864 research outputs found

    State-dependent Kernel selection for conditional sampling of graphs

    Get PDF
    This article introduces new efficient algorithms for two problems: sampling conditional on vertex degrees in unweighted graphs, and conditional on vertex strengths in weighted graphs. The resulting conditional distributions provide the basis for exact tests on social networks and two-way contingency tables. The algorithms are able to sample conditional on the presence or absence of an arbitrary set of edges. Existing samplers based on MCMC or sequential importance sampling are generally not scalable; their efficiency can degrade in large graphs with complex patterns of known edges. MCMC methods usually require explicit computation of a Markov basis to navigate the state space; this is computationally intensive even for small graphs. Our samplers do not require a Markov basis, and are efficient both in sparse and dense settings. The key idea is to carefully select a Markov kernel on the basis of the current state of the chain. We demonstrate the utility of our methods on a real network and contingency table. Supplementary materials for this article are available online

    Labor Market Entry and Earnings Dynamics: Bayesian Inference Using Mixtures-of-Experts Markov Chain Clustering

    Get PDF
    This paper analyzes patterns in the earnings development of young labor market entrants over their life cycle. We identify four distinctly different types of transition patterns between discrete earnings states in a large administrative data set. Further, we investigate the effects of labor market conditions at the time of entry on the probability of belonging to each transition type. To estimate our statistical model we use a model-based clustering approach. The statistical challenge in our application comes from the di±culty in extending distance-based clustering approaches to the problem of identify groups of similar time series in a panel of discrete-valued time series. We use Markov chain clustering, proposed by Pamminger and Frühwirth-Schnatter (2010), which is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This method is based on finite mixtures of first-order time-homogeneous Markov chain models. In order to analyze group membership we present an extension to this approach by formulating a probabilistic model for the latent group indicators within the Bayesian classification rule using a multinomial logit model.Labor Market Entry Conditions, Transition Data, Markov Chain Monte Carlo, Multinomial Logit, Panel Data, Auxiliary Mixture Sampler, Bayesian Statistics

    Flexible sampling of discrete data correlations without the marginal distributions

    Get PDF
    Learning the joint dependence of discrete variables is a fundamental problem in machine learning, with many applications including prediction, clustering and dimensionality reduction. More recently, the framework of copula modeling has gained popularity due to its modular parametrization of joint distributions. Among other properties, copulas provide a recipe for combining flexible models for univariate marginal distributions with parametric families suitable for potentially high dimensional dependence structures. More radically, the extended rank likelihood approach of Hoff (2007) bypasses learning marginal models completely when such information is ancillary to the learning task at hand as in, e.g., standard dimensionality reduction problems or copula parameter estimation. The main idea is to represent data by their observable rank statistics, ignoring any other information from the marginals. Inference is typically done in a Bayesian framework with Gaussian copulas, and it is complicated by the fact this implies sampling within a space where the number of constraints increases quadratically with the number of data points. The result is slow mixing when using off-the-shelf Gibbs sampling. We present an efficient algorithm based on recent advances on constrained Hamiltonian Markov chain Monte Carlo that is simple to implement and does not require paying for a quadratic cost in sample size.Comment: An overhauled version of the experimental section moved to the main paper. Old experimental section moved to supplementary materia

    Simulating interventions in graphical chain models for longitudinal data

    Get PDF
    Simulating the outcome of an intervention is a central problem in many fields as this allows decision-makers to quantify the effect of any given strategy and, hence, to evaluate different schemes of actions. Simulation is particularly relevant in very large systems where the statistical model involves many variables that, possibly, interact with each other. In this case one usually has a large number of parameters whose interpretation becomes extremely difficult. Furthermore, in a real system, although one may have a unique target variable, there may be a number of variables which might, and often should, be logically considered predictors of the target outcome and, at the same time, responses of other variables of the system. An intervention taking place on a given variable, therefore, may affect the outcome either directly and indirectly though the way in which it affects other variables within the system. Graphical chain models are particularly helpful in depicting all of the paths through which an intervention may affect the final outcome. Furthermore, they identify all of the relevant conditional distributions and therefore they are particularly useful in driving the simulation process. Focussing on binary variables, we propose a method to simulate the effect of an intervention. Our approach, however, can be easily extended to continuous and mixed responses variables. We apply the proposed methodology to assess the effect that a policy intervention may have on poorer health in early adulthood using prospective data provided by the 1970 British Birth Cohort Study (BCS70).chain graph, conditional approach, Gibbs Sampling, Simulation of interventions, age at motherhood, mental health

    Control Variates for Reversible MCMC Samplers

    Full text link
    A general methodology is introduced for the construction and effective application of control variates to estimation problems involving data from reversible MCMC samplers. We propose the use of a specific class of functions as control variates, and we introduce a new, consistent estimator for the values of the coefficients of the optimal linear combination of these functions. The form and proposed construction of the control variates is derived from our solution of the Poisson equation associated with a specific MCMC scenario. The new estimator, which can be applied to the same MCMC sample, is derived from a novel, finite-dimensional, explicit representation for the optimal coefficients. The resulting variance-reduction methodology is primarily applicable when the simulated data are generated by a conjugate random-scan Gibbs sampler. MCMC examples of Bayesian inference problems demonstrate that the corresponding reduction in the estimation variance is significant, and that in some cases it can be quite dramatic. Extensions of this methodology in several directions are given, including certain families of Metropolis-Hastings samplers and hybrid Metropolis-within-Gibbs algorithms. Corresponding simulation examples are presented illustrating the utility of the proposed methods. All methodological and asymptotic arguments are rigorously justified under easily verifiable and essentially minimal conditions.Comment: 44 pages; 6 figures; 5 table
    corecore