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Abstract

This article introduces new efficient algorithms for two problems: sampling conditional on
vertex degrees in unweighted graphs, and conditional on vertex strengths in weighted graphs.
The resulting conditional distributions provide the basis for exact tests on social networks and
two-way contingency tables. The algorithms are able to sample conditional on the presence
or absence of an arbitrary set of edges. Existing samplers based on MCMC or sequential
importance sampling are generally not scalable; their efficiency can degrade in large graphs
with complex patterns of known edges. MCMC methods usually require explicit computation
of a Markov basis to navigate the state space; this is computationally intensive even for small
graphs. Our samplers do not require a Markov basis, and are efficient both in sparse and dense
settings. The key idea is to carefully select a Markov kernel on the basis of the current state of
the chain. We demonstrate the utility of our methods on a real network and contingency table.
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1 INTRODUCTION

1.1 Background

Inference on graphs conditional on vertex-level data arises in sociology (Holland and Leinhardt,

1981), psychology (Rasch, 1960), community ecology (Connor and Simberloff, 1979) and categori-

cal data analysis (Agresti, 1992). Testing in this setting can be based on asymptotic results. However,

these approximations can be poor in sparse graphs. An alternative approach is to use sampling

to approximate the distribution of test statistics. This leads to two difficult problems: sampling

graphs with given degrees and sampling weighted graphs with given strengths. Researchers often

additionally need to condition on the presence or absence of certain edges in the graphs.

Several existing methods construct Markov chains in this setting. Unfortunately, if the null

distribution conditions on known edges, it is difficult to construct a connected Markov chain on the

relevant state space. Existing methods either specialize to particular patterns of known edges, or in

the general case, use techniques from computational algebra to compute a Markov basis (Diaconis

and Sturmfels, 1998; Aoki and Takemura, 2005; Rapallo, 2006). These methods are computationally

intensive and are impractical for graphs with more than a few vertices.

We propose new MCMC methods that use state-dependent mixing of Markov kernels. The idea

is to intelligently select a ‘good’ kernel for the current state of the chain. This technique allows us to

construct samplers that require little tuning to the problem at hand, and do not require computation

of a Markov basis. The samplers are irreducible in the face of arbitrary patterns of known edges and

are efficient both in sparse and dense graphs.

The first focus of this article is on sampling unweighted graphs with prescribed vertex degrees.

This problem arises in carrying out exact tests. Consider, for example, social network analysis.

A social network equipped with a dichotomous relation can be expressed as a digraph. Vertices

represent actors, with edges representing the applicability of the relation between actors. Frequently

researchers are interested in testing the presence of reciprocity in the network; defined loosely

as a preference for mutual dyads in the digraph. Holland and Leinhardt (1981) introduce an

exponential family model under which the UMPU test for reciprocity conditions on the observed

degree sequences. Conditioning removes nuisance parameters from the null, and the resulting
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distribution is then uniform on the reference set.

The complex interactions that result from conditioning render analytic analysis of the null

distribution difficult or impossible. Efforts have been made to develop recursive formulas to

enumerate all graphs in the reference set (Wasserman and Faust, 1994), however these are impractical

for even moderately sized graphs. If we can sample graphs uniformly then we can approximate the

null distribution of a test statistic. Thus, the literature has focused on simulation, whose methods

can broadly be divided into two camps; Markov Chain Monte Carlo (MCMC) (Rao et al., 1996;

Roberts, 2000; Milo et al., 2002; McDonald et al., 2007; Verhelst, 2008) and sequential importance

sampling (SIS) (Snijders, 1991; Zhang and Chen, 2013; Chen et al., 2005; Bayati et al., 2010).

Sampling binary tables with given margins is equivalent to sampling undirected bipartite graphs

with given vertex degrees. This is applied in community ecology to test for patterns in co-occurrence

tables, and in psychometrics to test the Rasch hypothesis (see Gustafsson, 1980). Thus, there exists

a substantial parallel literature along these lines.

Most MCMC algorithms proposed for sampling graphs are adaptations of methods proposed for

zero-one tables. Typically, they use a combination of ‘switch’ moves (Ryser, 1963) and additional

moves to maintain irreducibility in the face of structural zeros. Rao et al. (1996) and McDonald et al.

(2007) consider ‘compact alternating hexagon’ and ‘hexad’ updates respectively. Most proposed

methods suffer from poor mixing in unbalanced matrices, rendering them impractical for moderate

to large graphs. Additionally, they are not extensible to arbitrary known edges. SIS methods build

the graph sequentially, at each iteration choosing a candidate edge with probability proportional to

the vertex degrees. Early methods for this application include (Snijders, 1991; Chen et al., 2005).

Most of these samplers get stuck, and the probability of restarting approaches 1 as the degree

sequences grow. Bezáková et al. (2012) provide examples where such algorithms are slow. More

recent methods avoid the issue of restarting and often come with better theoretical guarantees

(Bayati et al., 2010; Blitzstein and Diaconis, 2011; Zhang and Chen, 2013). Our approach to this

problem is to construct an MCMC sampler using a symmetric decomposition of Markov kernels;

this is a concept defined in Section 2.2.

The second focus of this article is on sampling integer-weighted graphs with prescribed vertex

strengths. This can be used to conduct network tomography in the case of a star network topology.
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However, the motivating application is approximating the null distribution for evaluating exact tests

on two-way contingency tables. This is a classical problem in statistics which is important because

standard asymptotics justifying approximate tests (notably Pearson’s χ2 test of independence) do

not hold for tables with cells with low expected frequencies (see Agresti, 2013).

In conditional tests of independence one is interested in sampling tables with given margins.

This corresponds to sampling integer-weighted bipartite graphs conditional on vertex strengths.

Diaconis and Sturmfels (1998) proposed a simple ‘switch’ Markov chain to sample from such tables.

We describe this in more detail in Section 2. It suffers slow mixing in sparse tables.

Diaconis and Sturmfels (1998) also proposed an algebraic algorithm to construct a connected

Markov chain in the context of incomplete tables. Other MCMC methods proposed to sample

incomplete tables also rely on computing a Markov basis (Aoki and Takemura, 2005; Rapallo, 2006).

The computational cost of this is exponential in the size of the table. Additionally, the computation is

example specific; i.e. a new basis must be computed for each pattern of structural zeros considered.

Chen et al. (2005) introduced the first SIS method for uniform sampling of contingency tables with

given marginals. Chen (2007) extended this to incomplete tables. Eisinger and Chen (2017) develop

a sampler with improved efficiency, particularly in sparse graphs. We propose an auxiliary variable

MCMC sampler which overcomes many of the aforementioned limitations and compare the sampler

to SIS approaches in Section 6.

This article begins by setting notation in Section 1.2. Section 2 introduces state-dependent

kernel selection, and presents practical strategies for ensuring chains using this technique have the

correct invariant distribution. Sections 3 and 4 propose samplers in the unweighted and weighted

graph settings respectively. We present a detailed simulation study in Section 5, and apply our

samplers to real data in Section 6. Finally, we conclude in Section 7. All proofs can be found in the

appendix.

