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Many models have been proposed to evaluate performance of cellular commu-

nication systems. However, the emergence of new technologies have changed cellular

systems significantly, and requires new modeling and analysis approaches. This dis-

sertation studies network level optimization concerning cell association and spectrum

sharing. As the first contribution, the dissertation presents a framework to investi-

gate downlink multi-antenna heterogeneous networks with flexible cell selection and

shows that a simple selection bias-based cell selection criterion closely approximates

more complex selection rules to maximize mean the signal-to-interference-plus-noise-

ratio (SINR). Under this simpler cell selection rule, the exact expressions for coverage

probability and achievable rate of a typical user are derived along with an approx-

imation of the coverage optimal cell selection bias. In the second contribution, the

dissertation considers a cellular system where users are simultaneously connected to

multiple base stations (BSs) to decrease blockage sensitivity and proposes a frame-

work to analyze the correlation in blocking among multiple links. It evaluates the

vii



gains of macro-diversity in the presence of random blockages along with the impact

of the blockage size.

In the third contribution, the dissertation considers spectrum sharing among

millimeter wave (mmWave) operators. A two-level architecture is proposed to model

a mmWave multi-operator system and the SINR and per-user rate distribution are

derived in the presence of spectrum and infrastructure sharing. It is shown that

due to narrow beams, license sharing among operators improves system performance

by increasing the per-user rate, even when there is no explicit coordination. In the

fourth contribution, this analysis is extended to include static coordination among

operators in the form of secondary licensing. A framework is developed to model a

mmWave cellular system with a primary operator that has an “exclusive-use” license

with a provision to sell a restricted secondary license to another operator that has a

maximum allowable interference threshold. This licensing approach provides a way

of differentiating the spectrum access for the different operators. Results show that

compared to uncoordinated sharing, a reasonable gain can be achieved using the

proposed secondary licensing, especially for edge rates.
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Chapter 1

Introduction

The modeling and analysis of various types of wireless systems including cel-

lular and ad hoc systems has been a focus in wireless communication research. In

the past, researchers have proposed many analytical and simulation based models to

evaluate the performance of cellular systems. However, cellular systems have evolved

significantly over time and will continue to do so. The emergence of new technolo-

gies increasingly drives older models to obsolescence, thus requiring new modeling

approaches for their analysis. This introductory chapter will briefly provide some

background on cellular analysis and key modeling approaches in Section 1.1. Section

1.2 and 1.3 introduce some of new emergent technologies expected to be important in

future generation cellular systems and overview various issues related to these tech-

nologies. Finally, Section 1.4 summarizes the key contributions of this dissertation.

1.1 Analysis and Modeling of Cellular Systems

A conventional cellular system consists of a network of base stations (BSs)

deployed over a land area and a set of subscriber users with each user connected to

a BS. This association can be as simple as connecting to the nearest BS or can be

based on a complicated criteria to achieve a global best performance. Due to this
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Figure 1.1: A cellular system consisting of a network of BSs (Bi’s) and a user asso-
ciated with BS B1. The area is divided into coverage areas or cell of each BS.

association, the whole area can be divided into coverage areas or cells around the

BSs. A cellular system is generally owned by a cellular operator and can be used

to provide voice or data services to fixed or mobile users. The BSs are connected

to the core network and possibly to each other using a wired or wireless back-haul

infrastructure.

Let us consider a cellular system as shown in Fig. 1.1 consisting of N BSs

Bi’s (i = 1, 2, · · · , N). A user is connected to the BS B1, located at distance r1. The

signal transmitted from the ith BS Bi undergoes an attenuation in power due to the

channel. Therefore, the received power at the user is given as Pri = Phir
−α
i . Here,

P is the BS transmit power, α is the path-loss exponent, ri is the distance of the

BS Bi from the user and hi denotes the random attenuation present in the channel
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which includes fading and shadowing. Hence, the signal-to-interference-plus-noise

ratio (SINR) at the user is given as

SINR =
Ph1r

−α
1

σ2 +
N∑
i=2

Phir
−α
i

(1.1)

where σ2 is the noise present at the receiver. The distribution and various statistics

of the SINR can be used to determine the performance of this system. One metric

that can be used to evaluate a system’s performance is the SINR coverage probability

(also known as the coverage probability). It is defined as the probability that the

SINR at the user from its associated BS is above a threshold τ and is equivalently

the CCDF (complementary cumulative distribution function) of the SINR.

While the SINR represents the serving link quality, the per-user rate represents

the data bits received per second per user and is given as R = W log2(1+SINR) where

W is the amount of frequency-time resource allocated to the user. The CCDF of the

rate is another important performance metric, and also called the rate coverage which

is defined as the probability of the rate of a user being greater than the threshold ρ.

There are various other performance metrics including latency, average through-

put, and spectral efficiency. Determining which metric is the most appropriate is sub-

jective and depends largely on the supported applications and user requirements. Due

to the large number of variables and randomness present in the channel, evaluating

the performance of a cellular system is not a trivial problem and various approaches

are proposed in the past to model and analyze cellular systems.
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Figure 1.2: A 1-D Wyner model.

1.1.1 Hexagonal Grid Model

The hexagonal grid model is one of the widely used models to evaluate the

performance of cellular systems. In this model, BS locations are modeled as cell

centers in a hexagonal grid. It is often limited to 1 or 2 layers of BSs around the

origin resulting in a 7 BSs grid or 19 BSs grid system. This model is in general not

tractable. Therefore, most of the studies are performed via simulations only and may

fail to provide insights into systems.

1.1.2 Wyner Model

The Wyner model [2] provides a simplistic approach to model cellular systems.

In this model, BSs are assumed to be located in a line at a fixed distance R with

square coverage regions as shown in Fig. 1.2. This model assumes that a user located

in the coverage cell of a BS faces interference only from its neighboring cells which

is scaled by a factor termed as interference intensity. Although the Wyner model is

tractable, it is overly simplistic.
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1.1.3 Stochastic Geometry Based Model

Due to the increasing heterogeneity in cellular infrastructure and irregularity in

BS locations, random spatial models are proposed to model the inherent randomness

in such networks. Modeling the BS locations as a Poisson Point Process (PPP)

further lends tractability and allows to compute simple expressions for key metrics,

such as coverage and rate. The field of stochastic geometry provides the relevant tools

necessary to analyze most of the wireless systems [3]. This dissertation focuses on

stochastic geometry, therefore, we have summarized some key concepts of stochastic

geometry in Appendix A.

Due to the emergence of new technologies, increase in data usage and the intro-

duction of new applications, wireless systems have evolved significantly. In the next

section, we will discuss some of these technologies that are expected to be important

in next generation systems.

1.2 New Emergent Technologies

Since the current generation of cellular systems is reaching its maturity and

limits, researchers have started looking into new approaches for the next generation

cellular communication. The growing number of new applications and devices such

as wearables, smart phones and development of Internet-of-Things have increased the

sheer volume of data and data-rate requirements in last years and will continue to do

the same in the upcoming years [4]. The expectations from next generation systems

have been set to very high to meet these requirements. It is clear that there must be

non-trivial differences and improvements over the current generation to achieve these
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expectations [5]. In this section, we will discuss some of the technologies which will

be the key factors in bridging this gap.

NLOS

LOS

Figure 1.3: A mmWave cellular system with random blockages. A link can be blocked
by one or more blockages to become NLOS.

1.2.1 Use of Millimeter Wave Bands

One of the proposed feature of future cellular systems will be the inclusion of

bands from the mmWave spectrum (30GHz-300GHz). Until now, cellular communi-

cation was restricted to the bands less than 6 GHz, known as conventional cellular

frequencies (CCF) or sub 6 GHz. As these bands are almost fully occupied, the only

way to acquire more spectrum is by going up towards higher frequencies (6-100GHz).

Many recent studies have focused on characterizing the mmWave channel [6,7], mod-

eling and evaluating the system performance [8] and making the communication work
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at mmWave. The signal propagation at higher frequencies suffers from various issues

such as higher atmospheric absorption and sensitivity to blockages due to reduced

diffraction and penetration. However, due to smaller antenna sizes at mmWave fre-

quencies, a large number of antennas can be accommodated in the same aperture size

which makes communication at mmWave highly directional and helps reduce some

of the propagation issues mentioned before. Also, blockages present in the channel

severely impact the performance of a mmWave system. This necessitates the separate

modeling of line-of-sight (LOS) and non-LOS (NLOS) links for mmWave systems (see

Fig. 1.3). Random shape theory can be used to model the effect of blocking in cellular

systems [9] where buildings are modeled as random shapes such as lines, rectangles

or circles.

Single'user'MIMO'
with'single'stream'

Single'user'MIMO'
with'mul3ple'streams'

Mul3user'MIMO'

Figure 1.4: MIMO technology: Multiple antennas can be used for single user or
multiple users to enhance the link reliability and system throughput.

1.2.2 Multiple Input Multiple Output Systems

Multiple input multiple output (MIMO) refers to the use of multiple anten-

nas at the transmitters and/or receivers in a wireless system. MIMO systems have
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become key part of present wireless communication systems by offering significant

performance improvement. The use of multiple antennas provides multiple trans-

mission paths and can increase the diversity order. Higher diversity order reduces

the effect of fading and increases the overall capacity of the system. Depending on

the pre-coding used at the antennas, MIMO can be used to increase link reliability

and/or the data throughput. For example, for a single user, multiple antennas can

help beamform the desired signal to the user, reducing the intercell interference and

increasing the data throughput. Using space time codes with MIMO, the same signal

can be sent over multiple paths increasing the link reliability and reducing the impact

of fading.

MIMO can also be used with multiple users, which is termed multiuser MIMO.

Using a zeroforcing pre-coder and spatial multiplexing, a single BS with multiple

antennas can transmit data simultaneously to multiple users with single or multiple

antennas. It is expected that the limit on number of antennas in systems will increase

by the order of magnitude, leading to massive MIMO [10]. The idea is to have

hundreds or even thousands of antennas serve tens of users simultaneously in each

resource block which leads to very high theoretical gains in the throughput.

As discussed above, directional communication is crucial for mmWave systems.

Fortunately, it is possible to accommodate a large number of antennas at mmWave

frequencies which will enable very narrow beams in mmWave systems. The high cost

and power consumption of mixed signal components prevent dedicating a separate

radio frequency (RF) chain for each antenna and using traditional MIMO baseband

pre-coding schemes. To reduce the power consumption, a hybrid analog-digital pre-
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coding architecture is proposed [11] where precoding processing is divided between

analog and digital domains. The number of complete RF chains required is lower than

the number of antennas and hence, the performance of hybrid pre-coding is limited

by the number of RF chains.

