2 research outputs found

    Ordonnancement cyclique robuste appliqué à la gestion des conteneurs dans les ports maritimes de taille moyenne

    Get PDF
    This PhD thesis is dedicated to propose a robust cyclic scheduling methodology applied to container management of medium sized seaport which faces ever changing terminal conditions and the limited predictability of future events and their timing. The robust cyclic scheduling can be seen not just a predictable scheduling to compute a container transportation schedule, but also a reactive scheduling to eliminate the disturbances in real time. In this work, the automated intelligent vehicles (AIV) are used to transport the containers, and the P-time strongly connected event graph (PTSCEG) is used as a graphical tool to model the container transit procedures. Before the arrival of the container vessel, a cyclic container transit schedule can be given by the mixed integer programming (MIP) method in short time. The robustness margins on the nodes of the system can be computed by robustness algorithms in polynomial computing time. After the stevedoring begins, this robust cyclic schedule is used. When a disturbance is observed in system, it should be compared with the known robustness margin. If the disturbance belongs to the robustness margin, the robustness algorithm is used to eliminate the disturbance in a few cycle times. If not, the MIP method is used to compute a new cyclic schedule in short timeCette thèse présente une méthodologie d’ordonnancement cyclique robuste appliquée à la gestion des conteneurs dans les ports maritimes de taille moyenne. Ces derniers sont sujet constamment à des variations des conditions des terminaux, la visibilité réduite sur des évènements futurs ne permet pas de proposer une planification précise des tâches à accomplir. L’ordonnancement cyclique robuste peut jouer un rôle primordial. Il permettra non seulement de proposer un ordonnancement prédictif pour le transport des conteneurs, mais aussi, il proposera également une planification robuste permettant d’éliminer les perturbations éventuelles en temps réel. Dans ce travail nous utilisons les Véhicules Intelligents Automatisés (AIV) pour transporter les conteneurs et nous modélisons les procédures de transit de ces derniers par des graphes d’évènements P-temporels fortement connexes (PTSCEG). Avant l’arrivée d’un porte conteneur au port, un plan (planning) de transport des conteneurs est proposé en un temps court par la programmation linéaire mixte (MIP). Des algorithmes polynomiaux de calcul de robustesse permettent de calculer sur les différents nœuds du système les marges de robustesse. Une fois le navire à quai, l’ordonnancement cyclique robuste est appliqué. Lorsqu’une perturbation est observée (localisée) dans le système, une comparaison avec la marge de robustesse connue est effectuée. Si cette perturbation est incluse dans la marge de robustesse, l’algorithme robuste est utilisé pour éliminer ces perturbations en quelques cycles. Dans le cas où la perturbation est trop importante, la méthode MIP est utilisée pour calculer un nouvel ordonnancement cyclique en un temps rédui

    An on-demand fixture manufacturing cell for mass customisation production systems.

    Get PDF
    Master of Science in Engineering. University of KwaZulu-Natal, Durban, 2017.Increased demand for customised products has given rise to the research of mass customisation production systems. Customised products exhibit geometric differences that render the use of standard fixtures impractical. Fixtures must be configured or custom-manufactured according to the unique requirements of each product. Reconfigurable modular fixtures have emerged as a cost-effective solution to this problem. Customised fixtures must be made available to a mass customisation production system as rapidly as parts are manufactured. Scheduling the creation/modification of these fixtures must now be treated together with the production scheduling of parts on machines. Scheduling and optimisation of such a problem in this context was found to be a unique avenue of research. An on-demand Fixture Manufacturing Cell (FxMC) that resides within a mass customisation production system was developed. This allowed fixtures to be created or reconfigured on-demand in a cellular manufacturing environment, according to the scheduling of the customised parts to be processed. The concept required the research and development of such a cell, together with the optimisation modelling and simulation of this cell in an appropriate manufacturing environment. The research included the conceptualisation of a fixture manufacturing cell in a mass customisation production system. A proof-of-concept of the cell was assembled and automated in the laboratory. A three-stage optimisation method was developed to model and optimise the scheduling of the cell in the manufacturing environment. This included clustering of parts to fixtures; optimal scheduling of those parts on those fixtures; and a Mixed Integer Linear Programming (MILP) model to optimally synchronise the fixture manufacturing cell with the part processing cell. A heuristic was developed to solve the MILP problem much faster and for much larger problem sizes – producing good, feasible solutions. These problems were modelled and tested in MATLAB®. The cell was simulated and tested in AnyLogic®. The research topic is beneficial to mass customisation production systems, where the use of reconfigurable modular fixtures in the manufacturing process cannot be optimised with conventional scheduling approaches. The results showed that the model optimally minimised the total idle time of the production schedule; the heuristic also provided good, feasible solutions to those problems. The concept of the on-demand fixture manufacturing cell was found to be capable of facilitating the manufacture of customised products
    corecore