1.2 Notation

An undirected graph G := (V,E) is a pair with V being a labelled vertex set and E a collection of

distinct unordered pairs of vertices. If the graph is directed then E consists of distinct ordered vertex

pairs. An integer-weighted graph is a triple G := (V,E, c). The function c : V × V → N0 assigns a
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non-zero weight to each uv ∈ E, and 0 to each uv /∈ E. If the context requires clarification, we use

V (G), E(G) and cG to denote the objects belonging to G.

The in- and out-degrees of a vertex are the number of edges to and from the vertex respectively.

The in- and out-strengths of a vertex of a weighted graph are the total weight of edges to and from

the vertex respectively. If the graph is undirected, there is no distinction between in and out, so we

simply use the terms degree and strength of a vertex. Two undirected graphs with the same vertex

set have the same degree (strength) sequence if every vertex has the same degree (strength) in each

graph. We use the same terminology for directed graphs, where both the in and out values must be

equal for every vertex.

2 STATE-DEPENDENT KERNEL SELECTION

Before discussing state-dependent kernel selection in general terms, we give a concrete example.

Let r := (r1, ..., rI) and c := (c1, ..., cJ) be non-negative integer vectors, and let X denote the set

of all I × J non-negative integer matrices such that the row and column marginals equal r and c

respectively. Assume X is non-empty. The task is to construct a Markov chain ergodic with respect

to the uniform distribution on X . Diaconis and Sturmfels (1998) describe a simple Markov chain

for this purpose. Given Xn, pick a pair of rows and a pair of columns uniformly at random. The

chain proceeds by sampling from the conditional distribution of the delineated subtable given all

other entries. An update takes the form

+∆ −∆

−∆ +∆

for ∆ sampled uniformly from integers which do not induce negative values in the subtable.

A Markov chain on X is completely characterized by its kernel Q, a regular conditional

distribution, where Q(x,A) := Pr[Xn+1 ∈ A | Xn = x] for A measurable. In this example Q can

be viewed as randomly selecting from a set of other kernels. Indeed, let Z be the collection of

indices of all 2× 2 sub-arrays of I × J tables. The Gibbs update on each z ∈ Z defines a kernel

Kz on (X ,B). A scan order is a method of choosing a particular kernel from this collection. The

aforementioned chain is an example of random scan, where kernels are chosen irrespective of the
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current state. The chain’s kernel is Q :=
∑

zKz/|Z|.

The chain suffers poor mixing in sparse matrices as ∆ is often degenerate at 0. As we will see,

we can use a state-dependent scan order to improve mixing whilst maintaining ergodicity.

2.1 General Setup

State-dependent kernel selection can be defined in general terms as follows. Let (Z,F) and (X ,B)

be Borel spaces. X is the state space and Z is the index set of K := {Kz : z ∈ Z}, a collection of

kernels on (X ,B). We assume throughout that the map (z, x) 7→ Kz(x,B) is jointly measurable

for each B. The kernel selection mechanism is defined via a set w := {wx : x ∈ X} where each wx

is a probability measure on F and the map x 7→ wx(F ) is measurable for each F . A set satisfying

these requirements is often referred to as a probability kernel from (X ,B) to (Z,F). If the current

state is x, the chain proceeds to sample a kernel Kz according to wx, and then samples the next state

from Kz(x, ·). The kernel of this chain is defined through

Q(x, ·) :=

∫
Kz(x, ·)wx(dz) for all x ∈ X . (1)

If (1) holds then we call (K,w) a decomposition of the kernel Q. The decomposition of a kernel is

not necessarily unique. Any kernel Q has an ‘identity’ decomposition, given by ({K1}, w) with

K1 = Q andwx({1}) = 1 for all x ∈ X . In Sections 2.2 and 2.3 we give techniques for constructing

kernels with a desired invariant distribution π using decompositions. These strategies are then used

to develop the samplers in Sections 3 and 4 respectively.

2.2 Using a Symmetric Decomposition

A decomposition (K,w) where each Kz is π-reversible does not imply that Q is π-reversible. One

notable exception to this is when w is the random scan order, where each wx is the uniform distri-

bution on Z . We now define a class of decompositions, which we call symmetric decompositions,

for which the resulting Q will be π-reversible. Loosely speaking, it requires that if a state x′ is

reachable in one step from a state x via a kernel Kz then the likelihood that Kz is selected from

state x is the same as in state x′.
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Figure 1: Depiction of the kernel decomposition outlined in Section 2.2. (a) transition probabilities for K1

(dotted), K2 (solid) and K3 (dashed). (b) transitions probabilities for Q.

Definition 2.1 (Symmetric Decomposition). A decomposition (K,w) is symmetric if there exist a σ-

finite measure µ and for every x densities fx = dwx/ dµ such that for each z and x, fx(z) = fx′(z)

for Kz(x, ·)-almost every x′.

Any state-independent kernel selection is symmetric: for example, random scan and the ‘identity’

decomposition. As an example of a non-trivial decomposition, consider a three-state state space, as

depicted in Figure 1. The left figure defines three kernels on this space. A naive chain might pick

from these uniformly, irrespective of the current state. However if the chain is in state i, then Ki

cannot change the state. A faster mixing chain Q randomly selects between the other two kernels

so that the state changes. This (state-dependent) strategy has a symmetric decomposition. Each of

the three kernels shown in Figure 1 (a) is reversible with respect to the uniform distribution and by

Lemma 2.2 so is Q.

Lemma 2.2. Q is π-reversible if it has a symmetric decomposition (K,w) where every Kz ∈ K is

π-reversible.

The reverse of Lemma 2.2 holds trivially through the identity decomposition. This method is

used to support the validity of the sampler developed in Section 3.

2.3 Kernel Selection as an Auxiliary Variable

Here we present an alternative way of constructing a π-invariant chain. The technique described

is used in Section 4. Suppose we have a set of statistics {Tz : z ∈ Z} on X . Defining a selection
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law w, we can construct a chain whose updates keep part of the state fixed. At each iteration this

chain proceeds by selecting a feature Tz and changing the current state using some kernel that is

π-invariant and keeps Tz fixed. If w does not depend on x this can be viewed as a Gibbs sampler

with ‘generalized’ conditioning statistics. Intuitively, however, a state-dependent w may lead to

better mixing. Unfortunately in this case the chain will not generally be π-invariant.

We can maintain π-invariance by treating kernel selection as an auxiliary variable. Consider the

product space (Z × X ,F ⊗ B). The iterated integrals

π̃(f) :=

∫ ∫
f(z, x)wx(dz)π(dx), (2)

for all non-negative measurable f define a distribution on F ⊗ B. π̃ is the joint distribution for the

coordinates Z(z, x) = z and X(z, x) = x, while w is the conditional distribution of Z given X and

π is the marginal of X .