1st tier BS

2nd tier BS

Figure 1.5: A two tier HetNet showing coverage area of each BS. Due to difference in
the transmit power of BSs, the coverage areas are no longer Voronoi cells.

1.2.3 Heterogeneous Networks

Cellular systems have gone through a great deal of densification over time. As

the signal-to-interference ratio (SIR) is invariant to the BS density [12], increasing

the BS density will decrease user load on each BS, and hence, increase achievable

per-user data rate. As the distance between BSs and users decreases, the conven-
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tional high power macro BSs do not make sense. In addition, some of the BSs may

be deployed by users to increase their own data rate in the form of small cells such

as femetocells, picocells, WiFi access points. This leads to additional heterogeneity

among BSs. MmWave BSs will also be small cells and deployed densely. To increase

their reliability, they are expected to be deployed in the presence of UHF/LTE net-

work [13,14]. Such a cellular system which consists of multiple classes of base stations

(BSs) is known as a heterogeneous networks (HetNets) which already exists in cur-

rent cellular systems. These classes (or tiers) of BSs may differ in terms of transmit

power, deployment density, number of transmit antennas, number of users served,

transmission scheme, and path loss exponent [15]. Since BSs are no longer homoge-

neous and most of the small cells are deployed randomly as per the user requirements,

coverage areas are no longer regular (see Fig. 1.5). Therefore, conventional cellular

models are no longer relevant to the analysis of HetNets and random spatial models

are more accurate to model these systems. A PPP based model was first introduced

for multi-tier cellular networks in [16,17], and generalized further in [18–21] to study

various cell selection rules for single-antenna HetNets.

1.3 Technical Issues in Next Generation Systems

In the previous section, we have discussed some of the new technologies that

are expected to be present in next generation systems. These new technologies have

been studied in recent work in isolation, however, their interplay has not been well

investigated. When these technologies are implemented together in future systems,

there can be various network level issues due to their interplay. In this section, we
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will discuss few of these issues.

1.3.1 Association Issues

In cellular systems, each user associates itself to a BS (termed ‘serving BS’)

based on a cell selection rule. A usual cell selection criterion in cellular systems is

to connect to the BS that provides maximum average received power [18]. Since the

channel from a BS in a single antenna system exhibits same statistical properties

regardless of it acting as a serving link or an interfering link [22], the BS providing

the highest average received power will also cause highest average interference if not

selected as the serving BS. Therefore, in a HetNet where each tier has only a single

antenna, this cell selection criterion is also the one that maximizes the SINR and the

coverage probability. However, in a HetNet where each tier has a different number

of antennas and/or uses different MIMO technique, the channel from a BS exhibits

different statistical properties based on its role as a serving link or an interfering

link [22]. Hence, the conventional average received power based association is no

longer the coverage maximizing association. Therefore, it is important to understand

which cell selection rule should be adopted such that each user can maximize its

coverage probability.

Another issue arises when we consider association in mmWave systems. As

discussed above, blockages may result in significant drop in signal strengths or even

outages for some users [8]. In addition, a user can block desired signals from its serving

BS due to its own body causing sudden outages [23, 24]. Therefore, conventional

single BS-association rules will not be able to ensure connectivity in mmWave cellular
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systems. To increase link reliability, macro diversity can be leveraged where a user

is connected to multiple BSs simultaneously so that when one link is blocked, there

can be other BSs available to the user immediately [13,25–27]. However, the presence

of large blockages will result in correlation among different links which need to be

investigated to accurately characterize gains obtained by macro-diversity.

1.3.2 Load Balancing and Offloading

Since in a single tier network, all BSs have the same transmit power and re-

sources, a simple received power based association results in almost equal number

of users at each BS on an average [28]. However, in multi-tier networks, different

tiers may have different transmit power and amount of resources. In this case, the

conventional association rule may end up in congested macro cells and under-utilized

small cells which creates a load imbalance among tiers. In [28–31], a simple cell se-

lection rule was proposed to tackle load balancing issue in HetNets where each tier

is assigned a certain bias value for association. This rule helps the system offload

users from a congested tier to idle tiers. The use of multiple antennas can increase

communication range and accommodate more users in the same amount of resources.

Hence, the load imbalance issue becomes more complicated when HetNets with mul-

tiple antennas are considered. Combining load balancing with the earlier discussion

on optimal cell selection rule raises an interesting question if there is an optimal cell

selection which can provide optimal rate coverage in multi-tier networks.
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Exclusive licensing Sensing based spectrum
sharing

Unrestricted spectrum 
sharing

Figure 1.6: Various spectrum sharing mechanism for mmWave cellular systems.

1.3.3 Efficient Spectrum Utilization for MmWave Spectrum

MmWave communication causes less interference to neighboring BSs operat-

ing in the same frequency bands compared to communication at conventional cellular

frequencies [6,8,14], which requires us to rethink how mmWave spectrum should be li-

censed. In conventional cellular licensing, commercial operators buy exclusive licenses

which give each of them exclusive and complete control over a band of spectrum. This

conventional exclusive licensing is not efficient for mmWave due to the lower level of

interference and it seems evident that spectrum sharing should be implemented for

mmWave systems [32]. There are two main ways to share the spectrum: one way is

to share the spectrum without any coordination among the operators and another

way is to implement some type of sensing or coordination to avoid transmission con-

flicts [33–35] (see Fig. 1.6). Currently, there are no regulatory framework for cellular

services in the mmWave bands. Therefore, these different types of sharing mecha-

nisms should be evaluated in advance to understand the behavior of multi-operator

mmWave systems and increase spectrum utilization.
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1.4 Contributions

Although there is a significant amount of recent work dealing with the afore-

mentioned technologies present in new generation systems, they are studied in isola-

tion and therefore, their interplay is not well investigated. It is evident that studies

focused on analysis and optimization of systems incorporating these technologies are

needed to enable their full potential. This dissertation focuses on some of the net-

work level optimization issues related to users association and resource sharing for

systems embodying these technologies and divided into four parts. The first part of

this dissertation focuses on interplay between MIMO and HetNets to study optimal

users association and load balancing among different classes of BSs. The second part

considers association in mmWave BSs where each user is simultaneously connected

to multiple BSs. The third part changes the focus to the spectrum sharing issues

in a multi-operator mmWave system to study feasibility of uncoordinated sharing of

spectrum and infrastructure among operators. The fourth part extends this to in-

clude some kind of static coordination among the operators. The main contributions

of this dissertation can be summarized as follows:

Chapter 2: Cell selection and load balancing in downlink multi-

antennas heterogeneous cellular network: We model and analyze heteroge-

neous cellular networks with multiple antenna BSs (multi-antenna HetNets) with K

classes or tiers of base stations (BSs), which may differ in terms of transmit power,

deployment density, number of transmit antennas, number of users served, trans-

mission scheme, and path loss exponent. We show that the cell selection rules in

multi-antenna HetNets may differ significantly from the single-antenna HetNets due
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to the possible differences in multi-antenna transmission schemes across tiers. While

it is challenging to derive exact cell selection rules even for maximizing signal-to-

interference-plus-noise-ratio (SINR) at the receiver, we show that adding an appro-

priately chosen tier-dependent cell selection bias in the received power yields a close

approximation. Assuming arbitrary selection bias for each tier, simple expressions

for downlink coverage and rate are derived. For coverage maximization, the required

selection bias for each tier is given in closed form. Due to this connection with bias-

ing, multi-antenna HetNets may balance load more naturally across tiers in certain

regimes compared to single-antenna HetNets, where a large cell selection bias is often

needed to offload traffic to small cells.

Chapter 3: Macro-diversity in mmWave cellular networks with ran-

dom blockages: Transmission at mmWave frequencies is significantly impacted by

various blockages in the form of buildings or foliage. To reduce the chances of users to

be in complete outage, they can be allowed to connect to multiple BSs simultaneously

which increases the reliability of communication links. We evaluate the benefits of

macro-diversity for a mmWave cellular system in presence of random blockages. We

present a framework to analyze the correlation among blocking of multiple links in

a cellular system and compute the average probability of having at least one line-of-

sight communication link out of all connected links at any user. We also study the

impact of size of blockages on the reliability and show that diversity gains are higher

when blockages are small. We also show that the BS density must scale as the square

of the blockage density to maintain the same level of reliability.

Chapter 4: Uncoordinated sharing of spectrum licenses in mmWave
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cellular systems: The reduced level of interference in mmWave systems owing to

highly directional antennas opens up the possibility of uncoordinated sharing of spec-

trum licenses between commercial cellular operators. There are several advantages to

sharing including a reduction in license costs and an increase in spectrum utilization.

We establish the theoretical feasibility of spectrum license sharing among mmWave

cellular operators. We consider a heterogeneous multi-operator system containing

multiple independent cellular networks, each owned by an operator. We then com-

pute the SINR and rate distribution for downlink mobile users of each network. Using

the analysis, we compare systems with fully shared licenses and exclusive licenses for

different access rules and explore the trade-offs between system performance and spec-

trum cost. We show that sharing spectrum licenses increases the per-user rate when

antennas have narrow beams and is also favored when there is a low density of users.

We also consider a multi-operator system where BSs of all the networks are co-located

to show that the simultaneous sharing of spectrum and infrastructure is also feasible.

We show that all networks can share licenses with less bandwidth and still achieve

the same per-user median rate as if they each had an exclusive license to spectrum

with more bandwidth.

Chapter 5: Restricted secondary licensing in mmWave cellular sys-

tems: We extend the results of previous contribution to include static coordination

between operators in a primary-secondary framework. We model a mmWave cellular

system where an operator that primarily owns an exclusive-use license of a certain

band can sell a restricted secondary license of the same band to another operator.

This secondary network has a restriction on the maximum interference it can cause
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to the original network. Using stochastic geometry, we derive expressions for the cov-

erage and rate of both networks, and establish the feasibility of secondary licensing

in licensed mmWave bands. To explain economic trade-offs, we consider a revenue-

pricing model for both operators in the presence of a central licensing authority. Our

results show that the original operator and central network authority can benefit from

secondary licensing when the maximum interference threshold is properly adjusted.

This means that the original operator and central licensing authority have an incen-

tive to permit a secondary network to restrictively share the spectrum. Our results

also illustrate that the spectrum sharing gains increase with narrow beams and when

the network densifies.

