93,290 research outputs found

    Investigating the mobility habits of electric bike owners through GPS data

    Get PDF
    This paper investigates the mobility habits of electric bike owners as well as their preferred routes. Through a GPS tracking campaign conducted in the city of Ghent (Belgium) we analyze the mobility habits (travel distance, time spent, speed) during the week of some e-bike users. Moreover, we propose the results of our map matching, based on the Hausdorff criterion, and preliminary results on the route choice of our sample. We strongly believe that investigating the behavior of electric bikes’ owners can help us in better understanding how to incentivize the use of this mode of transport. First results show that the trips with a higher travel distance are performed during the working days. It could be easily correlated with the daily commuting trips (home-work). Moreover, the results of our map-matching highlight how 61% of the trips are performed using the shortest path

    Unveiling E-bike potential for commuting trips from GPS traces

    Get PDF
    Common goals of sustainable mobility approaches are to reduce the need for travel, to facilitate modal shifts, to decrease trip distances and to improve energy efficiency in the transportation systems. Among these issues, modal shift plays an important role for the adoption of vehicles with fewer or zero emissions. Nowadays, the electric bike (e-bike) is becoming a valid alternative to cars in urban areas. However, to promote modal shift, a better understanding of the mobility behaviour of e-bike users is required. In this paper, we investigate the mobility habits of e-bikers using GPS data collected in Belgium from 2014 to 2015. By analysing more than 10,000 trips, we provide insights about e-bike trip features such as: distance, duration and speed. In addition, we offer a deep look into which routes are preferred by bike owners in terms of their physical characteristics and how weather influences e-bike usage. Results show that trips with higher travel distances are performed during working days and are correlated with higher average speeds. Usage patterns extracted from our data set also indicate that e-bikes are preferred for commuting (home-work) and business (work related) trips rather than for recreational trips

    A survey on Human Mobility and its applications

    Full text link
    Human Mobility has attracted attentions from different fields of studies such as epidemic modeling, traffic engineering, traffic prediction and urban planning. In this survey we review major characteristics of human mobility studies including from trajectory-based studies to studies using graph and network theory. In trajectory-based studies statistical measures such as jump length distribution and radius of gyration are analyzed in order to investigate how people move in their daily life, and if it is possible to model this individual movements and make prediction based on them. Using graph in mobility studies, helps to investigate the dynamic behavior of the system, such as diffusion and flow in the network and makes it easier to estimate how much one part of the network influences another by using metrics like centrality measures. We aim to study population flow in transportation networks using mobility data to derive models and patterns, and to develop new applications in predicting phenomena such as congestion. Human Mobility studies with the new generation of mobility data provided by cellular phone networks, arise new challenges such as data storing, data representation, data analysis and computation complexity. A comparative review of different data types used in current tools and applications of Human Mobility studies leads us to new approaches for dealing with mentioned challenges

    Using the Global Positioning System (GPS) in household surveys for better economics and better policy

    Get PDF
    Distance and location are important determinants of many choices that economists study. While these variables can sometimes be obtained from secondary data, economists often rely on information that is self-reported by respondents in surveys. These self-reports are used especially for the distance from households or community centers to various features such as roads, markets, schools, clinics and other public services. There is growing evidence that self-reported distance is measured with error and that these errors are correlated with outcomes of interest. In contrast to self-reports, the Global Positioning System (GPS) can determine almost exact location (typically within 15 meters). The falling cost of GPS receivers (typically below US$100) makes it increasingly feasible for field surveys to use GPS as a better method of measuring location and distance. In this paper we review four ways that GPS can lead to better economics and better policy: (i) through constructing instrumental variables that can be used to understand the causal impact of policies, (ii) by helping to understand policy externalities and spillovers, (iii) through better understanding of the access to services, and (iv) by improving the collection of household survey data. We also discuss several pitfalls and unresolved problems with using GPS in household surveys

    Performance of a New Enhanced Topological Decision-Rule Map-Matching Algorithm for Transportation Applications

    Get PDF
    IndexaciĂłn: Web of Science; ScieloMap-matching problems arise in numerous transportation-related applications when spatial data is collected using inaccurate GPS technology and integrated with a flawed digital roadway map in a GIS environment. This paper presents a new enhanced post-processing topological decision-rule map-matching algorithm in order to address relevant special cases that occur in the spatial mismatch resolution. The proposed map-matching algorithm includes simple algorithmic improvements: dynamic buffer that varies its size to snap GPS data points to at least one roadway centerline; a comparison between vehicle heading measurements and associated roadway centerline direction; and a new design of the sequence of steps in the algorithm architecture. The original and new versions of the algorithm were tested on different spatial data qualities collected in Canada and United States. Although both versions satisfactorily resolve complex spatial ambiguities, the comparative and statistical analysis indicates that the new algorithm with the simple algorithmic improvements outperformed the original version of the map-matching algorithm.El problema de la ambigĂŒedad espacial ocurre en varias aplicaciones relacionadas con transporte, especĂ­ficamente cuando existe inexactitud en los datos espaciales capturados con tecnologĂ­a GPS o cuando son integrados con un mapa digital que posee errores en un ambiente SIG. Este artĂ­culo presenta un algoritmo nuevo y mejorado basado en reglas de decisiĂłn que es capaz de resolver casos especiales relevantes en modo post-proceso. El algoritmo propuesto incluye las siguientes mejoras algorĂ­tmicas: un ĂĄrea de bĂșsqueda dinĂĄmica que varĂ­a su tamaño para asociar puntos GPS a al menos un eje de calzada, una comparaciĂłn entre el rumbo del vehĂ­culo y la direcciĂłn del eje de calzada asignada, y un nuevo diseño de la secuencia de pasos del algoritmo. Tanto el algoritmo original como el propuesto fueron examinados con datos espaciales de diferentes calidades capturados en CanadĂĄ y Estados Unidos. Aunque ambas versiones resuelven satisfactoriamente el problema de ambigĂŒedad espacial, el anĂĄlisis comparativo y estadĂ­stico indica que la nueva versiĂłn del algoritmo con las mejoras algorĂ­tmicas entrega resultados superiores a la versiĂłn original del algoritmo.http://ref.scielo.org/9mt55
    • 

    corecore