We now construct a chain on the extended space that is π̃-invariant. This will imply the marginal

chain of interest is π-invariant. From the current state (z, x), the chain first samples z′ ∼ wx. Then

we sample x′ using a kernel Kz′ which keeps both Tz′ and Z fixed and is π̃-invariant. An obvious

choice for each Kz is

Kz(x, ·) := Pr[X ∈ · | Tz(X) = Tz(x), Z = z], (3)

assuming, of course, that we can sample directly from this distribution. Otherwise if the density of

(3) is known up to a normalizing constant we could use Metropolis-Hastings with proposals that

keep Tz and Z fixed.

3 SAMPLING UNWEIGHTED GRAPHS

Sampling unweighted graphs conditional on vertex degrees arises in many disciplines. In exponential

random graph models, the degrees are often sufficient statistics for nuisance parameters in the null

distribution (Snijders, 1991). Other applications include analysis of co-occurrence tables in ecology,

and testing the Rasch model in psychometrics (Gustafsson, 1980).

We formalize the sampling problem as follows. Let G0 be a given directed or undirected graph

with a finite vertex set V . Let F be a subset of possible edges of a graph with vertex set V . Let
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G be the set of all graphs G with the same vertex set and degree sequence as G0, and additionally

satisfying E(G) ∩ F = E(G0) ∩ F . Our goal is to sample from the uniform distribution π on G.

Intuitively, F represents edges known by design to be present or absent. Given vertices u and

v, if uv belongs to F then uv is either present in all graphs in G, or in none. We stress by design

because the constraints imposed by the degree sequence and F may imply that further edges are

present or absent in all graphs of G. We call this set F̃ the set of known edges, and formally define

it as

F̃ = {possible edges uv : uv ∈ G0 ⇔ (uv ∈ G for all G ∈ G)}.

We show in Section 3.2 a method of computing F̃ .

Algorithm 1 gives one step of the sampler we propose. It needs two ‘neighborhood’ sets

associated to each vertex in a graph G. The set NG(u) are the in-neighbors of u, excluding

any vertex v for which the edge vu is known. MG(u) is the set of all vertices v which are not

out-neighbors of u, and for which the absence of uv is not known. These are defined as

NG(u) := {v ∈ V : vu ∈ E(G), vu /∈ F̃},

MG(u) := {v ∈ V : uv /∈ E(G), uv /∈ F̃}.

Here is a sketch of one run of Algorithm 1. Let n = 0, and sample a0 uniformly from the set

of all vertices v for which NG(v) is non-empty. Sample a1 uniformly from NG(a0), then sample

a2 uniformly from MG(a1). Replace a1a0 in E(G) with a1a2. Letting n = n + 2, iterate this

procedure, however in each subsequent step an+1 cannot be an−1; this prevents the sampler adding

the edge an+1an+2, and removing it in the next iteration, and should improve state space exploration.

Iterate until an is a0, at which point all degrees have been maintained. The computational cost of

Algorithm 1 is proportional to the random length of the sampled vertex sequence a. This does not

imply that longer sequences are worse; they tend to reduce the correlation between the current and

next state of the chain. Figure 2 shows a simple example step.

3.1 Properties of Algorithm 1

Let ar denote the reverse of a finite sequence a. Given a graph, let u1v1 ↔ u2v2 denote the

operation of replacing edge u1v1 with edge u2v2. We will refer to this operation as a swap. We call
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Algorithm 1 One Update of the Unweighted Graph Sampler (UGS)

Require: G, F̃
1: a−1 ← ∗
2: a0 ∼ U({v ∈ V : NG(v) 6= ∅})
3: n← 0
4: repeat
5: an+1 ∼ U(NG(an) \ {an−1})
6: an+2 ∼ U(MG(an+1))
7: E(G)← E(G) \ {an+1an}
8: E(G)← E(G) ∪ {an+1an+2}
9: n← n + 2

10: until an = a0

return G

a0

a2

a1

(a)

a0

a2

a1

a3

(b)

a0

a2

a1

a3

(c)

First Swap Second Swap

Figure 2: One iteration of Algorithm 1 with two iterations in the inner loop. (a) and (b) graph and quantities
prior to the first and second edge swaps respectively. (c) the returned graph. Dashed edges are edges removed
through the sampling step.

u1v1 ↔ u2v2 viable if and only if u1v1 is an edge, u2v2 is not an edge and both u1v1 and u2v2 are

not in F̃ .

A single iteration of Algorithm 1 samples a random sequence of vertices a. Proposition 3.1

implies that the expected length of this is finite, so that a takes the form a0a1...aka0 for some k odd.

Let A be the collection of sequences taking this form.

Proposition 3.1. For any input graph G ∈ G and any F , the expected length of the vertex sequence

a formed by Algorithm 1 is finite.

Let two sequences be equivalent if and only if they are either identical or they are each others’

reverse. We let Z be the quotient set of A by this equivalence relation.

We will associate each class z ∈ Z with a kernel on G. Fix any z and let a be a representative of

z. Consider the following Markov chain on G. From the current state, attempt to iteratively perform

a1a0 ↔ a1a2, a3a2 ↔ a3a4, ... , akak−1 ↔ aka0 to obtain the next state. We say this move is viable

if and only if all of the swaps are viable when applied iteratively. We refer to this sequence of swaps
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as the swaps corresponding to a. If the swaps are not viable, attempt the swaps corresponding to ar.

If neither swap sequence is viable, then the next state of the chain is unchanged. We define Kz as

the kernel of this chain. Remark 3.2 implies that Kz is well-defined; specifically, the definition is

independent of the chosen representative of z.

Remark 3.2. If the sequences a and ar are distinct and the swaps corresponding to a are viable,

then the swaps corresponding to ar are not viable.

LetK be the collection of these kernels. The conditional distributionw onZ is defined implicitly

by the law of a given through Algorithm 1. Formally, the sampler selects Kz by sampling either a

or ar belonging to z. Lemma 3.3 implies that Q is π-reversible on G.

Lemma 3.3. (K,w) is a symmetric decomposition of Q, and each Kz ∈ K is π-reversible.

In practice we consider a lazy version of the chain, which ensures aperiodicity. Fix some small

α ∈ (0, 1) and define Q̃ := (1− α)Q+ αI where I is the identity kernel. Proposition 3.4 follows

by Lemma 3.3 and through additionally showing that the chain is connected.

Proposition 3.4. A Markov chain with kernel Q̃ has limiting distribution π.

3.2 Identifying all Known Edges/Non-Edges

We show how to determine F̃ from F and the degree sequence using an auxiliary graph. Given any

G ∈ G with n vertices labelled 1, ..., n we construct an auxiliary bipartite digraph B := (U, V,E).

Let U = {ui} and V = {vi} for i = 1, ..., n. We define the graph’s edge set as

E(B) := {vjui : ij ∈ E(G) \ F} ∪ {uivj : ij /∈ E(G) ∪ F}.

Figure 3 shows an example of one such graph.

Let BG denote the collection of all graphs generated this way from the set G. Proposition 3.5

shows that we can identify F̃ prior to sampling by identifying all strongly connected components of

any graph in BG . This can be done using a depth-first search on BG, followed by another depth-first

search on the transposed graph.