17



Chapter 2

Cell Selection and Load Balancing in Downlink

Multi-Antenna Heterogeneous Cellular Network

Current cellular networks are undergoing a significant transformation due to

the capacity-driven opportunistic deployment of small cells [36]. The resulting cell

splitting gain due to increased infrastructure, along with the possibility of multi-

antenna transmission, provides one of the most promising solutions to handle current

data deluge [37]. Due to the relative maturity of both HetNets [38] and multi-antenna

transmission techniques in cellular standards [39], their coexistence in future networks

is almost inevitable. However, quite remarkably, this synergy is not reflected in the

current HetNet research efforts using tools from stochastic geometry, e.g., see [40]

for a survey. These two strategies are mostly studied in isolation, thereby missing

important interplay between them, especially in the cases where one can comple-

ment the other’s shortcomings. In this chapter,1 we take a step towards bridging

this gap. In particular, we focus on developing simple yet useful cell selection rules

for multi-antenna HetNets, which highlight certain natural connections with current

standardization activities, most importantly cell range expansion and load balanc-

ing [43].

1This work has appeared in [41] and [42] in parts. I am the first author of both of these articles.
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2.1 Related Work

The stochastic geometry model was first introduced for multi-tier cellular net-

works in [16,17], and generalized further in [18–21] to study various cell selection rules

for single-antenna HetNets. Interested readers can refer to [40] for a detailed survey

and to [44–47] for a subset of prior work on cell selection. The PPP-based HetNet

model of [17] was generalized to multi-antenna HetNets in [48], where an upper bound

on downlink coverage probability was derived using tools from stochastic geometry,

and in [22], where stochastic orders were used to order the performance of various

multi-antenna transmission schemes in a general multi-antenna HetNet. A key dif-

ference between these works and the current paper is that they all assume maximum

instantaneous SINR based cell selection, whereas this paper assumes average-SINR

based cell selection with an additional flexibility of per-tier cell selection bias. An-

other relevant prior work is [49], which studies a hybrid multi-antenna HetNet with

a fixed size “typical” cell. In this paper, we extend the multi-antenna HetNet model

of [22, 48], with a special emphasis on cell selection and its impact on downlink cov-

erage probability and average rate.

It should be noted that while there is a limited prior work on general multi-

antenna HetNets besides [22,48,49], the special case of two-tier multi-antenna HetNets

has been investigated fairly thoroughly. For example, [50] compares single and multi-

user linear beamforming in a two-tier network under perfect channel state information

(CSI), [51], [52], respectively study random orthogonal beamforming with max-rate

scheduling and coordinated beamforming for two-tier networks, and [53] studies the

effect of channel uncertainty in linear beamforming. Additionally, it is worth men-
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tioning that multi-antenna transmission schemes have been investigated extensively

in the context of ad-hoc networks, see e.g., [54–56]. Some of the tools developed there

can be extended to HetNets.

2.2 Contributions

In this chapter, we focus on the cell selection rules for a multi-antenna HetNet

and compute its performance in terms of coverage probability and rate coverage. The

main contributions of this chapter are following:

Cell selection rules for multi-antenna HetNets: We investigate cell

selection rules for a multi-antenna HetNet consisting of K different classes of BSs,

which may differ in terms of transmit power, deployment density, number of transmit

antennas, number of users served, transmission scheme, and path loss exponent. This

is motivated by the fact that, unlike single-antenna HetNet, connecting with the

BS that provides maximum received power may not always maximize the received

SINR in a multi-antenna HetNet. Building upon this observation, we show that

although it is challenging to derive exact cell selection rule to maximize average

received SINR, a simpler selection rule based on adding an appropriately chosen per-

tier selection bias in the received power yields a surprisingly close approximation.

We also derive this approximate per-tier selection bias in closed form for coverage

probability maximization. One key observation is that the bias value depends only

on the number of antennas at the BS and the number of users served in each resource

block, which makes it easier to implement it in practice. Assuming a general cell

selection bias for each tier, we derive exact expressions for downlink SINR distribution,
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MacroCell 

PicoCell 

FemtoCell 

Figure 2.1: A three-tier HetNet consisting of macro, pico and femtocells, with different
number of transmit antennas and different transmission schemes across tiers.

from which we study downlink rate achievable at a typical user.

Connections with biasing and load balancing: An important interpre-

tation of our results is in terms of load balancing in HetNets. It is well known that

the load in HetNets is unbalanced due to differences in transmit powers of macro

and small cells [57]. An artificial bias is generally introduced to expand the cover-

age regions of small cells in order to offload more users from macrocells [28, 58, 59].

However, as discussed above, multi-antenna HetNets may need selection bias even for

SINR, and hence coverage, maximization. Therefore, in certain cases, the selection

bias that maximizes coverage, may naturally balance load across tiers compared to

single-antenna HetNets. We characterize such regimes in this paper and validate our

intuition through extensive simulations.
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2.3 System Model

We consider a K-tier HetNet consisting of K different tiers or classes of BSs.

For notational ease we denote K = {1, 2, . . . K}. The BSs across tiers differ in terms

of the transmit power Pk (to each user), deployment density λk, number of transmit

antennas Mk, number of users served in each resource block Ψk, transmission scheme,

and the path-loss exponent αk. The locations of each tier are assumed to be sam-

pled from an independent homogeneous PPP Φk of density λk. This model is the

same as the one introduced in [22], except for some key differences in cell selection,

which will be clarified later in this section. Although the PPP model is likely more

accurate for the opportunistic deployment of small cells, it has also been verified for

the planned tiers, such as macrocells, both by empirical evidence [60] and theoretical

validation [61] under sufficient channel randomness. For easier exposition later in the

paper, we denote the locations of all the BSs by Φ = ∪k∈KΦk. A particular realization

of Φ will be denoted by φ. Each user is assumed to have a single receive antenna.

Note that since each BS serves multiple users and the channel from a BS to each user

is multiple-input single-output (MISO), the current setup can be precisely defined

as a K-tier multi-user MISO HetNet. The temporal evolution of the system is not

studied in this paper.

For multiple access, we assume orthogonal resource partitioning, e.g., orthog-

onal frequency division multiple access (OFDMA), with a provision that multiple

users can be scheduled on a given resource block if the BS has sufficient degrees of

freedom to orthogonalize them in space. In terms of the notation introduced above,

this leads to the constraint Ψk ≤ Mk for all k ∈ K. The users are assumed to form
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Table 2.1: Summary of Notation

Notation Description
K Indices of the tiers, where K = {1, 2, . . . , K}

Φk,Φ;φ A PPP modeling the locations of kth tier BSs, Φ = ∪k∈KΦk; a
realization of Φ

Φu An independent PPP modeling user locations
1(e),1e Indicator function for logic e
Pk, λk, αk Downlink transmit power to each user, deployment density, path

loss exponent of the kth tier BSs
Mk,Ψk,∆k Number of transmit antennas, number of users served in each

resource block by a kth tier BS, ∆k = Mk −Ψk + 1
hxkk Channel power distribution of the direct link from a BS at xk ∈ Φk

to a typical user, hxkk ∼ Γ(∆k; 1)
gyjj Channel power distribution of the interference link from a BS

yj ∈ Φj to a typical user, gyjj ∼ Γ(Ψj; 1)

(̂·)j Ratio of a jth parameter to the same parameter of the serving tier,
e.g., if kth tier is serving, P̂j =

Pj
Pk

Bk, Ak Cell selection bias, selection probability for kth tier
γk, Pc Instantaneous SINR, coverage probability
Rk, Rc Instantaneous rate conditional on serving BS being in kth tier, rate

coverage
Wk,Ok, Nk Total time frequency resource, e.g., bandwidth, for each kth tier BS,

fraction of resources allocated to each user served by kth tier,
average load over a kth tier BS

an independent PPP Φu of density λu. Note that more sophisticated user location

models can in principle be considered, e.g., by using tools from [62], but are out of

the scope of this paper. The downlink analysis will be performed at a typical user,

which is assumed to be at the origin. This is facilitated by Slivnyak’s theorem, which

states that the properties observed by a typical point of the point process Φu are the

same as those observed by the origin in the point process Φu ∪ {0} [63].
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In this paper, we will restrict our discussion to zero-forcing precoding, which is

general enough to encompass important transmission schemes such as beamforming

and spatial division multiple access (SDMA), while being tractable enough to provide

important system design guidelines. Note that due to precoding at the BS, the effec-

tive channel gain to a given user depends upon whether that BS acts as a serving BS

or an interferer for that user. For example, if a multi-antenna transmitter beamforms

to a given user, the effective channel gain would be much higher than when it simply

acts as an interferer. Therefore, we denote the effective channel power gain from a kth

tier BS located at xk ∈ Φk to a typical user by hxkk when it acts as a serving BS, and

by gxkk when it acts as an interferer. We also assume perfect CSI at the transmitter,

although as argued in [22] the tools developed in this paper can also be used to study

the effect of imperfect CSI on the network performance. For zero-forcing precoding

with perfect CSI under Rayleigh fading, hxkk ∼ Γ(∆k, 1) and gxkk ∼ Γ(Ψk, 1), where

∆i = Mi−Ψi+1 as discussed in detail in [22]. More general precoding techniques are

left for future work. The received power at a typical user from a serving BS located

at xk ∈ Φk is

P (xk) = Pkhxkk‖xk‖−αk , (2.1)

where ‖xk‖−αk is a standard power-law path-loss with exponent αk, which may be

different for different tiers. Also recall that Pk is the transmit power to each user.

The resulting SINR γk(xk) is

γk(xk) =
Pkhxkk‖xk‖−αk

I +N
, (2.2)
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where N is the noise power, and I is the interference power given by

I =
∑
j∈K

Ij =
∑
j∈K

∑
x∈Φj\xk

Pjgxj‖x‖−αj . (2.3)

For cleaner exposition in the next section, we denote the average received power from

a kth tier BS by Prk(xk), which can be expressed as

Prk(xk) = Pk∆k‖xk‖−αk . (2.4)

For this setup, we discuss cell selection for multi-antenna HetNets in the next

section. As evident from the following discussion, the cell selection principles for

multi-antenna HetNets have some fundamental differences compared to their counter-

parts in single-input single-output (SISO) HetNets, mainly because of the precoding

at the transmitter.

2.4 Cell Selection

Recall that a usual cell selection criterion in SISO HetNets is to connect to

the BS that provides the maximum average received power, possibly with a certain

bias value for load balancing [28]. In the case when there is no bias, this cell selection

criterion is also the one that maximizes the SINR. Therefore, to maximize coverage

probability, a typical user simply connects to the BS that provides the highest received

power, as discussed in [18]. However, it is easy to construct a simple toy example

showing that this is not the case in multi-antenna HetNets.

