11,900 research outputs found

    A theoretical and computational basis for CATNETS

    Get PDF
    The main content of this report is the identification and definition of market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. These build the theoretical foundation for the work within the following two years of the CATNETS project. --Grid Computing

    Theoretical and Computational Basis for Economical Ressource Allocation in Application Layer Networks - Annual Report Year 1

    Get PDF
    This paper identifies and defines suitable market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. --Grid Computing

    Preliminary specification and design documentation for software components to achieve catallaxy in computational systems

    Get PDF
    This Report is about the preliminary specifications and design documentation for software components to achieve Catallaxy in computational systems. -- Die Arbeit beschreibt die Spezifikation und das Design von Softwarekomponenten, um das Konzept der Katallaxie in Grid Systemen umzusetzen. Eine Einführung ordnet das Konzept der Katallaxie in bestehende Grid Taxonomien ein und stellt grundlegende Komponenten vor. Anschließend werden diese Komponenten auf ihre Anwendbarkeit in bestehenden Application Layer Netzwerken untersucht.Grid Computing

    Analysis and selection of the simulation environment

    Get PDF
    This document provides the initial report of the Simulation work package (Work Package 4,WP4) of the CATNETS project. It contains an analisys of the requirements for a simulation tool to be used in CATNETS and an evaluation of a number of grid and general purpose simulators with respect to the selected requirements. A reasoned choice of a suitable simulator is performed based on the evaluation conducted. -- Diese Arbeit analysiert die Anforderungen an eine Simulationsumgebung für die Analyse der Katallaxie. Anhand von Kennzahlen wird die Auswahl der Simulationsumgebung bestimmt.Grid Computing

    Design choices for agent-based control of AGVs in the dough making process

    Get PDF
    In this paper we consider a multi-agent system (MAS) for the logistics control of Automatic Guided Vehicles (AGVs) that are used in the dough making process at an industrial bakery. Here, logistics control refers to constructing robust schedules for all transportation jobs. The paper discusses how alternative MAS designs can be developed and compared using cost, frequency of messages between agents, and computation time for evaluating control rules as performance indicators. Qualitative design guidelines turn out to be insufficient to select the best agent architecture. Therefore, we also use simulation to support decision making, where we use real-life data from the bakery to evaluate several alternative designs. We find that architectures in which line agents initiate allocation of transportation jobs, and AGV agents schedule multiple jobs in advance, perform best. We conclude by discussing the benefits of our MAS systems design approach for real-life applications

    Multi-project scheduling with 2-stage decomposition

    Get PDF
    A non-preemptive, zero time lag multi-project scheduling problem with multiple modes and limited renewable and nonrenewable resources is considered. A 2-stage decomposition approach is adopted to formulate the problem as a hierarchy of 0-1 mathematical programming models. At stage one, each project is reduced to a macro-activity with macro-modes resulting in a single project network where the objective is the maximization of the net present value and the cash flows are positive. For setting the time horizon three different methods are developed and tested. A genetic algorithm approach is designed for this problem, which is also employed to generate a starting solution for the exact solution procedure. Using the starting times and the resource profiles obtained in stage one each project is scheduled at stage two for minimum makespan. The result of the first stage is subjected to a post-processing procedure to distribute the remaining resource capacities. Three new test problem sets are generated with 81, 84 and 27 problems each and three different configurations of solution procedures are tested

    Rational bidding using reinforcement learning: an application in automated resource allocation

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational resources is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic resource provisioning and usage of computational resources, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a framework for supporting consumers and providers in technical and economic preference elicitation and the generation of bids. Secondly, we introduce a consumer-side reinforcement learning bidding strategy which enables rational behavior by the generation and selection of bids. Thirdly, we evaluate and compare this bidding strategy against a truth-telling bidding strategy for two kinds of market mechanisms – one centralized and one decentralized

    Q-Strategy: A Bidding Strategy for Market-Based Allocation of Grid Services

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational services is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic service provisioning and usage of Grid services, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a bidding agent framework for implementing artificial bidding agents, supporting consumers and providers in technical and economic preference elicitation as well as automated bid generation by the requesting and provisioning of Grid services. Secondly, we introduce a novel consumer-side bidding strategy, which enables a goal-oriented and strategic behavior by the generation and submission of consumer service requests and selection of provider offers. Thirdly, we evaluate and compare the Q-strategy, implemented within the presented framework, against the Truth-Telling bidding strategy in three mechanisms – a centralized CDA, a decentralized on-line machine scheduling and a FIFO-scheduling mechanisms
    corecore