Proposition 3.5. Fix any graph B ∈ BG . The vertex pair ij belongs to F̃ if and only if there is no

edge incident to both ui and vj , or if ui and vj belong to different strongly connected components.
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v1
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v4
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u1

u4
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v3
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Figure 3: Algorithm for computing F̃ , shown for an undirected graph with four vertices. Input graph G is on
the left, where the dashed line represents a prohibited edge (i.e. F = {23}). In stage (1) BG is constructed.
In (2) the components S1 and S2 are computed, and after (3) we observe F̃ = {23, 14}.

The complexity of this preprocessing procedure is Θ(2n + n2) (Cormen, Thomas H and

Leiserson, Charles E and Rivest, Ronald L and Stein, 2009, chap. 22). It is difficult to formally

compare this to the cost of sampling. Empirically the average cost of each iteration of Algorithm

1 appears to grow roughly linearly in n, while the number of iterations needed for sampling

grows super-linearly in n. Thus in practice the cost of sampling dominates the edge identification

procedure.

4 SAMPLING WEIGHTED GRAPHS

Sampling weighted graphs with given vertex strengths arises in the analysis of two-way contingency

tables. In this context sampling is used to approximate the null distribution of test statistics (see

Agresti, 1992). The general problem is stated as follows. Let G0 be a given integer-weighted,

directed or undirected graph with a finite vertex set V . Let F be a subset of possible edges of

a graph with vertex set V . Let G be the set of all weighted graphs with the same vertex set and

strength sequence as G0, and additionally assigning weight cG0(uv) to each uv ∈ F . Our goal is to

sample from π, the uniform distribution on G. We use the auxiliary variable method proposed in

Section 2.3. The method first requires defining a set of conditioning statistics {Tz : z ∈ Z} and a

selection law w over them. This is the focus of Sections 4.1 and 4.2. We derive the kernel set K in

Section 4.3.
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4.1 Conditioning Statistics

We start by specifying the conditioning statistics Tz for a given z ∈ Z . Define A and Z as in

Section 3.1, and associate each a = a0a1...aka0 ∈ z with a vector of vertex pairs

e(a) := (a1a0, a1a2, a3a2, a3a4, ..., akak−1, aka0),

of length k + 1. We refer to z as valid if it satisfies two conditions. Firstly vertex pairs in e(a)

must be distinct and secondly they must not be in F . If these properties hold for e(a) then they

hold for e(ar), and so it suffices that they hold for any a ∈ z. If z is invalid we condition on the

whole graph so that no update can occur (i.e. Tz(G) := G). Otherwise fix any a ∈ z and define

Tz(G) := {c(uv) : uv /∈ e(a)}. This quantity does not depend on which a is chosen because

uv ∈ e(a) if and only if uv ∈ e(ar). This statistic conditions on the weight of all edges outside

e(a), so that we only update along e(a).

4.2 Selection Law

Before defining the selection law w, we provide intuition as to which z we wish to sample. From the

current state G we intuitively wish to select z that allow us to change the state space. This translates

to avoiding z for which the level set {Tz = Tz(G)} = {G}, and therefore implies avoiding all

invalid z and some valid z. Assuming z is valid, fix a ∈ z and consider the vector e := e(a). Letting

s := (+1,−1, ...,+1,−1), any graph in {Tz = Tz(G)} must assign weights cG(e) + s∆ to e and

for some ∆ for which the resulting weights are non-negative. We denote the range of ∆ by [∆l,∆u].

If ∆u = ∆l = 0 then the only graph satisfying this is G. This will happen if there exists i odd and j

even such that cG(ei) = cG(ej) = 0. If G is sparse then only a small proportion of z can avoid this.

Moreover, which z avoid this depends on the current state and so any state-independent w will be

inefficient. Our state-dependent w, which we now define, is designed to limit this.

Occasionally the sampling strategy will fail to sample a kernel index z. Let id refer to an

arbitrarily chosen invalid z∗, to be chosen by default if this happens. We start by redefining the

vertex sets NG(u) and MG(u) from Section 3 as

NG(u) := {v ∈ V : vu ∈ E, vu /∈ F},
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MG(u) := {v ∈ V : uv /∈ F}.

Given the current state G we sample z as follows. Let n = 0, a−1 = ∗ and sample a0 uniformly

from the set of vertices v for which NG(v) is non-empty. Repeat the following until termination.

1. If NG(an) \ {an−1} is empty return id, else sample an+1 uniformly from this set.

2. If MG(an+1) \ {an} is empty return id, else if a0 is in this set then return [a0...an+1a0].

Otherwise sample an+2 uniformly from this set and let n = n+ 2.

The chain cannot move if the above procedure returns id or an invalid [a]. The former is rare and

occurs in cases of extreme sparsity. The latter will be more likely with a large set of fixed edges.

4.3 The Kernel Set

We now derive the kernel set. First define π̃ as in (2), as an iterated integral of non-negative

measurable functions on Z × G. Each Kz will take the form of (3). That is, we sample directly

from the conditional probability of the joint π̃ given Tz and the coordinate Z(z,G) = z. Therefore

if z is invalid then Kz must be the identity kernel. However if z is valid we saw in Section 4.2 that

the update can be parameterised by ∆ taking values in [∆l,∆u]. Therefore, it suffices to derive

the distribution of ∆. This is the focus of this section. Throughout we let G∆′ refer to the graph

obtained from the current state at ∆ = ∆′.

Suppose that we sample a vertex sequence a and z := [a] is valid. Since π is the uniform

distribution, Pr[∆ = ∆′] is proportional to wG∆′
(z) for each ∆′ ∈ [∆l,∆u]. It is often not possible

to sample a from G∆l
, or to sample ar from G∆u . This is why we collapse a and ar into z; doing

so ensures we can always sample z from each G∆′ for ∆′ ∈ [∆l,∆u]. Suppose ∆u −∆l > 1. Fix

any ∆l < ∆′ < ∆u and define α := wG∆′
(z). This is interpreted as the probability of sampling z

from G∆′ . Inspecting the kernel selection law defined in Section 4.2 we see that wG1 = wG2 for any

G1 and G2 with the same topology. Since E(G∆′) is the same for any ∆l < ∆′ < ∆u, it follows

that α does not depend on the specific ∆′ chosen. If on the other hand ∆u −∆l ≤ 1 we give α an

arbitrary finite value. Then

Law(∆) =
1

A

[
wG∆l

(z)δ∆l
+ wG∆u

(z)δ∆u +
∑

∆l<∆′<∆u

αδ∆

]
, (4)
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where A := wG∆l
(z) + wG∆u

(z) + αmax(∆u − ∆l − 1, 0). wG∆l
(z), wG∆u

(z) and α are easily

computed by following the details of Section 4.1.

4.4 Summary

Algorithm 2 gives pseudo-code for one iteration of the sampler. By construction, the chain is π-

invariant. Proposition 4.1 holds by additionally showing the chain is connected.