Example 1. Consider two BSs at the same distance from a typical user, one having

4 antennas serving a single user, which with a slight overloading of the notation
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implies M1 = 4,Ψ1 = 1,∆1 = 4, and the other serving 4 users with 6 antennas, i.e.,

M2 = 6,Ψ2 = 4,∆2 = 3. Since ∆1 > ∆2, a typical user should be served by the first BS

to maximize average received power. However, since Ψ2 > Ψ1, the interference from

second BS is larger than the first and it should be served by the second to minimize

the received interference power. Further, since ∆2

Ψ1
> ∆1

Ψ2
, it should be served by the

second BS to maximize its received SINR.

We first discuss cell selection with the goal of maximizing the average received

SINR conditional on the point process Φ. Note that to maximize both the average

received power and average SINR, it is strictly suboptimal for a typical user to connect

to any BS except the ones that are closest to it in each tier. We denote by γk the

instantaneous SINR when a typical user connects to the closest kth tier BS. Under

maximum average SINR cell selection rule, kth tier is selected if

k = arg max
j∈K

E[γj|Φ = φ], (2.5)

where the selection rule clearly depends upon the distances of the BSs to a typical

mobile due to conditioning on the realization of the point process. As will be evident

in the sequel, it is quite challenging to derive an exact selection rule from (2.5). We

take several alternate routes in the following subsections. Our eventual goal is to

come up a simple and practical cell selection rule that works well across wide range

of system parameters.
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2.4.1 Results from Stochastic Orders

Put simply, stochastic orders are binary relations defined to compare random

variables, see [64] for details. Ideas from stochastic orders were used in [22] to compare

the coverage probability and downlink rate for various multi-antenna transmission

schemes. Using tools developed in [22], it is possible to derive a sufficient condition

for the selection rule that is slightly stronger than the average SINR maximization.

The idea is to condition on the locations of the BSs and then find a condition under

which the conditional cumulative distribution function (CCDF) of SINR from the

chosen tier dominates the conditional CCDF of SINR for all other choices. More

formally, the kth tier is selected if

k = arg max
j∈K

P(γj > z|Φ = φ),∀z. (2.6)

In stochastic ordering terms, this means that conditional on the point process Φ, γk

(first order) stochastically dominates γj for all j ∈ K, which is denoted by γk≥stγj∀j ∈

K \ {k}. Clearly, (2.6)⇒ (2.5). Now let us rewrite γk and γj as

γk(xk) =
Pkhxkk‖xk‖−αk

Pjgxjj‖xj‖−αj +W
=

hxkkak
gxjjaj +W

(2.7)

γj(xj) =
Pjhxjj‖xj‖−αj

Pkgxkk‖xk‖−αk +W
=

hxjjaj

gxkkak +W
, (2.8)

where ai = Pi‖xi‖−αi and W is a random variable representing thermal noise plus

interference from all the BSs except xk ∈ Φk and xj ∈ Φj. For ak ≥ aj, using [22,

Lemma 3], it can be shown that conditional on the locations of the BSs, γk≥stγj,∀j ∈

K, if ∆k ≥ ∆j and Ψk ≥ Ψj. This leads to the following set of sufficient conditions
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for (2.6) to hold:

Pk‖xk‖−αk ≥ Pi‖xi‖−αi ∀i 6= k (2.9)

∆k ≥ ∆i ∀i 6= k (2.10)

Ψk ≥ Ψi ∀i 6= k. (2.11)

Clearly, these conditions are also sufficient for the selection of kth tier to maximize

the average received SINR. Since first order stochastic dominance is a stronger notion

than the ordering of the means required in (2.5), it is possible that none of the tiers

satisfy the above set of conditions simultaneously, which limits the applicability of

this selection rule. In the pursuit of a more useful cell selection rule, we explore two

more directions below.

2.4.2 Results from Jenson’s Inequality Approximation

In this section, we approximate the mean SINR using Jenson’s inequality. For

any realization of point process φ, the mean of SINR over fading distribution is given

by

E[γk(xk)|φ] = E
[

hxkkak
gxjjaj +W

|φ
]

(2.12)

= ak∆kE
[

1

gxjjaj +W
|φ
]

(2.13)

≥ ak∆k
1

E[gxjjaj +W |φ]
=

ak∆k

Ψjaj + E[W |φ]
. (2.14)

Using this lower bound, the conditions for (2.5) to hold are

Pk∆k‖xk‖−αk ≥ Pi∆i‖xi‖−αi ∀i 6= k (2.15)
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PkΨk‖xk‖−αk ≥ PiΨi‖xi‖−αi ∀i 6= k. (2.16)

Although this approximation has reduced the number of simultaneous conditions from

three to two compared to the previous subsection, it is still possible that none of the

tiers satisfy these new conditions simultaneously. We construct an example below to

highlight this point. The same example is also true for the conditions (2.9) (2.10)

and (2.11) discussed in the previous subsection in the context of stochastic orders.

Example 2. Consider a two-tier network such that the distance of the typical user

to the nearest BS in each tier is the same, i.e., ‖x1‖ = ‖x2‖. Further assume that

the transmit powers for the two tiers are also the same. Fixing ∆1 = 2,∆2 = 1,Ψ1 =

2,Ψ2 = 3, it is easy to check that neither k = 1 nor k = 2 satisfy (2.15) and (2.16)

simultaneously.

As discussed above, although there is no guarantee that the conditions given

by (2.15) and (2.16) would provide a solution, it is possible to derive a simpler but

more useful condition for the selection of kth tier by combining (2.15) and (2.16). The

new selection law is

Pk
√

∆kΨk‖xk‖−αk ≥ Pi
√

∆iΨi‖xi‖−αi ∀i 6= k. (2.17)

It is easy to verify that there always exists a k ∈ K for which the selection law (2.17)

holds and is equal to solution of (2.15) and (2.16) if the solution of latter pair exists.

We now remark on an interesting connection between this cell selection criterion and

the idea of cell selection bias used for load balancing.
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Remark 1 (Connections with biasing). Note that (2.17) can be equivalently expressed

as: √
Ψk

∆k

Pk∆k‖xk‖−αk ≥
√

Ψi

∆i

Pi∆i‖xi‖−αi ∀i 6= k, (2.18)

where recall that Prk(xk) = Pk∆k‖xk‖−αk is the average received power from a kth tier

BS located at xk ∈ Φk. The selection criterion can now be expressed in terms of the

average received power as:√
Ψk

∆k

Prk(xk) ≥
√

Ψi

∆i

Pri(xi) ∀i 6= k, (2.19)

where Bk =
√

Ψk
∆k

can be perceived as a “cell selection bias”. Note that since Ψk =

∆k = 1 ∀k ∈ K in the SISO case, the above rule reduces to selecting the BS providing

highest received power, which is also the SINR maximizing rule in the SISO case.

Although (2.17) will be shown to be a more useful cell selection rule, it is

in principle possible to derive other candidate laws, e.g., by adding the inequalities

(2.15) and (2.16), we get:

Pk (∆k + Ψk) ‖xk‖−αk ≥ Pi (∆i + Ψi) ‖xi‖−αi ∀i 6= k, (2.20)

which is also consistent with the biasing interpretation discussed in Remark 1. The

bias that needs to be added to the received power (in dB) in this case is Bk = 1 + Ψk
∆k

.

We will comment more on this alternate cell selection law in the numerical results

section. After gaining these insights, we now investigate the cell selection criterion

using the mean SINR expression in the following subsection.

30



2.4.3 Results from Mean SINR Expression

We first present an exact expression for the mean SINR. Using this expression,

we will argue that the general form of the cell selection criterion given by (2.17) is

possibly the more appropriate one to maximize the average SINR, which will further

be validated in the numerical results section.

Lemma 1. Given a realization φ of point process Φ, mean SINR at typical user (at

origin) associated with a kth tier BS situated at xk is given as

E[γk|φ] =
Pk∆k

‖xk‖αk
∫ ∞

0

e−NT∏
y∈φ\xk (1 +

TPj
‖y‖αj )

Ψj
dT. (2.21)

Proof.

E[γk|φ] = E

[
Pkhxkk‖xk‖−αk

N +
∑

j∈K
∑

y∈φj\xk Pjgyj‖y‖
−αj

]

=
PkE[hxkk]

‖xk‖αk
E

[
1

N +
∑

j∈K
∑

y∈φj\xk
Pjgyj
‖y‖αj

]

Let F be an independent exponential random variable with mean 1, then the last

term in the expression can be written as

E

[
EF [F ]

N +
∑

j∈K
∑

y∈φj\xk
Pjgy
‖y‖αj

]
= E

[
EF

[
F

N +
∑

j∈K
∑

y∈φj\xk
Pjgy
‖y‖αj

]]

=

∫ ∞
0

P

[
F

N +
∑

j∈K
∑

y∈φj\xk
Pjgyj
‖y‖αj

> T

]
dT

=

∫ ∞
0

E[e
−NT−T

∑
j∈K

∑
y∈φj\xk

Pjgyj‖y‖−αj ]dT

=

∫ ∞
0

e−NT
∏
j∈K

∏
y∈φj\xk

E[e−TPjgyj‖y‖
−αj

]dT
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=

∫ ∞
0

e−NT
∏
j∈K

∏
y∈φj\xk

1

(1 + TPj‖y‖−αj)
Ψj

dT .

Note that the insertion of random variable F makes the calculation simple and does

not change the integral due to independence assumption.

Using the same setup as Section 2.4.1, where we focused on the selection of two

BSs xk ∈ Φk and xj ∈ Φj, and represented to thermal noise plus interference from all

the other BSs except xk and xj by W , we can argue that a simple selection criterion

very similar to the one given by (2.17) can be derived directly form the expressions

of the mean SINR. The result is given in the following Lemma.

Lemma 2. The mean SINR of a kth tier BS at xk at typical user at origin is greater

than the mean SINR of a jth tier BS at xj if

Prke
−W∆k

Prk (Prk
∆k

)
Ψk

WΨk−1Γ(1−Ψk,
W∆k

Prk
)
>

Prje
−
W∆j
Prj (

Prj
∆j

)
Ψj

WΨj−1Γ(1−Ψj,
W∆j

Prj
)

(2.22)

with the assumption that the interference from all other BSs and noise is fixed and

denoted by residue W . Here Pri = Pri(xi) is the average received power from ith tier

BS situated at xi for i = j, k and Γ(·, ·) is the incomplete Gamma function. With the

further assumption W = 0, the above selection criterion can be simplified to

Prk

√
(Ψk − 1)

∆k

> Prj

√
(Ψj − 1)

∆j

. (2.23)

Proof. Using a similar idea as Lemma 1, the mean SINR for BS at xk conditional on

BS locations for the assumed case is given as

E[γk|φ] = Prk

∫ ∞
0

e−WT 1

(1 + TPj‖xj‖−αj)Ψj
dT.
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Substituting W (1 + Pj‖xj‖−αjT ) = Pj‖xj‖−αjy = Prjy/∆j, the above expression

simplifies to

E[γk|φ] = Prke
W∆j/Prj

WΨj−1

(Prj/∆j)
Ψj

∞∫
W∆j/Prj

e−y
1

yΨj
dy

= Prke
W∆j/aj

WΨj−1

(Prj/∆j)
Ψj

Γ

(
1−Ψj,

W∆j

Prj

)
,

which leads to the first rule in the lemma. Further taking the limit W → 0, and using

the fact that limx→0
Γ(−a,x)
xa

= 1
a
; a > 0, we get

E[γk] = Prke
W∆j
Prj lim

W→0

WΨj−1

(Prj/∆j)
Ψj

Γ

(
1−Ψj,

W∆j

Prj

)
= ∆j

Prk
Prj

lim
W→0

(
W∆j

Prj

)Ψj−1

Γ

(
1−Ψj,

W∆j

Prj

)
=

∆j

Ψj − 1

Prk
Prj

which leads to the second rule.

