12 research outputs found

    LSTM Networks for Data-Aware Remaining Time Prediction of Business Process Instances

    Full text link
    Predicting the completion time of business process instances would be a very helpful aid when managing processes under service level agreement constraints. The ability to know in advance the trend of running process instances would allow business managers to react in time, in order to prevent delays or undesirable situations. However, making such accurate forecasts is not easy: many factors may influence the required time to complete a process instance. In this paper, we propose an approach based on deep Recurrent Neural Networks (specifically LSTMs) that is able to exploit arbitrary information associated to single events, in order to produce an as-accurate-as-possible prediction of the completion time of running instances. Experiments on real-world datasets confirm the quality of our proposal.Comment: Article accepted for publication in 2017 IEEE Symposium on Deep Learning (IEEE DL'17) @ SSC

    Business Process Models in the Context of Predictive Process Monitoring

    Get PDF
    Predictive process monitoring is a subject of growing interest in academic research. As a result, an increased number of papers on this topic have been published. Due to the high complexity in this research area a wide range of different experimental setups and methods have been applied which makes it very difficult to reliably compare research results. This paper's objective is to investigate how business process models and their characteristics are used during experimental setups and how they can contribute to academic research. First, a literature review is conducted to analyze and discuss the awareness of business process models in experimental setups. Secondly, the paper discusses identified research problems and proposes the concept of a web-based business process model metric suite and the idea of ranked metrics. Through a metric suite researchers and practitioners can automatically evaluate business process model characteristics in their future work. Further, a contextualization of metrics by introducing a ranking of characteristics can potentially indicate how the outcome of experimental setups will be. Hence, the paper's work demonstrates the importance of business process models and their characteristics in the context of predictive process monitoring and proposes the concept of a tool approach and ranking to reliably evaluate business process models characteristics

    Predictive Process Monitoring Methods: Which One Suits Me Best?

    Full text link
    Predictive process monitoring has recently gained traction in academia and is maturing also in companies. However, with the growing body of research, it might be daunting for companies to navigate in this domain in order to find, provided certain data, what can be predicted and what methods to use. The main objective of this paper is developing a value-driven framework for classifying existing work on predictive process monitoring. This objective is achieved by systematically identifying, categorizing, and analyzing existing approaches for predictive process monitoring. The review is then used to develop a value-driven framework that can support organizations to navigate in the predictive process monitoring field and help them to find value and exploit the opportunities enabled by these analysis techniques

    A General Framework for Predictive Business Process Monitoring

    Get PDF
    Abstract. As organizations gain awareness of the potential business value locked in their process execution event logs, "evidence-based" business process management (BPM) becomes a common tool for process analysts. In contrast to traditional process monitoring techniques which are typically performed using data from running process instances only, predictive evidence-based BPM methods tap also into historical data, to allow process workers to respond, in real-time, to specific process performance issues and compliance violations as they arise or even before they arise. In previous work, various approaches have been proposed to address typical predictive process monitoring problems, such as whether a running process instance will meet its performance targets, or when will an instance be finally finished. However, these approaches are rather ad-hoc and lack generality, as they tackle only particular, pre-defined aspects of predictive monitoring and often only work with specific characteristics of the dataset. The proposed research project aims at developing a general and robust framework for predictive process monitoring that will address a variety of process monitoring tasks such as predicting the outcome of individual activities or of the whole process instance, or predicting the completion path of an instance

    Machine Learning in Business Process Monitoring: A Comparison of Deep Learning and Classical Approaches Used for Outcome Prediction

    Get PDF
    Predictive process monitoring aims at forecasting the behavior, performance, and outcomes of business processes at runtime. It helps identify problems before they occur and re-allocate resources before they are wasted. Although deep learning (DL) has yielded breakthroughs, most existing approaches build on classical machine learning (ML) techniques, particularly when it comes to outcome-oriented predictive process monitoring. This circumstance reflects a lack of understanding about which event log properties facilitate the use of DL techniques. To address this gap, the authors compared the performance of DL (i.e., simple feedforward deep neural networks and long short term memory networks) and ML techniques (i.e., random forests and support vector machines) based on five publicly available event logs. It could be observed that DL generally outperforms classical ML techniques. Moreover, three specific propositions could be inferred from further observations: First, the outperformance of DL techniques is particularly strong for logs with a high variant-to-instance ratio (i.e., many non-standard cases). Second, DL techniques perform more stably in case of imbalanced target variables, especially for logs with a high event-to-activity ratio (i.e., many loops in the control flow). Third, logs with a high activity-to-instance payload ratio (i.e., input data is predominantly generated at runtime) call for the application of long short term memory networks. Due to the purposive sampling of event logs and techniques, these findings also hold for logs outside this study

    Predictive Process Model Monitoring using Recurrent Neural Networks

    Full text link
    The field of predictive process monitoring focuses on modelling future characteristics of running business process instances, typically by either predicting the outcome of particular objectives (e.g. completion (time), cost), or next-in-sequence prediction (e.g. what is the next activity to execute). This paper introduces Processes-As-Movies (PAM), a technique that provides a middle ground between these predictive monitoring. It does so by capturing declarative process constraints between activities in various windows of a process execution trace, which represent a declarative process model at subsequent stages of execution. This high-dimensional representation of a process model allows the application of predictive modelling on how such constraints appear and vanish throughout a process' execution. Various recurrent neural network topologies tailored to high-dimensional input are used to model the process model evolution with windows as time steps, including encoder-decoder long short-term memory networks, and convolutional long short-term memory networks. Results show that these topologies are very effective in terms of accuracy and precision to predict a process model's future state, which allows process owners to simultaneously verify what linear temporal logic rules hold in a predicted process window (objective-based), and verify what future execution traces are allowed by all the constraints together (trace-based)
    corecore