Proposition 4.1. The chain defined by (K,w) has limiting distribution π.

Q can be readily adapted to sample distributions whose density is known up to a normalizing

constant by using Metropolis-Hastings to sample ∆. The computation cost of Algorithm 2 is

proportional to the number of edges updated.

Algorithm 2 One Iteration of the Weighted Graph Sampler (WGS)

Require: G, F
1: sign(uv)← 0; edges← {}; (∆l,∆u)← (−∞,∞); a−1 ← ∗; n← 0
2: a0 ∼ U({v ∈ V : NG(v) 6= ∅})
3: repeat
4: if NG(an) \ {an−1} = ∅ then return G
5: else an+1 ∼ U(NG(an) \ {an−1})
6: if a0 ∈MG(an+1) \ {an} then an+2 ← a0

7: else if MG(an+1) \ {an} = ∅ then return G
8: else an+2 ∼ U(MG(an+1) \ {an})
9: if edges ∩ {an+1an, an+1an+2} 6= ∅ then return G

10: edges← edges ∪ {an+1an, an+1an+2}
11: sign(an+1an)← +1; sign(an+1an+2)← −1
12: n← n + 2
13: until an = a0

14: for each edge ∈ edges do
15: if sign(edge) = +1 then ∆l ← max (∆l,−cG(edge))
16: else ∆u ← min (∆u, cG(edge))

17: Sample ∆ according to (4)
18: for each edge ∈ edges do
19: cG(edge)← cG(edge) + sign(edge)∆

return G

15



5 Simulation Study

Methods used in this section, and in Section 6, were programmed in C++ and wrapped to R. The

algorithms were run on an Intel Core i5-6360U 2GHz CPU. In Section 5.1 we investigate the effect

of graph density and size on the performance of the proposed samplers, while Section 5.2 looks at

the effect of fixed edges/non-edges. An R-package implementing the new algorithms is available in

the supplemental materials.

5.1 Effect of Size and Sparsity

Consider the Erdős-Rényi model G(n, θ) for directed graphs with self-loops. The parameter

n denotes the number of vertices, and each ordered vertex pair is an edge with probability θ,

independent of all other edges. If G ∼ G(n, θ) then the conditional distribution of G given its

degree sequences is uniform over all graphs with the same degrees. This observation provides us

with a useful strategy for assessing convergence of samplers in the unweighted graph setting, which

we now detail.

Fixing a particular value of n and θ, we first simulate N independent graphs Gi ∼ G(n, θ).

For each Gi, we construct a new graph G0
i with the same degrees as Gi using a maximum flow

algorithm. The algorithm we use is adapted from that described in Gandy and Veraart (2016),

Appendix A. To test the performance of a given sampler we use it to simulate N Markov chains.

The ith chain is given initial state G0
i and run to obtain samples G1

i , ..., G
M
i . If the chain has

converged to its target distribution after t iterations, then the distribution of Gt
i and Gi should be

statistically indistinguishable. Moreover, if we have access to a statistic T then we can compare, for

each t, the empirical distribution of T (Gt
1), ..., T (Gt

N) to the distribution of T (G). If the sampler

mixes rapidly, we expect these to be similar for small t.

The same approach can be used in the weighted graph setting. An analog to the Erdős-Rényi

model for weighted and directed graphs with self-loops assigns edge weights to G according to a

geometric distribution, i.e. the event cG(uv) = k occurs with probability θk(1− θ) independent of

all other edge weights. Conditioning on G’s vertex strengths then yields the uniform distribution

over all graphs with the same strengths.

It remains to specify T in the unweighted and weighted settings. In the former we estimate
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reciprocity. Letting X denote the adjacency matrix of G, then we use T = Tu with Tu(G) :=∑
i<j XijXji. This statistic is interpreted as the total number of mutual dyads in the graph. In the

latter case T = Tw with

Tw(G) =

∑
u6=v min (cG(uv), cG(vu))∑

u6=v cG(uv)
.

This is a measure of reciprocity for weighted graphs, first proposed in Squartini et al. (2013).

Recall that for each t we wish to compare the empirical distribution of T (Gt
1), ..., T (Gt

N) to that

of T (G). Tu(G) is distributed Bin (n(n− 1)/2, θ2), and so in the unweighted setting we undertake

M Chi-squared tests and record the sequence of p-values p1, ..., pM . This allows us to formally

assess convergence of the samplers. The distribution of Tw(G) is not known analytically, and so

for the weighted setting we draw 105 samples from this distribution and undertake two-sample

Kolmogorov-Smirnov tests instead.

We repeat the above procedure for various combinations of n and θ to uncover the effect of graph

size and density on the statistical efficiency of the samplers. Algorithm 2 (WGS) is compared to the

Diaconis & Sturmfels chain (DS) detailed in Section 3. The DS chain operates on the adjacency

matrix of the graphs. Algorithm 1 (UGS) is compared to a simple and widely used randomization

procedure that works as follows. At each stage select two edges uv and wx at random from the

current graph G. If ux /∈ E(G) ∪ F and wv /∈ E(G) ∪ F then replace uv and wx with ux and wv,

else do not change G. We refer to this randomization procedure as the Switch chain. In each setting,

we use M = 104 and N = 500. Thinning used for each chain was chosen to make the computation

time per sample comparable.

The results are displayed in Table 1. The efficiency of the Switch chain deteriorates relative to

UGS as θ increases. DS becomes inefficient compared to WGS in sparse graphs, as depicted in

Figure 4. The proposed methods perform comparatively well across all graph sizes and densities

considered.

5.2 Incomplete Tables

UGS and WGS are irreducible in the face of arbitrary fixed edges/non-edges. Here we investigate

the ability of the samplers to traverse the state space under such constraints. We do this in the

context of incomplete binary and contingency tables, which are tables with some entries fixed at
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Table 1: Results of the simulations outlined in Section 5.1. We record t∗ := min{t : pt > 0.1}, i.e. the
smallest t for which the null that T (Gt

1), ..., T (Gt
N ) is drawn from the distribution of T (G) was not rejected

at the 10% level. Mixing rate is the estimated proportion of sampling steps that changed the state of the chain.
mean ESS/s reports the mean time-normalized effective sample size across all M chains.

