12,404 research outputs found

    A macro-level model for investigating the effect of directional bias on network coverage

    Full text link
    Random walks have been proposed as a simple method of efficiently searching, or disseminating information throughout, communication and sensor networks. In nature, animals (such as ants) tend to follow correlated random walks, i.e., random walks that are biased towards their current heading. In this paper, we investigate whether or not complementing random walks with directional bias can decrease the expected discovery and coverage times in networks. To do so, we develop a macro-level model of a directionally biased random walk based on Markov chains. By focussing on regular, connected networks, the model allows us to efficiently calculate expected coverage times for different network sizes and biases. Our analysis shows that directional bias can significantly reduce coverage time, but only when the bias is below a certain value which is dependent on the network size.Comment: 15 page

    DivGraphPointer: A Graph Pointer Network for Extracting Diverse Keyphrases

    Full text link
    Keyphrase extraction from documents is useful to a variety of applications such as information retrieval and document summarization. This paper presents an end-to-end method called DivGraphPointer for extracting a set of diversified keyphrases from a document. DivGraphPointer combines the advantages of traditional graph-based ranking methods and recent neural network-based approaches. Specifically, given a document, a word graph is constructed from the document based on word proximity and is encoded with graph convolutional networks, which effectively capture document-level word salience by modeling long-range dependency between words in the document and aggregating multiple appearances of identical words into one node. Furthermore, we propose a diversified point network to generate a set of diverse keyphrases out of the word graph in the decoding process. Experimental results on five benchmark data sets show that our proposed method significantly outperforms the existing state-of-the-art approaches.Comment: Accepted to SIGIR 201

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Emergent Behavior Development and Control in Multi-Agent Systems

    Get PDF
    Emergence in natural systems is the development of complex behaviors that result from the aggregation of simple agent-to-agent and agent-to-environment interactions. Emergence research intersects with many disciplines such as physics, biology, and ecology and provides a theoretical framework for investigating how order appears to spontaneously arise in complex adaptive systems. In biological systems, emergent behaviors allow simple agents to collectively accomplish multiple tasks in highly dynamic environments; ensuring system survival. These systems all display similar properties: self-organized hierarchies, robustness, adaptability, and decentralized task execution. However, current algorithmic approaches merely present theoretical models without showing how these models actually create hierarchical, emergent systems. To fill this research gap, this dissertation presents an algorithm based on entropy and speciation - defined as morphological or physiological differences in a population - that results in hierarchical emergent phenomena in multi-agent systems. Results show that speciation creates system hierarchies composed of goal-aligned entities, i.e. niches. As niche actions aggregate into more complex behaviors, more levels emerge within the system hierarchy, eventually resulting in a system that can meet multiple tasks and is robust to environmental changes. Speciation provides a powerful tool for creating goal-aligned, decentralized systems that are inherently robust and adaptable, meeting the scalability demands of current, multi-agent system design. Results in base defense, k-n assignment, division of labor and resource competition experiments, show that speciated populations create hierarchical self-organized systems, meet multiple tasks and are more robust to environmental change than non-speciated populations

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Load balancing using cell range expansion in LTE advanced heterogeneous networks

    Get PDF
    The use of heterogeneous networks is on the increase, fueled by consumer demand for more data. The main objective of heterogeneous networks is to increase capacity. They offer solutions for efficient use of spectrum, load balancing and improvement of cell edge coverage amongst others. However, these solutions have inherent challenges such as inter-cell interference and poor mobility management. In heterogeneous networks there is transmit power disparity between macro cell and pico cell tiers, which causes load imbalance between the tiers. Due to the conventional user-cell association strategy, whereby users associate to a base station with the strongest received signal strength, few users associate to small cells compared to macro cells. To counter the effects of transmit power disparity, cell range expansion is used instead of the conventional strategy. The focus of our work is on load balancing using cell range expansion (CRE) and network utility optimization techniques to ensure fair sharing of load in a macro and pico cell LTE Advanced heterogeneous network. The aim is to investigate how to use an adaptive cell range expansion bias to optimize Pico cell coverage for load balancing. Reviewed literature points out several approaches to solve the load balancing problem in heterogeneous networks, which include, cell range expansion and utility function optimization. Then, we use cell range expansion, and logarithmic utility functions to design a load balancing algorithm. In the algorithm, user and base station associations are optimized by adapting CRE bias to pico base station load status. A price update mechanism based on a suboptimal solution of a network utility optimization problem is used to adapt the CRE bias. The price is derived from the load status of each pico base station. The performance of the algorithm was evaluated by means of an LTE MATLAB toolbox. Simulations were conducted according to 3GPP and ITU guidelines for modelling heterogeneous networks and propagation environment respectively. Compared to a static CRE configuration, the algorithm achieved more fairness in load distribution. Further, it achieved a better trade-off between cell edge and cell centre user throughputs. [Please note: this thesis file has been deferred until December 2016

    Interference Modeling for Low-Height Air-to-Ground Channels in Live LTE Networks

    Get PDF
    • …
    corecore