\| \=\xi t\| sup| hN,\ell 

t | + \| DK2\| supLip(\=\xi t)
\Bigr) 
W2(\=\mu 

N
t , \=\mu t).

Altogether, we obtain a positive constant c0, depending only on T , K1, K2, j, gl,
l = 1, . . . , L, and Lipschitz bound on \=\xi such that

M\sum 
\ell =1

\int T

0

hN,\ell 
t \cdot fN,\ell 

t dt \leq c0

\Bigl( 
W 2

2 (\mu 
N
0 , \mu 0) + \| hN\| 2L2((0,T ),\BbbR dM )

\Bigr) 
.

On the other hand, from the Poincar\'e inequality, we have a constant cP > 0 such that

\| hN\| 2L2((0,T ),\BbbR dM ) \leq cP

\bigm\| \bigm\| \bigm\| \bigm\| ddthN

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2((0,T ),\BbbR dM )
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and consequently gives

(\lambda  - 2cP c0)\| hN\| 2L2((0,T ),\BbbR dM ) \leq 2cP c0W
2
2 (\mu 

N
0 , \mu 0).

For \lambda > \gamma := 2cP c0, we may simply reformulate the inequality above and conclude
the proof.

Remark 5.10. Note that the same estimates in the proof of Theorem 5.1 may be
used to provide uniqueness of minimizers to (PN) and (P\infty ). See also Remark 5.2.

Appendix A.

Proof of Lemma 2.8. Under the given assumptions, the solutions \mu and \mu \prime satisfy
the continuity equations

\partial t\mu t +\nabla \cdot (v(\mu t,ut)\mu t) = 0, \partial t\mu 
\prime 
t +\nabla \cdot (v(\mu \prime 

t,u
\prime 
t)\mu 

\prime 
t) = 0, in distribution,

with locally Lipschitz vector fields v(\mu t,ut) and v(\mu 
\prime 
t,u

\prime 
t) for every t \in [0, T ] satisfying\int T

0

\biggl( \int 
\BbbR d

| v(\mu t,ut)| 2d\mu N
t +

\int 
\BbbR d

| v(\mu \prime 
t,u

\prime 
t)| 2d\mu \prime 

t

\biggr) 
dt <\infty .

In this case, we can take the temporal derivative of W 2
2 (\mu 

N
t , \mu t) to obtain

1

2

d

dt
W 2

2 (\mu t, \mu 
\prime 
t) =

\int \int 
\BbbR d\times \BbbR d

\langle v(\mu t,ut)(x) - v(\mu \prime 
t,u

\prime 
t)(y), x - y\rangle d\pi t(x, y)

\leq 
\int \int 

\BbbR d\times \BbbR d

\langle v(\mu t,ut)(x) - v(\mu t,ut)(y), x - y\rangle d\pi t(x, y)

+

\int \int 
\BbbR d\times \BbbR d

| v(\mu t,ut)(y) - v(\mu \prime 
t,u

\prime 
t)(y)| | x - y| d\pi t(x, y) =: I1 + I2,

where \pi t is the optimal transference plan of \mu t and \mu 
\prime 
t for each t \in [0, T ].

For the first term, we easily deduce from (A1) the following estimate:

I1 \leq Cl

\int \int 
\BbbR d\times \BbbR d

| x - y| 2d\pi t(x, y).

As for the other term, we have, due to (A2),

I2 \leq Cv

\Bigl( 
W2(\mu t, \mu 

\prime 
t) + \| ut  - u\prime 

t\| 2
\Bigr) \int \int 

\BbbR d\times \BbbR d

| x - y| d\pi (x, y)

\leq Cv

2

\Bigl( 
3W 2

2 (\mu t, \mu 
\prime 
t) + 2\| ut  - u\prime 

t\| 22
\Bigr) 
,

where the Young inequality was used in the last inequality. Altogether, we obtain

d

dt
W 2

2 (\mu t, \mu 
\prime 
t) \leq aW 2

2 (\mu t, \mu 
\prime 
t) + b\| ut  - u\prime 

t\| 22

with time-independent constants a, b > 0. Applying the Gronwall inequality on the
quantity e - atW 2

2 (\mu t, \mu 
\prime 
t), we finally obtain the required estimate.
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