Unweighted Weighted

t∗ Mixing Rate mean ESS/s t∗ Mixing Rate mean ESS/s

Setup UGS Switch UGS Switch UGS Switch WGS DS WGS DS WGS DS

n = 20 & θ =
0.1 5 4 1.00 0.53 7.01× 104 5.60× 104 4 189 0.49 0.00 2.60× 104 3.48× 102

0.5 6 11 1.00 0.13 2.15× 104 1.21× 104 79 427 0.58 0.14 3.50× 103 7.57× 102

0.9 3 30 1.00 0.00 3.51× 104 1.43× 103 244 460 0.86 0.58 1.11× 103 3.98× 102

n = 50 & θ =
0.1 10 8 1.00 0.72 1.83× 104 1.62× 104 21 2232 0.51 0.01 4.19× 103 3.70× 101

0.5 29 46 1.00 0.21 6.81× 103 5.33× 103 473 2385 0.57 0.16 2.45× 102 2.00× 101

0.9 6 193 1.00 0.006 1.50× 104 5.99× 102 1531 2603 0.84 0.59 2.64× 101 9.51
n = 100 & θ =

0.1 20 15 1.00 0.77 1.45× 103 1.32× 103 64 7433 0.51 0.01 7.87× 102 2.30
0.5 65 111 1.00 0.23 5.97× 102 5.95× 102 1600 10,359 0.59 0.05 1.47× 101 2.64
0.9 13 534 1.00 0.002 1.36× 103 6.00× 101 4992 11218 0.84 0.57 8.62 3.12

zero. They arise in several contexts. In the contingency table setting, particular combinations of the

two variables may be impossible, forcing zero entries in the corresponding cells. Alternatively there

may be missing observations or in some contexts, researchers may wish to fit composite models by

partitioning the cells into subsets, and fitting a separate log-linear model for each group (Goodman,

1963, 1968; Fienberg, 1969). See Bishop and Fienberg (1969) for extensive examples of incomplete

tables.

We construct 103 6 × 6 incomplete contingency tables using the following procedure. To

construct the ith table, we randomly place half of the table coordinates into the fixed set Fi. We

then use a maximum flow algorithm to construct a table x0
i in the set Xi, which consists of all 6× 6

tables x with all margins equal to 3, and additionally satisfying xFi
= 0. If Xi is empty then Fi

is re-sampled until it is not. We use the LattE software (?) to count the number of tables in Xi.

105 samples are obtained using WGS and DS with thinning of 10 and with initial state x0
i , and we

record the proportion of tables in Xi visited by each sampler. This is repeated for incomplete binary

tables to compare UGS and Switch, however using table margins equal to 1. The results are shown

in Figure 5.

Figure 5 provides empirical evidence that WGS and UGS can traverse the state space. DS

and Switch appear to be reducible for particular patterns of fixed entries. Diaconis and Sturmfels

(1998) propose an alternative chain which uses techniques from computational algebra to compute
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Figure 4: In (a) and (b) the black line is the density of Tw(G) estimated using 105 samples when n = 102

and p = 0.1. (a) dotted lines show the evolution of the empirical density of {T (Gl
j)}j=1,...,N for l ≤ 40

using WGS. (b) this quantity using DS for l ≤ 103. (c) the Kolmogorov-Smirnov distance between samples
{T (Gl

j)}j=1,...,N and Monte Carlo samples for each l using both WGS and DS.

a Markov basis for the state space. Other approaches using computational algebra include Aoki and

Takemura (2005) and Rapallo (2006). Unfortunately the cost of computing the basis is exponential

in the size of the table, and these methods are feasible only for tables with only a few rows and

columns. Chen (2007) propose SIS algorithms for uniform sampling of incomplete binary and

contingency tables. The authors provide an implementation of their method for binary tables, and

we use this to test their sampler (labelled SIS_CP1). In each of the 103 cases, we collected 105

samples and found their method visited all graphs in the state space. However, we show in Section

6.1 that the algorithm is not always reliable.

6 APPLICATIONS

We consider the comparative performance of the new samplers on real datasets. In Section 6.1 we

use Algorithm 1 to detect compartmentalization in an ecological network, and in Section 6.2 we use

Algorithm 2 to investigate nestedness in a large affiliation network.

Reported standard errors were computed using spectral methods from R’s coda package. These

estimates were compared to those obtained using batch means, and where feasible, bootstrapping.

These latter estimates are not reported as there was little discernible difference from those obtained

by spectral methods. Thinning used in each method was set to approximately equate the resulting

standard errors. We used burn-in equivalent to 20% of samples obtained.
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Figure 5: Empirical CDF of proportion of tables visited by each sampler over the 103 runs. Left: results for
incomplete contingency tables. Right: results for binary tables.

6.1 Ecological Networks

A food web is a digraph encoding predator-prey relationships within a group of species. Each

species is a node and a link exists from species A to species B if and only if B consumes A.

Ecologists wish to identify and explain structural patterns in observed food webs including

motifs, diet contiguity, intervality, connectance and compartmentalization. We will focus on

assessing the tendency towards compartmentalization in food webs. Compartmentalization describes

the extent to which species can be partitioned into distinct groups such that linkage density within

groups is greater than that between groups (Girvan and Newman, 2002; Krause et al., 2003).

Figure 6 depicts the food web of 33 species in the Chesapeake bay in the summer. The data

was collected by Baird and Ulanowicz (1989). Pimm and Lawton (1980) proposed a statistic C̄ to

measure the level of compartmentalization in a food web. Here we describe a directed analogue of

this statistic. Let G represent a food web of n species, and i and j be two species. Let cij be the

number of shared predators of species i and j as a proportion of the total number of predators of i

and j. C̄ is then the mean of the off-diagonal elements of (cij), defined by

C̄ :=
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

cij.

C̄ takes values in [0, 1] and higher values are associated with greater levels of compartmentalization.
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Figure 6: Food web of the Chesapeake bay ecosystem.

We begin by testing whether the observed level of C̄0 = 0.0260 can be considered high

when compared to the set of all graphs with the same degree sequence as G. With thinning of 5,

Algorithm 1 (UGS) took around 2 second to obtain 105 samples. The estimated p-value was 0.0163±

4.3× 10−4, complementing previous results suggesting food webs have high compartmentalization

when compared to random graphs where species have an equal probability of linking to each

other species (Krause et al., 2003; Rezende et al., 2009). The sequential importance sampling

algorithm SIS-CP1 (Chen, 2007) took 33 seconds to obtain 105 samples, estimating a p-value of

0.0158± 4.3× 10−4.

Guimerà et al. (2010) find that compartmentalization observed in real food webs is not unusual

when compared to networks generated under niche models, and conclude that ‘compartmentalization

can be explained solely by the niche-valued ranking of species’.

We attempt to test this hypothesis for the Chesapeake bay food web. We compute the chain

averaged trophic level (Williams and Martinez, 2004) for each species, and assume any given species

is forbidden from consuming other species with a higher trophic level. The resulting forbidden links

should help to control for the food web’s trophic structure. The assumption induces 565 forbidden

edges in the null distribution.

Again using thinning of 5, UGS took 2 seconds to obtain 105 samples. The estimated effective

sample size was over 9.5× 103, giving an estimated p-value of 0.0568± 7.5× 10−4. At a signifi-

cance of α = 0.05, we can no longer conclude that compartmentalization in the Chesapeake food
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web is unusual under the null distribution. Our method of determining trophic structure is crude,

and a closer analysis of the food web is warranted before drawing any conclusions.

SIS-CP1 took 24 seconds to run and over 97% of the samples produced were discarded as invalid,

leaving only 3,069 to be used for estimation. The estimated p-value was 0.0558 ± 6.3× 10−3.

Using alternative methods to calculate the species’ trophic levels gives rise to other sets of forbidden

edges. For some such patterns, SIS-CP1 was unable to construct a single valid sample.