The above discussions provide enough evidence that a selection-bias based

criterion is a meaningful option for cell selection in multi-antenna HetNets. Although

in the previous lemma, we have taken W to be a fixed constant which is generally not

the case, still it indicates that taking the multiplicative form of sufficient conditions,

i.e., (2.17) is a better candidate function. As validated in the numerical results section,

the bias value of Bk =
√

Ψk
∆k

is surprisingly accurate for SINR, and hence coverage,

maximization. Note, however, that this choice of selection bias is not necessarily

optimal for other metrics considered in this paper, e.g., rate coverage. Therefore, to

maintain generality, we derive all the results in terms of an arbitrary cell-selection
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Figure 2.2: Cell Selection region for P1 = 5P2, λ1 = λ2,Ψ = [3, 2],∆ = [2, 1]: (a) from
simulation, where selection is based on highest mean SINR, and (b) from theory,
where selection is based on Lemma 2. 34



bias term Bk, i.e., a user selects a nearest BS of kth tier if

k = arg max
j∈K

BjPj∆j‖xj‖−αj . (2.24)

2.4.4 Association Region

Under the selection rule discussed in the previous section, a typical user selects

a BS that provides the maximum “biased” received power, where the bias values are

tuned according to the metric that is being maximized. This creates exclusion regions

around a typical user in which the interfering BSs can not lie. These exclusion regions

are characterized in the following Lemma.

Lemma 3. A typical user selects kth tier BS located at a distance dk if the closest

BSs of all the other tiers, located at distance dj, j 6= k, satisfy the following condition

dj ≥
(
P̂jB̂j∆̂j

) 1
αj dk

1
α̂j , (2.25)

where P̂j = Pj/Pk and similarly for B̂j, ∆̂j and α̂j.

Proof. A user is associated with tier kth if other tier BS distances dj satisfies following

relation for all j,

PrjBj ≤ PrkBk

Pj∆j(dj)
−αjBj ≤ Pk∆k(dk)

−αkBk

dj ≥
(
P̂j∆̂jB̂j

)1/αj
dk

1/α̂j ,

where f̂j = fj/fk.
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Due to the nature of the cell selection rule, all the interfering BSs will satisfy

(2.25). Lemma 3 shows that association regions are weighted Voronoi regions where

weights are not just equal to the received power but also include a bias term which

accounts for minimizing the interference. To justify our model, we compare it with

a simulated mean SINR based selection model. First, the locations of the BSs are

sampled from a PPP over a small spatial window. Then, the received SINR from

each BS is computed for every point (on a grid) in the space according to appropriate

fading distribution. Fig. 2.2(a) shows the simulated coverage area where the user

connects to the BS having best mean SINR (averaged over fading) conditioned on

the given realization of BSs’ positions whereas Fig. 2.2(b) shows the coverage area

based on approximate modified bias association region for the same realization of

BSs’ locations. For this particular realization, the error region where the above two

regions do not match is 0.3 percentage of the total simulated area which is surprisingly

accurate given the simple biasing-based approach used for the second plot.

Fig. 2.3 compares the coverage regions of a SISO and multi-antenna HetNet

with the same BS locations. For the multi-antenna HetNet, we consider two different

cell selection rules: i) based on max received power, ii) based on max mean SINR. For

the SISO HetNet, both these selection rules are exactly the same. As it can be seen

that using multiple antennas and SDMA at the small cells includes a natural bias for

these cells and therefore results in expansion of their coverage regions. This expansion

naturally balances load across tiers and hence reduces the need for artificial bias to

offload sufficient traffic to small cells compared to SISO HetNets. In the following

example, we provide a useful insight into the selection of multi-antenna techniques
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for maximum expansion of the coverage regions of small cells with no external bias.

Example 3 (Coverage expansion). Consider a two-tier SISO HetNet consisting of

macrocells and femtocells. Owing to their smaller transmit powers, femtocells have

smaller coverage regions, which results in imbalanced load and degrades performance,

especially in terms of rate [58]. However, the coverage regions of the femtocells can be

naturally expanded by using multi-antenna transmission. For the sake of argument,

assume that the number of antennas per femtocell in the new setup is M = 8, while

the macrocells still have 1 antenna per BS. If cell-selection is based on maximum

received power, optimal strategy is to maximize ∆, which is achieved by single-user

beamforming, i.e., ∆ = 8 and Ψ = 1. On the other hand, if the goal is to maximize the

average SINR, the optimal strategy is the one that maximizes
√

∆Ψ. This is achieved

under SDMA with ∆ = 5 and Ψ = 4. The sub-optimality of single-user beamforming

for SINR maximization is counter-intuitive since single-user beamforming is mostly

associated with range expansion of wireless links.

With these insights, we now derive the cell selection or cell association prob-

ability, which is the probability with which a typical user selects a kth tier BS.

Lemma 4. The probability that a typical user is associated with a kth tier BS is given

as

Ak = 2πλk

∫ ∞
0

e−π
∑
j λj(P̂j∆̂jB̂j)

2
α j r

2
α̂j
rdr.

If αj = α ∀j, the above can be simplified to

Ak =
λk∑

j λj

(
P̂j∆̂jB̂j

) 2
α

.
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multi−antenna (max Rx power)

multi−antenna (optimal bias)

Figure 2.3: The expanding of the coverage regions due to inherent biasing in two-
tier multi-antenna HetNet with Ψ1 = 1; Ψ2 = 6;P = [30; 1]; ∆ = [1; 3]. In this
hypothetical case, small cells (denoted by filled circle) use 8 antennas and schedule
3 users per resource block per BS. Macrocell BS (denoted by diamonds) have single
antenna per BS.

Proof. The proof is the same as [18, Lemma 1], hence skipped.

2.5 Coverage Probability

In this section, we will compute the coverage probability of a typical user.

Recall that the coverage probability is the probability that SINR at a typical user from

the associated tier is above some threshold T and can be given for a heterogeneous
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multi-tier network as

Pc =
K∑
k=1

P[γk > T, k = associated tier]. (2.26)

For the mean SINR association model, the coverage probability is given as

Pc =
K∑
k=1

EΦk

[
1(γ(xk)>T )1(Sxk,φ≥Sy,φ ∀y∈φ\xk)

]
(2.27)

where γk and E[γk|φ] are given by (2.2) and (2.21) and Sy,φ = E[γ(y)|φ].

The above expression is quite complicated and will need the higher order

factorial moments of a PPP. For the rest of this discussion, we will assume the selection

bias-based model discussed in previous section. For this model, Sk = PrkBk and we

can further simplify the expression (2.27) using iterative conditioning and get

Pc = 2π
K∑
k=1

λk

∫ ∞
0

P
(
Pkhxk‖x‖−αk > T (N + IΦ′ )

)
e−

∑K
j=1 λjπ(P̂j∆̂jB̂j)

2
αj x

2
α̂j
xdx,

(2.28)

where Φ
′

is

Φ
′
= ∪Kk=1Φk ∩B

(
0, (P̂j∆̂jB̂j)

1
αj x

1
α̂j

)c
, (2.29)

where B(0, r) is open ball around origin with radius r and (.)c denotes the set com-

plement. The Proof of (2.28) is given as follows:

Proof. For notational simplicity, let

ek(xk, φ\xk) = 1(Sxk ≥ Sy ∀y ∈ φ\xk)

= 1

(
‖y‖ ≥ (P̂j∆̂jB̂j)

1
αj ‖xk‖

2
α̂j ∀y ∈ φ\xk

)
,
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then

Pc =
K∑
k=1

EΦk

[
1

(
Pkhxkk
‖xk‖αk

> T (N + IΦ\xk)

)
ek(xk, φ)

]
(a)
=

K∑
k=1

λk

∫ ∞
0

P
[
Pkhxkk
‖xk‖αk

> T (N + IΦ), ek(xk, φ)

]
dxk

=
K∑
k=1

λk

∫ ∞
0

P
(
Pkhxkk
‖xk‖αk

> T (N + IΦ)|ek(xk, φ)

)
·

P
(
‖y‖ ≥ (P̂j∆̂jB̂j)

1
αj ‖xk‖

1
α̂j ∀y ∈ Φ

)
dxk

(b)
=

K∑
k=1

λk

∫ ∞
0

P
(
Pkhxkk‖xk‖−αk > T (N + IΦ′ )

)
e−

∑K
j=1 λjπ(P̂j∆̂jB̂j)

2
αj ‖xk‖

2
α̂j

dxk

(c)
= 2π

K∑
k=1

λk

∫ ∞
0

P
(
Pkhxk‖x‖−αk > T (N + IΦ′ )

)
e−

∑K
j=1 λjπ(P̂j∆̂jB̂j)

2
αj x

2
α̂j
xdx,

where Φ
′

is

Φ
′
= ∪Kk=1Φk ∩B

(
0, (P̂j∆̂jB̂j)

1
αj x

1
α̂j

)c
, (2.30)

where B(0, r) is open ball around origin with radius r and (.)c denotes the set com-

plement. Here (a) is due to Cambell-Mecke’s formula [63] and Slivnyak’s theorem, (b)

follows from the basic properties of a PPP, and (c) by converting to polar coordinates:

‖xk‖ → x. This completes the proof.

In the following subsections, we will compute the probability term inside the

integral in (2.28), which can be interpreted as the CCDF of SINR at a typical user

associated with a kth tier BS located at xk ∈ Φk. Before going into further details, it

is important to understand the resulting form of this term. Since SINR at a typical

user depends only on the magnitude of xk, i.e., the distance of BS xk ∈ Φk from

40



the origin, we will denote SINR by γk(xk) = γk(‖xk‖) with slight abuse of notation.

