491 research outputs found

    High-Performance Broadcast and Multicast Protocols for Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Recently, wireless mesh networks (WMNs) have attracted much attention. A vast amount of unicast, multicast and broadcast protocols has been developed for WMNs or mobile ad hoc networks (MANETs). First of all, broadcast and multicast in wireless networks are fundamentally different from the way in which wired networks function due to the well-known wireless broadcast/multicast advantage. Moreover, most broadcast and multicast protocols in wireless networks assume a single-radio single-channel and single-rate network model, or a generalized physical model, which does not take into account the impact of interference. This dissertation focuses on high-performance broadcast and multicast protocols designed for multi-radio multi-channel (MRMC) WMNs. MRMC increases the capacity of the network from different aspects. Multi-radio allows mesh nodes to simultaneously send and receive through different radios to its neighbors. Multi-channel allows channels to be reused across the network, which expands the available spectrum and reduces the interference. Unlike MANETs, WMNs are assumed to be static or with minimal mobility. Therefore, the main design goal in WMNs is to achieve high throughput rather than to maintain connectivity. The capacity of WMNs is constrained by the interference caused by the neighbor nodes. One direct design objective is to minimize or reduce the interference in broadcast and multicast. This dissertation presents a set of broadcast and multicast protocols and mathematical formulations to achieve the design goal in MRMC WMNs. First, the broadcast problem is addressed with full consideration of both inter-node and intra-node interference to achieve efficient broadcast. The interference-aware broadcast protocol simultaneously achieves full reliability, minimum broadcast or multicast latency, minimum redundant transmissions, and high throughput. With an MRMC WMN model, new link and channel quality metrics are defined and are suitable for the design of broadcast and multicast protocols. Second, the minimum cost broadcast problem (MCBP), or minimum number of transmissions problem, is studied for MRMC WMNs. Minimum cost broadcast potentially allows more effective and efficient schedule algorithms to be designed. The proposed protocol with joint consideration of channel assignment reduces the interference to improve the throughput in the MCBP. Minimum cost broadcast in MRMC WMNs is very different from that in the single radio single channel scenario. The channel assignment in MRMC WMNs is used to assign multiple radios of every node to different channels. It determines the actual network connectivity since adjacent nodes have to be assigned to a common channel. Transmission on different channels makes different groups of neighboring nodes, and leads to different interference. Moreover, the selection of channels by the forward nodes impacts on the number of radios needed for broadcasting. Finally, the interference optimization multicast problem in WMNs with directional antennas is discussed. Directional transmissions can greatly reduce radio interference and increase spatial reuse. The interference with directional transmissions is defined for multicast algorithm design. Multicast routing found by the interference-aware algorithm tends to have fewer channel collisions. The research work presented in this dissertation concludes that (1) new and practical link and channel metrics are required for designing broadcast and multicast in MRMC WMNs; (2) a small number of radios is sufficient to significantly improve throughput of broadcast and multicast in WMNs; (3) the number of channels has more impact on almost all performance metrics, such as the throughput, the number of transmission, and interference, in WMNs

    Multicast in Multi-channel Wireless Mesh Networks

    Full text link

    Internet Traffic based Channel Selection in Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks(WMNs) are the outstanding technology to facilitate wireless broadband Internet access to users. Routers in WMN have multiple radio interfaces to which multiple orthogonal/partially overlapping channels are assigned to improve the capacity of WMN. This paper is focused on channel selection problem in WMN since proper channel selection to radio interfaces of mesh router increases the performance of WMN. To access the Internet through WMN, the users have to associate with one of the mesh routers. Since most of the Internet Servers are still in wired networks, the major dominant traffic of Internet users is in downlink direction i.e. from the gateway of WMN to user. This paper proposes a new method of channel selection to improve the user performance in downlink direction of Internet traffic. The method is scalable and completely distributed solution to the problem of channel selection in WMN. The simulation results indicate the significant improvement in user performance

    Impacts of Channel Switching Overhead on the Performance of Multicast in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising technology for next generation wireless networking. A WMN extends network coverage using wireless mesh routers that communicate with each other via multi-hop wireless communications. One technique to increase the network capacity of WMNs is to use routers equipped with multiple radios capable of transmitting and receiving on multiple channels. In a Multi-Channel Multi-Radio wireless mesh network (MCMR WMN), nodes are capable of transmitting and receiving data simultaneously through different radios and at least theoretically doubling the average throughput. On the other hand, the use of multi-radio and multi-channel technology in many cases requires routers to switch channels for each transmission and/or reception. Channel switching incurs additional costs and delay. In this thesis, we present a simulation-based study of the impacts of channel switching overheads on the performance of multicast in MCMR WMNs. We study how channel switching overheads affect the performance metrics such as packet delivery ratio, throughput, end-to-end delay, and delay jitter of a multicast session. In particular, we examine: 1. the performance of multicast in MCMR WMNs with three orthogonal channels versus eleven overlapping channels defined in IEEE 802.11b. 2. the performance of the Minimum-interference Multi-channel Multi-radio Multicast (M4) algorithm with and without channel switching. 3. the performance of the Multi-Channel Minimum Number of Transmissions (MCMNT) algorithm (which does not do channel switching) in comparison with the M4 algorithm (which performs channel switching)

    Cross-layer schemes for performance optimization in wireless networks

    Get PDF
    Wireless networks are undergoing rapid progress and inspiring numerous applications. As the application of wireless networks becomes broader, they are expected to not only provide ubiquitous connectivity, but also support end users with certain service guarantees. End-to-end delay is an important Quality of Service (QoS) metric in multihop wireless networks. This dissertation addresses how to minimize end-to-end delay through joint optimization of network layer routing and link layer scheduling. Two cross-layer schemes, a loosely coupled cross-layer scheme and a tightly coupled cross-layer scheme, are proposed. The two cross-layer schemes involve interference modeling in multihop wireless networks with omnidirectional antenna. In addition, based on the interference model, multicast schedules are optimized to minimize the total end-to-end delay. Throughput is another important QoS metric in wireless networks. This dissertation addresses how to leverage the spatial multiplexing function of MIMO links to improve wireless network throughput. Wireless interference modeling of a half-duplex MIMO node is presented. Based on the interference model, routing, spatial multiplexing, and scheduling are jointly considered in one optimization model. The throughput optimization problem is first addressed in constant bit rate networks and then in variable bit rate networks. In a variable data rate network, transmitters can use adaptive coding and modulation schemes to change their data rates so that the data rates are supported by the Signal to Noise and Interference Ratio (SINR). The problem of achieving maximum throughput in a millimeter-wave wireless personal area network is studied --Abstract, page iv

    Congestion Managed Multicast Routing in Wireless Mesh Network

    Get PDF
    To provide broad band connectivity to the mobile users and to build a self-structured network, where it is not possible to have wired network, “Wireless Mesh Networks” are the most vital suitable technology. Routing in Wireless Mesh Networks is a multi-objective nonlinear optimization problem with some constraints. We explore multicast routing for least-cost, delay-sensitive and congestion-sensitive in optimizing the routing in Wireless mesh networks (WMNs). In this work different parameters are associated like edge cost, edge delay and edge congestion. The aim is to create a tree traversing which the set of target nodes are spanned, so as to make the cost and congestion to be minimum with a bounded delay over the path between every pair of source and destination. Since searching optimal routing satisfying multi constraints concurrently is an NP complete problem, we have presented a competent estimated algorithm certified with experimental results, which shows that the performance of presented algorithm is nearly optimum
    • …
    corecore