6.2 Affiliation Networks

In social network analysis, an affiliation network represents membership or participation data

between a set of actors and a set of groups. For example, a link may indicate participation of

an actor in an event. Dyadic data of this type include board membership (eg. Mizruchi, 1983),

participation in online forums (eg. Allatta, 2003) and authorship of research articles (eg. Newman

et al., 2001). Affiliation networks are bipartite graphs, and can therefore be represented as a

contingency table, with rows corresponding to actors and with columns denoting the groups.

Social scientists are interested in detecting network structure through particular metrics. Example

patterns of interest include ‘small-world effects’, clustering and degree distributions. Here we focus

on detecting nestedness in data collected by Opsahl (2013) on messages sent by users of an online

social platform to online forums. This data is a 899 by 522 contingency table whose (i, j)th entry

is the number of messages posted by user i in forum j. Informally speaking, nestedness is the

degree to which neighbors of nodes with low degree are a subset of the neighbours of nodes with

higher degree. Nestedness has been detected in a number of network systems including ecological

interaction networks, social media information networks and socio-economic networks, and has

been shown to have important implications for the robustness and stability of a system.

Several measures for nestedness have been developed for integer contingency tables. Galeano

et al. (2009) propose to use the weighted-interaction nestedness (WIN) estimator, which is a matric

based on a weighted Manhattan distance and takes values between 0 and 1. Higher values indicate

higher levels of nestedness. We will test whether the observed WIN statistic is unusually high when

compared to a suitable null distribution.

We assume under the null hypothesis that the table is a uniform draw from the set of all tables
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with the same margins. This procedure of fixing the margins is widely used in both binary and

integer matrices (Connor and Simberloff, 1979; Gotelli and Entsminger, 2001; Ulrich and Gotelli,

2007). Alternative null models are available; for example fixing one margin or only satisfying the

observed margins in expectation.

We obtain 103 samples using WGS and DS with thinning set to 106. WGS estimated the

average WIN distance of the sampled tables at 0.0539 ± 7.3× 10−6. This estimated standard

error is equivalent to that from 103 independent samples, indicating good mixing. DS estimated

0.056 ± 1.7× 10−3 and has a high correlation between successive samples, giving an effective

sample size of 12. The estimate exhibits high bias because the chain shows non-stationary behaviour

for the first 300 iterations. The observed statistic was 0.157, and so both methods give a p-value of

0. Taken at face value this indicates strong evidence for nestedness. However, this is more likely

down to misspecification of the null model. WIN is sensitive to overall matrix density and the

sampled tables are systematically denser than the observed table. It would be instructive therefore

to consider alternate null distributions which better preserves this property.

Eisinger and Chen (2017) develop efficient SIS methods for sampling tables uniformly over

all tables with given margins. The authors provide code for a cell-by-cell method labelled SIS-G*

(coded in C). Using SIS-G* on this example we were unable to produce a valid sample. It appears

the method is not scalable to large tables.

7 DISCUSSION

This article has developed new MCMC samplers for two important problems. First, for sampling

from the set of unweighted graphs respecting prescribed vertex degrees. Second, for sampling

from the set of weighted graphs respecting prescribed vertex strengths. The samplers work when

conditioning on the presence or absence of a set of edges. We have shown examples where

alternative MCMC methods are infeasible as they rely on computing a Markov basis, and where

existing SIS methods perform poorly. In contrast, our methods do not require computing a Markov

basis, and are orders of magnitude more efficient in these examples.

State-dependent mixing of Markov kernels is a general concept, and the specific implementation

of our samplers is not unique. The technique could be used to develop alternative samplers
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specialized to particular setting. The samplers can be readily extended to sample from arbitrary

distributions known up to a normalization constant. For example, they can be adapted to carry out

Bayesian network tomography in the case of a star network topology. In contrast, SIS methods are

not readily adaptable to more general distributions. A theoretical analysis of the mixing times of the

new samplers is beyond the scope of this article, and is left for future work.
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9 SUPPLEMENTARY MATERIALS

R-package: “cgsampr” is a package containing an implementation of Algorithms 1 and 2, and the

data used in Sections 6.1 and 6.2. Please refer to the readme file for an introduction to the

package. (GNU zipped tar file)

References

Agresti, A. (1992), “A Survey of Exact Inference for Contingency Tables,”Statistical Science,
7, 131–153.

Agresti, A. (2013), Categorical Data Analysis, 3 ed, Hoboken: John Wiley & Sons.

Allatta, J. T. (2003), “Structural Analysis of Communities of Practice: An Investigation of Job title,
Location, and Management Intention,” in Communities and Technologies, Dordrecht: Springer
Netherlands, pp. 23–42.

Aoki, S., and Takemura, A. (2005), “Markov Chain Monte Carlo Exact Tests for Incomplete
two-way Contingency Tables,”Journal of Statistical Computation and Simulation, 75, 787–812.

Baird, D., and Ulanowicz, R. E. (1989), “The Seasonal Dynamics of the Chesapeake Bay Ecosys-
tem,”Ecological Monographs, 59, 329–364.

Bayati, M., Kim, J. H., and Saberi, A. (2010), “A Sequential Algorithm for Generating Random
Graphs,”Algorithmica, 58, 860–910.

24
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APPENDIX: PROOFS

Proof of Lemma 2.2. Without loss of generality (and for notational simplicity) assume π and w

are dominated by one-dimensional Lebesgue measure. We show

∫
A

π(x)Q(x,B) dx =

∫
B

π(x)Q(x,A) dx for all A,B ∈ B.

Fix any A and B in B, and define the densities {fx} as in Definition 2.1. Then∫
A

π(x)Q(x,B) dx =

∫
A

∫
Z

∫
B

π(x)Kz(x, y)fx(z) dy dz dx

=

∫
A

∫
Z

∫
B

π(y)Kz(y, x)fy(z) dy dz dx =

∫
B

π(x)Q(x,A) dx

as required. In the first step we have expressed the integral using densities. In the second, we use

π-reversibility of each Kz, and the fact that for each z ∈ Z and x ∈ X , fx(z) = fy(z) for Kz(x, ·)-

a.e. y ∈ B. A simple change of variables then yields the result.
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Proof of Proposition 3.1. Fix G in G. Define the second-order Markov chain (Yn)n≥0, where

Yn := (an−1, an, Gn) and Gn is defined as follows. Let G0 = G, otherwise if n is odd, let Gn be the

graph obtained after anan−1 is removed from E(Gn−1). If n is even, Gn is the graph obtained after

an−1an is added to E(Gn−1). Define Y as the set of points reachable from (∗, a0, G) for some a0 in

{v : NG(v) 6= ∅}. Let D := (Y , E) be the digraph underlying this chain and define A as the subset

of points (v, u,G′) in Y for which G′ ∈ G. Let T := inf{n ≥ 1: Yn ∈ A} be the first passage time

of A. Proposition 3.1 is equivalent to showing E(T ) <∞. The following holds true, and will be

shown at the end of this proof.