Letting ‖xk‖ = x, the CCDF of SINR can be expressed as

P[γk(x) > T ] = P[Pkhxkx
−αk > T (I +N)]

= P[hxk > TP−1
k xαk(I +N)]

=

∆k−1∑
i=0

1

i!
E
[
[−s(I +N)]i e[−s(I+N)]

]
=

∆k−1∑
i=0

1

i!
(−s)i di

dsi
[
E
[
e−s(I+N)

]]
, (2.31)

with s = TP−1
k xαk . As is clear from (2.31), we will not only need the Laplace trans-

form of the interference but also its derivatives, which we compute in the following

subsections.

2.5.1 Laplace Transform of Noise Plus Interference

Since the typical user is associated with a kth tier BS located at xk with

‖xk‖ = x, all the other BSs satisfy (2.25) and are therefore located outside the ball

of radius rj, where

rj =
(
P̂j∆̂jB̂j

) 1
αj x

1
α̂j .

for all j = 1, 2, · · ·K.

Theorem 1. The Laplace transform of the noise plus interference from all BSs at a

typical user associated with a kth tier BS located at a distance x = ‖xk‖, xk ∈ Φk, is

given by

LIN(s) = e−sN exp

−2π
K∑
j=1

λj
αj

(sPj)
2
αj

Ψj∑
m=1

(
Ψj

m

)
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B′

Ψj −m+
2

αj
,m− 2

αj
,

1

1 +
sPjx

−αk

(P̂j∆̂jB̂j)


 ,

(2.32)

where B′(a, b, c) is the complementary incomplete Beta function defined as

B′(a, b, z) =

∫ 1

z

ua−1(1− u)b−1du.

Proof. Laplace transform of the sum interference caused by jth tier BSs is due to

all jth tier BSs outside the ball B(0, rj) where rj =
(
P̂j∆̂jB̂j

)1/αj
x1/α̂j is given by

Lj(s) = E[e−sIj ] =

E

exp

−s ∑
y∈Φj\B(0,rj)

Pjgyj||y||−αj



= exp

[
−λj

∫
R2\B(0,rj)

1− Egyj [e−sPjgyj ||y||
−αj

]dy

]

= exp

[
−2πλj

∫ ∞
rj

1− Egrj [e−sPjgrjr
−αj

]rdr

]

= exp

[
−2πλj

∫ ∞
rj

(
1− 1

(1 + sPjr−αj)
Ψj

)
rdr

]
(a)
= exp

[
−2πλj(sPj)

2
αj

∫ ∞
tj

(
1− 1

(1 + t−αj)Ψj

)
tdt

]

(b)
= exp

−2πλj(sPj)
2
αj

Ψj∑
m=1

(
n

k

)∫ ∞
tj

(
t−αjm

(1 + t−αj)Ψj

)
tdt


(c)
= exp

−2π
λj
αj

(sPj)
2
αj

Ψj∑
m=1

(
n

k

)∫ 1

uj

u
Ψj−1−m+ 2

αj (1− u)
m− 2

αj
−1

du


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(d)
= exp

−2π
λj
αj

(sPj)
2
αj

Ψj∑
m=1

(
n

k

)
B′
(

Ψj −m+
2

αj
,m− 2

αj
, uj

)
with limits as

tj = (sPj)
−1/αjrj

uj =
1

1 + t
−αj
j

=
1

1 + sPj

(
P̂j∆̂jB̂j

)−1

x−αk
,

where (a) follows from substituting (sPj)
−1/αjr → t, (b) follows from binomial ex-

pansion and (c) follows from 1/(1 + t−α) → u. In (d), we defined B′(a, b, c) as the

complimentary incomplete Beta function as

B′(a, b, z) =

∫ 1

z

ua−1(1− u)b−1du.

The Laplace transform of sum of aggregate interference from all BS and noise is equal

to

LIN(s) = E[e−s(I+N)] = e−sNE
[
e−

∑K
j=1 Ij

]
(e)
= esN

K∏
j=1

E
[
e−Ij

]
,

where (e) follows from independence of BS point processes among tiers.

Corollary 1. The Laplace transform of the noise plus interference at s = TP−1
k xαk

is given as

LIN(TP−1
k xαk) = e−TP

−1
k xαkNe

[
−
∑K
j=1 λj(T P̂j)

2
αj x

2
α̂j Cj

]
,

where Cj is defined as

Cj ∆
=

2π

αj

Ψj∑
m=1

(
Ψj

m

)
B′

(
Ψj −m+

2

αj
,m− 2

αj
,

1

1 + T

∆̂jB̂j

)
.
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Further, if αj = α ∀j, the Laplace transform of the noise plus interference at s =

TP−1
k xα is

LIN(TP−1
k xα) = e

−TP−1
k Nxα−

[∑K
j=1 λj(T P̂j)

2
α Cj

]
x2

.

2.5.2 Derivatives of the Laplace Transform

We now provide an expression for the derivative of the Laplace transform along

with a brief sketch of the proof. The proof is based on the tools developed in [22].

Theorem 2. The nth derivative of the Laplace transform of noise plus interference

(computed in section III-A) is given as

dn

dsn
LIN(s) = LIN(s)

∑
m̄∈M

C(m̄)·
n∏
l=1

(
−N1l=1 + 2π

K∑
j=1

(−1)lDj(l)P
l
j(sPj)

2
αj
−l
)ml

,

where

M(n) = {m̄ = (m1,m2, · · ·mn)T :
n∑
i=1

imi = n}

C(m̄) =
n!∏

i (mi!(i!)
mi)

Dj(l) =
λj
αj

(Ψj + l − 1)!

(Ψj − 1)!
B′
(

Ψj +
2

αj
, l − 2

αj
, uj

)
uj =

1

1 +
sPjx

−αk

(P̂j∆̂jB̂j)

.

Proof. The Laplace transform of noise plus interference LIN(s) can be written as

f(g(s)) where f(x) = exp(x) and g(s) =

−sN + 2π
K∑
j=1

λj

∫ ∞
rj

(
−1 +

1

(1 + sPjr−αj)
Ψj

)
rdr. (2.33)
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Using Faà di Bruno lemma, nth derivative can be written as dnLIN (s)
dsn

=

dnf(g(s))

dsn
=
∑
m̄∈M

C(m̄)f 1T m̄(g(s))
n∏
l=1

(
g(l)(s)

)ml
. (2.34)

The lth derivatives of g(s) can be computed as

g(l)(s) = −N1l=1 + 2π
K∑
j=1

λj(−1)l
(Ψj + l − 1)!

(Ψj − 1)!
P l
j

∫ ∞
rj

r1−lαj

(1 + sPjr−αj)
Ψj+l

dr

(a)
= −N1l=1 + 2π

K∑
j=1

(−1)lDj(l)P
l
j(sPj)

2
αj
−l

where (a) can be computed using the similar transformations as used in computing

Laplace transform of noise plus interference as in the proof of the Theorem 1.

For the interference limited case, the above expression can be simplified further

and is given in the following Corollary.

Corollary 2. If αj = α ∀j and noise N = 0, for s = TP−1
k xα,

dnLI(s)
dsn

= e
−
[∑K

j=1 λj(T P̂j)
2
α Cj

]
x2 ∑

m̄∈M

C(m̄)x−nα+2
∑
ml(−1)nF (m̄), (2.35)

where

F (m̄)
∆
=

(2π)
∑
ml

(TP−1
k )

− 2
α

∑
ml+n

n∏
l=1

(
K∑
j=1

Dj(l)P
2
α
j

)ml

with uj = 1
1+ T

∆̂jB̂j

.

Proof. The result follows simply by substituting αj = α, α̂j = 1, N = 0, taking terms

containing x out of the product and using the fact that
∏n

l=1 (xt−l)
ml = xt(

∑
ml)−n.
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2.5.3 SINR Distribution

Using (2.31) and the results derived in the previous two subsections, we can

now compute the CCDF of SINR, which is given by the following Lemma.

Lemma 5. The CCDF of SINR at a typical user associated with the kth tier BS

located at a distance x from the user is P[γk(x) > T ] =

∆k−1∑
n=0

(−1)nT nxnαk

n!P n
k

e
−Tx

αkN
Pk ·

e−
∑K
j=1 λj(T P̂j)

2
αj x

2
α̂j Cj

∑
m̄∈M

C(m̄)
n∏
l=1

(
N1l=1 + 2π

K∑
j=1

(−1)lDj(l)P
l
j(T P̂j)

2
αj
−l x

2
α̂j

xlαk

)ml

(2.36)

with uj = 1
1+ T

∆̂jB̂j

.

Proof. Using expressions of LIN and its derivatives, we can write (2.31) as

P [γk(x) > T ] =

∆k−1∑
n=0

1

n!
(−s)n dn

dsn
E
[
e−s(I+N)

]
=

∆k−1∑
n=0

1

n!
(−s)nLIN(s)

∑
m̄∈M

C(m̄)
n∏
j=1

(
N1l=1 + 2π

K∑
j=1

(−1)lDj(l)(sPj)
2
αj
−l
)mj

with s = TP−1
k xαk .

Corollary 3. If we assume αj = α ∀j and interference limited case (N = 0), the

CCDF of SINR at typical user is given by P [γk(x) > T ] =

∆k−1∑
n=0

1

n!
(−TP−1

k xα)
n
e
−
[∑K

j=1 λj(T P̂j)
2
α Cj

]
x2 ∑

m̄∈M

C(m̄)x−nα+2
∑
ml(−1)nF (m̄)

=

∆k−1∑
n=0

1

n!
(TP−1

k )
n
∑
m̄∈M

C(m̄)F (m̄)e
−
[∑K

j=1 λj(T P̂j)
2
α Cj

]
x2

x2
∑
ml .
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2.5.4 Coverage Probability

Substituting the SINR CCDF given by Theorem 5 in (2.28), we can compute

the coverage probability, which is given by the following Theorem.

Theorem 3. Coverage probability of a typical user is Pc =

K∑
k=1

2πλk

∫ ∞
0

∆k−1∑
n=0

1

n!
(−TP−1

k xαk)
n
e−TP

−1
k xαkNe−

∑K
j=1 λj(T P̂j)

2
αj x

2
α̂j Cj

∑
m̄∈M

C(m̄)·

n∏
l=1

(
N1l=1 + 2π

K∑
j=1

(−1)lDj(l)P
l
j(T P̂j)

2
αj
−l x

2
α̂j

xlαk

)ml

xe−π
∑K
j=1 λj(P̂j∆̂jB̂j)

2
αj x

2
α̂j

dx

with uj = 1
1+ T

∆̂jB̂j

.

