127 research outputs found

    A matrix-based approach to properness and inversion problems for rational surfaces

    Get PDF
    We present a matrix-based algorithm for deciding if the parametrization of a curve or a surface is invertible or not, and for computing the inverse of the parametrization if it exists.Comment: 12 pages, latex, revised version accepted for publication in the Journal AAEC

    Properness and inversion of rational parametrizations of surfaces

    Get PDF
    In this paper we characterize the properness of rational parametrizations of hypersurfaces by means of the existence of intersection points of some additional algebraic hypersurfaces directly generated from the parametrization over a field of rational functions. More precisely, if V is a hypersurface over an algebraically closed field ? of characteristic zero and is a rational parametrization of V, then the characterization is given in terms of the intersection points of the hypersurfaces defined by x i q i (t¯)−p i (t¯), i=1,...,n over the algebraic closure of ?(V). In addition, for the case of surfaces we show how these results can be stated algorithmically. As a consequence we present an algorithmic criteria to decide whether a given rational parametrization is proper. Furthermore, if the parametrization is proper, the algorithm also computes the inverse of the parametrization. Moreover, for surfaces the auxiliary hypersurfaces turn to be plane curves over ?(V), and hence the algorithm is essentially based on resultants. We have implemented these ideas, and we have empirically compared our method with the method based on Gröbner basis

    Involutions of polynomially parametrized surfaces

    Full text link
    We provide an algorithm for detecting the involutions leaving a surface defined by a polynomial parametrization invariant. As a consequence, the symmetry axes, symmetry planes and symmetry center of the surface, if any, can be determined directly from the parametrization, without computing or making use of the implicit representation. The algorithm is based on the fact, proven in the paper, that any involution of the surface comes from an involution of the parameter space (the real plane, in our case); therefore, by determining the latter, the former can be found. The algorithm has been implemented in the computer algebra system Maple 17. Evidence of its efficiency for moderate degrees, examples and a complexity analysis are also given

    The μ-basis of improper rational parametric surface and its application

    Get PDF
    The μ-basis is a newly developed algebraic tool in curve and surface representations and it is used to analyze some essential geometric properties of curves and surfaces. However, the theoretical frame of μ-bases is still developing, especially of surfaces. We study the μ-basis of a rational surface V defined parametrically by P(t¯),t¯=(t1,t2) not being necessarily proper (or invertible). For applications using the μ-basis, an inversion formula for a given proper parametrization P(t¯) is obtained. In addition, the degree of the rational map ϕP associated with any P(t¯) is computed. If P(t¯) is improper, we give some partial results in finding a proper reparametrization of V. Finally, the implicitization formula is derived from P (not being necessarily proper). The discussions only need to compute the greatest common divisors and univariate resultants of polynomials constructed from the μ-basis. Examples are given to illustrate the computational processes of the presented results.Ministerio de Ciencia, Innovación y Universidade

    On the problem of proper reparametrization for rational curves and surfaces

    Get PDF
    A rational parametrization of an algebraic curve (resp. surface) establishes a rational correspondence of this curve (resp. surface) with the affine or projective line (resp. affine or projective plane). This correspondence is a birational equivalence if the parametrization is proper. So, intuitively speaking, a rational proper parametrization trace the curve or surface once. We consider the problem of computing a proper rational parametrization from a given improper one. For the case of curves we generalize, improve and reinterpret some previous results. For surfaces, we solve the problem for some special surface's parametrizations

    Numerical proper reparametrization of space curves and surfaces

    Get PDF
    Simplifying rational parametrizations of surfaces is a basic problem in CAD (computer-aided design). One important way is to reduce their tracing index, called proper reparametrization. Most existing proper reparametrization work is symbolic, yet in practical environments the surfaces are usually given with perturbed coefficients hence need a numerical technique of reparametrization considering the intrinsic properness of the perturbed surfaces. We present algorithms for reparametrizing a numerically rational space curve or surface. First, we provide an efficient way to find a parametric support transformation and compute a reparametrization with proper parametric support. Second, we develop a numerical algorithm to further reduce the tracing index, where numerical techniques such as sparse interpolation and approximated GCD computations are involved. We finally provide the error bound between the given rational curve/surface and our reparametrization result.Ministerio de Ciencia, Innovación y Universidade
    • …
    corecore