From any (v, u,G′) ∈ Y , there exists a simple path to A. (5)

We can bound the probability of traversing each edge in D from below by some constant p > 0.

Let N denote the size of Y . Suppose the chain is at some state y /∈ A. By (5), this implies the

probability of hitting A within the next N steps is bounded from below by pN . Hence,

E(T ) =
∞∑
n=1

nPr[T = n] ≤ N
∞∑
k=1

k Pr[k − 1 < T/N ≤ k] ≤ N
∞∑
k=1

kpN(1− pN)k−1 = Np−N .

It remains to show (5). Note that for any (v1, u1, G1)(v2, u2, G2) ∈ E(D):

(v∗, u2, G2)(u2, u1, G1) ∈ E(D) if and only if (v∗, u2, G2) ∈ Y and v∗ 6= v2. (6)

By definition, there exists a point y0 := (∗, u0, G) and a walk y0...yk in D such that yk = (v, u,G′).

Given that V (D) is finite, continuing an arbitrary walk along D from yk implies we must eventually

either return to A, or visit a graph already seen along the walk. Denote the vertex visited at the lth

step of this walk by yl = (ul−1, ul, Gl). If we revisit A we are done, otherwise define

n := inf{l > k : Gl = Gm for some m < l}.

The conditionGn = Gm implies that un = um. Additionally un−1 6= um−1, otherwise this would im-

plyGn−1 = Gm−1, which contradicts the definition of n. By (6), (um−2, um−1, Gm−1)(um−1, um, Gm) ∈

E(D) implies that (un−1, un, Gn)(um, am−1, Gm−1) ∈ E(D). Thus we can traverse to (um, um−1, Gm−1).

Iteratively applying (6) (which we can do as ul+1 6= ul−1 for all l ≥ 0) implies we can reach a state

with graph G = G0, which must be in A, completing the proof of (5).
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Proof of Lemma 3.3. We first show that (K,w) is a symmetric decomposition. Fix any G ∈ G

and any z ∈ Z , and let a be a representative of z. Let p refer to the statement ‘wG(z) = wG∗(z) for

all G∗ for which Kz(G,G
∗) > 0’. It suffices to show that p is true.

Consider a Markov chain with kernel Kz and current state G. Suppose the chain remains

unchanged after one iteration of Algorithm 1. Then p is true trivially. Without loss of generality,

suppose the swaps corresponding to a are viable, and the chain moves to some G∗ ∈ G. Remark

3.2 implies swaps corresponding to ar are not viable. Since the swaps corresponding to a sampled

vertex sequence must be viable, wG(z) is the probability of sampling a given the chain is at G.

At G∗, the swaps corresponding to ar are viable. By an analogous argument, it follows that

wG∗(z) is the probability of sampling ar given the chain is at G∗. One can deduce from Algorithm

1 that the probability of sampling w given the chain is at G is equal to the probability of sampling

ar given the chain is at G∗. This holds because the degree sequence is the same for either state.

We now show that each Kz ∈ K is reversible with respect to the uniform distribution. This is

implied by detailed balance. Specifically, for each Kz ∈ K we show

Kz(G,G
∗) = Kz(G

∗, G) for all G,G∗ ∈ G.

Fix any G and G∗. Kz(G,G
∗) = 1 if and only if Kz(G

∗, G) = 1, because applying two iterations

of a Markov chain with kernel Kz from some current state G′, returns G′. The result follows by

additionally observing that Kz(G,G
∗) can only be zero or one.

Proof of Proposition 3.4. Lemma 3.3 and connectedness of the chain suffice. Fix any G,G′ ∈ G,

and suppose the current state of the chain is G. Form a digraph H as follows. For each vertex pair

uv, if uv ∈ E(G) and uv /∈ E(G′), add a red edge uv to E(H). If uv /∈ E(G) and uv ∈ E(G′),

add a blue edge uv to E(H). Define an alternating cycle as a cycle whose edges are alternately red

and blue. G and G′ are equivalent if and only if H has no edges.

Then H is the union of a finite sequence of edge-disjoint alternating cycles. Fix any such

cycle v0v1...vkv0, ordered so that the v0v1 is red. The chain can sample v0v1...vkv0 with positive

probability, yielding a new graph G′′, whilst removing all edges in H corresponding to this cycle.

Iterate until H has no more edges. Hence the chain is connected.

29



Proof of Proposition 3.5. For a given F , the map from G to BG is injective, so the sampler can be

thought of as a Markov chain ergodic with respect to the uniform distribution on BG .

We briefly describe how to view the Markov chain as operating on BG . An initial vertex vj is

sampled from V . The chain now samples ui from the out-neighborhood of vj and replaces the edge

vjui with uivj . If G is undirected, additionally switch viuj with ujvi. Continue walking along the

vertices of the graph in this manner until the sampler returns to the initial vertex for the first time.

Without loss of generality, supposeG is directed. PartitionB’s vertex set into strongly connected

components S1, ..., SK . Fix ui ∈ Sk and vj ∈ Sl. If no edge is incident to ui and vj then ij ∈ F ⊆ F̃ .

Otherwise if k 6= l, edges between Sk and Sl are uniformly in one direction; say from Sk to Sl.

Suppose the chain on B traverses uivj , replacing it with vjui. Returning to the initial vertex requires

traversal of vjui. Hence, uivj can be flipped only an even number of times, and the direction is

unchanged. By Lemma 3.4, ij ∈ F̃ . If k = l, uivj can be switched odd number of times, so ij /∈ F̃ .

The undirected case holds analogously.

Proof of Proposition 4.1. It suffices to show connectedness. Define

d(G,G′) :=
∑
u∈V

∑
v∈V

|cG(uv)− cG′(uv)| for all G,G′ ∈ G.

Then (G, d) is a metric space. Fix any two distinct graphs G,G′ ∈ G, and suppose the current state

of the chain is G. It suffices to show that one can construct a sampling step yielding a new graph

strictly closer to G′ in this metric space.

Let nuv := cG(uv) − cG′(uv) for each vertex pair uv. We form a multi-graph H as follows.

If nuv > 0, add nuv red copies of the direction reversed edge vu to E(H), while if nuv < 0, add

−nuv blue copies of uv to E(H). The graphs G and G′ are equivalent if and only if H has no edges.

Define an alternating cycle in H as a cycle whose edges are alternately red and blue.

H can be expressed as the union of a finite number of edge-disjoint alternating cycles. Fix any

such alternating cycle v0v1...vlv0 in H . Order the cycle so that v0v1 is red. Letting On denote the

set of odd natural numbers less than or equal to n, we define

k := inf{n ∈ Ol−2 : vnvn+1 /∈ F}

30



where we let inf ∅ := l.

Under Algorithm 2, there is a positive probability of sampling the vertex sequence v0v1...vkv0

given the chain is at G. Sampling ∆ = −1 along this vertex sequence returns a new graph G′′,

removing at least three edges from H whilst adding at most one. Hence d(G′′, G′) ≤ d(G,G′)−

2.
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