Corollary 4. If we assume αj = α ∀j and interference limited case (N = 0), the

coverage probability of a typical user is given as Pc =

K∑
k=1

πλk

∆k−1∑
n=0

1

n!
(TP−1

k )
n
∑
m̄∈M

C(m̄)F (m̄)Γ(
∑
ml + 1)[∑K

j=1 λj(T P̂j)
2
αCj + π

∑K
j=1 λj(P̂j∆̂jB̂j)

2
α

]∑ml+1

(2.37)

Proof. For this case, the coverage probability is

Pc =2πλk

∫ ∞
0

∆k−1∑
n=0

1

n!
(TP−1

k )
n·

∑
m̄∈M

C(m̄)F (m̄)e
−
[∑K

j=1 λj(T P̂j)
2
α Cj

]
x2

x2
∑
mlxe−π

∑K
j=1 λj(P̂j∆̂jB̂j)

2/α
x2

dx

=2πλk

∆k−1∑
n=0

1

n!
(TP−1

k )
n

∑
m̄∈M

C(m̄)F (m̄)

∫ ∞
0

e
−
[∑K

j=1 λj(T P̂j)
2
α Cj

]
x2

e
−
[
π
∑K
j=1 λj(P̂j∆̂jB̂j)

2/α
]
x2

x1+2
∑
mldx
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(a)
=πλk

∑∆k−1
n=0

1
n!

(TP−1
k )

n
∑
m̄∈M

C(m̄)F (m̄)Γ(
∑
ml + 1)[∑K

j=1 λj(T P̂j)
2
αCj + π

∑K
j=1 λj(P̂j∆̂jB̂j)

2/α
]∑ml+1

where (a) follows from
∫∞

0
e−ax

2
x2n+1 = 1/(a)n+1.

From (2.37), we can observe that probability of coverage is no longer scale

invariant in a multi-antenna HetNet even for the interference limited case. Coverage

probability for a user associated with the tier k is given as

Pck = P [γk > T |k = associated tier] =
P [γk > T, k = associated tier]

Ak
,

which is a decreasing function of BS intensities λj’s j 6= k of other tiers. We also

observe that Pck is a decreasing function of Ψj’s of all the tiers.

2.6 Rate Coverage

In this section, we focus on the downlink rate achievable by a typical user and

compute the rate coverage of a typical user. This section generalizes the main ideas

developed in [58] for single-antenna HetNets to multi-antenna HetNets. Following

the same setup as [58], we assume that each kth tier BS has same time-frequency

resources Wk, which are equally distributed among all the users served by a given

BS. Further assume that the kth tier BS that serves the typical user located at the

origin, termed tagged BS, allocates Ok ≤ Wk to each user, including the typical user.

Therefore, the instantaneous rate Rk achievable by a typical user when it connects to
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a kth tier BS is

Rk = Ok log2 (1 + γk(xk)). (2.38)

As discussed in detail in [58], the effective time-frequency resources Ok allo-

cated to a typical user depend upon the number of users, equivalently load, served

by the tagged BS, which is a random variable due to the random locations and hence

the coverage areas of each BS. However, as argued in [58] and verified further in [21],

approximating this load for each tier with its respective mean does not compromise

the accuracy of results. Using results from [58], the mean load served by the tagged

BS from kth tier can be approximated as Nk = 1 + 1.28λuAk
λk

, where λu is the density

of the users and Ak is the association probability given by Lemma 4. Note that the

effect of multi-antenna transmission is captured in Ak. Now since each kth tier BS can

schedule Ψk users in a single resource block, total available (time-frequency) resource

allocated to each user is

Ok =
Wk

Nk/Ψk

. (2.39)

Combining the SINR distribution derived in the previous section and the av-

erage load result discussed above, the rate CCDF, equivalently rate coverage, can

be derived on the same lines as [58]. For easier exposition, we first derive the rate

CCDF conditional on the serving BS being in the kth tier. The result is given by the

following Theorem.

Theorem 4. The rate coverage for random selected user associated with kth tier is
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given by Rk =

P[Rk > ρ] =
2πλk
Ak

∫ ∞
0

∆k−1∑
n=0

1

n!
(tP−1

k xαk)
n
e−tP

−1
k xαkN−

∑K
j=1 λj(tP̂j)

2
αj x

2
α̂j Cj

∑
m̄∈M

C(m̄)·

n∏
l=1

(
N1l=1 + 2π

K∑
j=1

(−1)lDj(l)P
l
j(tP̂j)

2
αj
−l x

2
α̂j

xlαk

)ml

xe−π
∑K
j=1 λj(P̂j∆̂jB̂j)

2
αj x

2
α̂j

dx,

with uj = 1
1+ t

∆̂jB̂j

and t = 2
ρNk

(WkΨk) − 1 and Nk = 1 + 1.28λuAk
λk

is the mean number of

users served by the tagged BS.

Proof. The proof is similar to [58], hence omitted. Note that the only difference is the

presence of Ψk, which depends upon the multi-antenna transmission. Putting Ψk = 1

specializes this result to SISO HetNets, discussed in detail in [58].

It is worth highlighting that although the conditional rate coverage computed

above uses the mean load approximation for the tagged BS, we can easily incorporate

the distribution of user load (see [58]), which is skipped to avoid repetition. The rate

coverage Rc = P[R > ρ] can now be computed as weighted sum of rate coverage of

ith tier weighted by association probability of the respective tier

Rc = P[R > ρ] =
K∑
i=1

AkP[Rk > ρ]. (2.40)

Before concluding this section, it is important to note that a higher value of

Ψk means more users share the same time-frequency resources, which in turn means

that each user gets higher chunk of Wk. This is also evident from (2.39), where

Ok ∝ Ψk. But since coverage probability is a decreasing function of Ψj’s , the overall

rate coverage expression represents a trade-off between available resources and SINR.
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2.7 Numerical Results

In this section, we validate our analysis and provide key design insights for

multi-antenna HetNets. Before discussing the results, we briefly describe the sim-

ulation procedure. We choose a large spatial window and generate K independent

PPPs with the given densities. For every realization, a typical user is assumed at

the origin and we select a serving BS according to the selection criteria (2.24). Let

this BS belongs to tier i. After this, fading random variable hxi is generated for the

selected BS according to Γ(∆i, 1) distribution and fading random variables gxj are

generated for remaining BSs according to Γ(Ψj, 1). A user is said to be in coverage

if the SINR (or SIR in no-noise case) from the selected BS is greater than the target.

The coverage probability is finally computed by averaging the indicator of coverage

over sufficient realizations of the point process.

For concreteness, we restrict our simulation results to a two-tier HetNet with

no noise, with the first tier denoting macrocells and the second denoting small cells,

e.g., femtocells. With slight overloading of notation, the parameters are denoted

by arrays, e.g., λ = [150, 300] means λ1 = 150, λ2 = 300. Following three antenna

configurations are considered:

4-2 antenna configuration: Macrocells have 4 antennas per BS, while femocells have

2 antennas per BS.

2-1 antenna configuration: Macrocells have 2 antennas per BS, while femocells have

1 antenna per BS.

SISO configuration: All the BSs have single antenna.
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In terms of multi-antenna transmission techniques, we restrict our attention

to the following two techniques:

Single-user beamforming (SUBF): where each BS serves single user per resource block,

i.e., ∆i = Mi,Ψi = 1.

Full spatial division multiplexing (SDMA): where each ith tier BS serves Mi users per

resource block, i.e., ∆i = 1,Ψi = Mi.

Note that when we combine these two multi-antenna transmission schemes

with the three different antenna configurations discussed above, we already have 7

simulation cases to consider. We list these cases below for ease of exposition:

4-2 antenna configuration

• Case 1. Both tiers use SUBF.

• Case 2. Both tiers use SDMA.

• Case 3. First tier uses SDMA and other SUBF.

• Case 4. First tier uses SUBF and other SDMA.

2-1 antenna configuration

• Case 5. First tier uses SUBF.

• Case 6. First tier uses SDMA.

SISO configuration

• Case 7. Both tiers use SISO.
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Figure 2.4: Coverage probability of a two-tier HetNet with α = 4, λ = [150, 300], P1 =
5P2 for 4-2 antenna configuration with SUBF, SDMA techniques and SISO system. T
and S respectively denote theoretical and simulation results. Selection bias is

√
Ψj∆j.
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Figure 2.5: Coverage probability versus relative bias B2/B1 in a two-tier HetNet with
α = 4, λ = [150, 300], P1 = 5P2 for SIR target 0 dB for 4-2 antenna configuration.
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Figure 2.6: Comparison of different candidates functions with numerically optimized
bias for all 7 simulation cases (α = 4, target SIR = 0 dB, λ = [150, 300], P1 = 5P2).

2.7.1 Coverage Probability

Fig. 2.4 shows the probability of coverage for cases 1-4 corresponding to 4-2

antenna configuration and case 7 corresponding to the SISO configuration. It can be

seen that case 1, where both the tiers perform SUBF, results in the highest coverage.

This result is consistent with [22], where SUBF was shown to provide highest coverage

under a slightly different cell selection model. On the other hand, SDMA performs

worse than SISO because the effective fading gain from interfering BSs increases in

mean and thus causes stronger interference whereas the effective fading gain of the

serving link remains the same as the SISO case. The other intermediate cases, where

one tier performs SUBF and the other performs SDMA, fall in between these two

extremes.
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Figure 2.7: Rate coverage probability versus relative bias B2/B1 in a two-tier HetNet
with α = 4, λ = [150, 300], P1 = 5P2 = 50 for rate threshold 1 bps/Hz.
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Figure 2.8: Rate coverage with optimum bias b = B2/B1 in a two-tier HetNet with
α = 4, λ = [150, 300], P1 = 5P2 for all 7 simulation cases.
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Figure 2.9: Comparison of rate coverage with optimum bias b = B2/B1, candidate
bias Bi =

√
Ψi∆i and worst bias in the range [0.01, 100] in a two-tier HetNet with

α = 4, λ = [150, 300], P1 = 5P2 = 50 for simulation case 5.

2.7.2 Optimal Bias

We now compute the optimal selection bias needed to maximize coverage prob-

ability. Recall that the BS selection based on the highest mean SINR may not always

maximize coverage. We will also validate the selection bias approximations discussed

in Section 2.4 using these numerical results. Fig. 2.5 presents the probability of

coverage for target SIR 0 dB as a function of B2/B1 for cases 1-4 corresponding to

4-2 antenna configuration and case 7 corresponding to SISO configuration. Fig. 2.6

compares different selection (bias) candidate functions for all 7 simulation cases. To

compute the optimal bias, we simulate the system with each bias value between .01

to 100 and choose the bias which maximizes the probability of coverage. This optimal

bias is then compared to the bias found from various candidate functions for different
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Figure 2.10: Optimum bias b = B2/B1 for maximizing rate coverage probability versus
target rate threshold in a two-tier HetNet with α = 4, λ = [150, 300], P1 = 5P2 = 50
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values of system parameters. It is evident that the candidate function (2.19) is a close

match.

2.7.3 Rate Coverage and Optimal Bias

We show the variation of rate coverage with bias in Fig. 2.7 for rate target

1 bps/Hz for 4-2 antenna configuration. It can be seen that rate coverage heavily

depends on selection bias. Also, the rate coverage is maximized at a particular value

of selection bias in multi-antenna HetNets, which is consistent with the intuition

gained about SISO HetNets in [58]. It is worth noting that the optimal bias in

this case is not necessarily the same as the one that maximizes coverage probability.

We numerically compute these optimum biases for all 7 simulation cases and plot

the resulting rate coverages in Fig. 2.8. The SISO case results in the worst rate

coverage. At the lower thresholds, case 1 (both tiers using SUBF) performs the best,

while at higher thresholds, case 2 (both tiers using SDMA) is superior. Other two

cases corresponding to the 4-2 antenna configuration perform in between these two

extremes. For 2-1 antenna configuration, we observe a similar behavior where case 5

(first tier with SUBF) performs better for smaller rate thresholds while case 6 (first

tier using SDMA) performs better for higher thresholds.

In Fig. 2.9, we compare rate coverage with optimum bias, the candidate bias

function (2.19) and the worst bias (the bias which gives the lowest rate coverage

among the values between [0.01, 100]) for simulation case 5. Recall that the case 5

corresponds to 2-1 antenna configuration, where first tier performs SUBF and the

second performs SISO. Comparing the optimal rate coverage with the one achieved
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under worst bias again highlights the fact that choosing a poorly designed bias value

can significantly degrade rate coverage. More interestingly, we observe that the can-

didate bias function that we derived for coverage maximization works reasonably well

for this case as well. This can at least be used as a starting point for numerical search

algorithms to find optimal bias. That being said, the difference in the two cases

is higher at higher rate thresholds. This is explained in Fig.2.10, where we present

the variation of optimal bias with rate threshold for all 7 simulation cases. Clearly,

the optimal system design in this case depends upon the target rate, which in turn

depends upon the target application, e.g., video.

In Fig.2.10, we can also observe the effect of transmission schemes on optimal

bias. Required selection bias values for moderate rate thresholds follow the following

order: case 4 > 5 > 7 > 1 > 6 > 2 > 3. This ordering is consistent with intuition.

For instance, when the macrocell uses SUBF and femtocell uses SDMA or SISO, the

coverage regions of macrocells are further expanded due to beamforming gain, which

results in the need for higher selection bias for the second tier to balance load across

the tiers compared to the case when the first tier performs SISO transmission. On

the other hand, if we now assume that the first tier performs SDMA and the second

tier performs SUBF, the coverage regions of the second tier are naturally expanded

due to the beamforming gain, i.e., the load across the tiers is more balanced, which

reduces the need for a high external bias for the second tier. In general, whenever

small cells can use multi-antenna transmission for range expansion, e.g., by SUBF,

the external bias required to balance load would be smaller compared to the SISO

case. The other cases can also be explained similarly.
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Figure 2.12: Comparison of different candidates functions with numerically optimized
bias for target rate = 1bps/Hz,λ = [150; 300];P1 = 5P2 for all 7 simulation cases.

In Fig. 2.11, we present the 5th percentile rate, i.e., the target rate such that

the 95% users achieve rate higher than the target. The trends for the optimum

bias are consistent with those discussed above. The rate coverage results are also

consistent with those discussed for Fig. 2.7. Finally, Fig. 2.12 compares the optimal

bias for rate coverage and bias from the candidate functions for different cases. Recall

that even though these candidate functions were derived for coverage maximization,

they still provide good starting points for numerical search algorithms to find rate

maximizing bias, as stated earlier in this section.
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2.8 Conclusion

In this paper, we have investigated downlink multi-antenna HetNets with flex-

ible cell selection and shown that simple selection bias-based cell selection criterion

closely approximates more complex selection rules to maximize mean SINR. Under

this simpler cell selection rule, we derived exact expressions for coverage probability

and rate achievable by a typical user. An approximation of the coverage optimal

cell selection bias for each tier is also derived in closed form. Due to this connection

with biasing, there is a natural expansion of coverage regions of small cells whenever

small cells can use multi-antenna transmission for range expansion, e.g., by using

beamforming. This leads to a natural balancing of load across tiers, which reduces

the additional artificial cell selection bias needed to offload sufficient traffic to small

cells.
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Chapter 3

Macro-diversity in Cellular Networks with

Random Blockages

In this chapter, we consider association issues in cellular systems when block-

ages are present. Various blockages present in the environment in the form of build-

ings and foliage severely impact the performance of cellular networks. These blockages

may result in significant drop in signal strengths or even outages for some users. This

effect is more severe at high frequencies including mmWave frequencies due to high

penetration loss present at these frequencies [7, 8]. As described in the first chap-

ter, large bandwidth available at mmWave spectrum makes it a prime candidate for

5G cellular networks [5, 6, 65]. Despite its promising benefits including high data

rates, communication at mmWave frequencies suffers from high penetration losses

and is severely impacted by the blockages present in the environment in the form

of buildings or foliage [8]. These blockages may result in significant drop in signal

strengths or even outages for some users. Therefore, users will prefer to connect to

line-of-sight (LOS) base-stations (BSs) to ensure better signal strength and high data

rates. In addition, a user can block the desired signals from its serving BS due to

its own body [23, 24], hurting the overall reliability of the communication links. To

overcome this issue, macro diversity can be leveraged where a user is connected to

multiple BSs simultaneously so that when one link is blocked, there can be other BSs
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available to the user immediately [13, 26]. From an operator’s perspective, utilizing

macro diversity can also decrease the required BS deployment density necessary to

maintain a certain level of reliability. However, presence of large blockages will result

in correlation among different links which need to be investigated to understand the

gain obtained by macro-diversity which is the main focus of this chapter.

3.1 Related Work

In the past, the impact of blockages is generally included in the shadowing

model as an additional loss. This approach, however, is simplistic and is not suitable

to study mmWave communication where blockages play a significant role in deter-

mining its performance. Another approach to model blockages by using ray tracing

in a deterministic environment is numerically complex and not tractable. In [66], a

tractable approach using random Boolean scheme with linear segments [67–69] was

proposed to model the random blockages in a cellular system. This analysis was ex-

tended in [9] to include rectangular blockages and in [24] to include circular blockages.

In [8], the above blockage model was incorporated in mmWave systems to study the

impact of blockages on the system performance. It was shown in [8] that the system

performance is dependent on the blockages as a function of the product of blockage

density and average blockage length.

There are some approaches to handle blockage problems and increase link re-

liability, in particular for mmWave frequencies, for example, to use reflections from

walls and other surfaces to steer around obstacles [70] or by switching the beam from

a LOS link to a NLOS link [71]. As discussed above, NLOS links, however, may not
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support high data rate for mmWave communication. Another approach is to main-

tain link connectivity by use of relays and routing algorithms [72, 73]. However, this

leads to non-tractability due to its complex algorithms and scheduling schemes. The

third approach is to use macro diversity with multiple BSs [25, 26]. Macro-diversity

over shadowing fading was studied in [74, 75]. In [76], the performance of coordi-

nated beamforming with dynamic BS clusters was studied. The work [77] discussed

about the fundamental limits of cooperation for multicell cooperative networks with

multiple receive antennas. In [26], the authors proposed a multi-BS architecture for

60GHz WLAN in which a MAC layer access controller device is employed to enable

each station to associate and cooperate with multiple BSs. In the proposed architec-

ture, when one of wireless links is blocked, another BS can be selected to complete

remaining transmissions.

Recent analytical work [9, 24] to study the impact of blockages in mmWave

systems assumes a single active link per user and does not include macro-diversity.

In [27], a stochastic geometry framework is presented to study the macro-diversity for

mmWave system in presence of random blockages, however, it assumes independence

among blocking events of the different links. When simultaneous multiple links are

considered, the larger blockages may decrease the diversity gains due to induced

correlation in blocking of these links and the system performance may no longer

remain just a function of the product of the blockage density and average blockage

length.
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3.2 Contributions

In this chapter, we evaluate the benefits of macro-diversity for a cellular sys-

tem in the presence of random blockages. The contributions of the chapter can be

summarized as below:

Analytical framework for dependent blocking: We present a framework

to analyze the correlation present among blocking of multiple communication links

in a cellular system with random blockages. Given the lengths of the links and their

orientations, we compute the joint probability of these links being non-blocked. We

show that unlike the independent case, this probability depends on both the blockage

density and maximum blockage length, not just the product of the two. We show that

increasing maximum blockage length while keeping the product constant increases the

correlation among blocking of multiple links.

Gains from macro-diversity: We then use the proposed framework to eval-

uate gains obtained by macro-diversity. We consider a system where each user is

connected to multiple BSs simultaneously. For this system, we compute the average

probability of having at least one LOS BS out of all connected links (termed as prob-

ability of reliability). We show that the required BS density to achieve a certain level

of reliability can be decreased significantly by maintaining multiple BS links simul-

taneously. The dependency in blocking decreases the diversity gain in comparison to

the case where blocking is independent among links. We also show that to maintain

same level of probability of reliability, the BS density must scale as square of the

blockage density.
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Analyzing diversity gains in the presence of self-blocking: We also

consider self-blocking. If the person using a mobile phone comes in-between the

serving BS and the mobile, its body can block signals from its own serving BSs. This

is known as self-blocking. We consider a scheme where the multiple BSs are selected

in a way to avoid self-blocking of all BSs at any time and derive the probability of

reliability for this case.

3.3 System Model

We consider a cellular network consisting of BSs whose locations are modeled

as a homogeneous Poisson point process (PPP) with density λ and users modeled

as a stationary Point process (PP). We consider a typical user at the origin O. Let

Ξ = {xi, i ∈ N} denote the BS PPP where locations xi are ordered according to their

distances Ri from the typical user.

3.3.1 Modeling Random Blockages

To model the blockages present in the channel, we consider the line Boolean

scheme Ψ similar to [9]. In this model, we assume that all the blockage elements are

in form of lines. In real scenario, the blockages are polygon shaped. However, since

we are interested in their intersections with the links, assuming their shapes as lines is

a reasonable approximation. The centers of these lines are modeled as a homogeneous

PPP ψ of density µ. The lengths `k of blockage lines are iid random variables with

distribution FL(·). The orientations θk of the blockage lines are assumed to be iid

random variables with distribution FΘ(·). Let us define average LOS radius of a
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Figure 3.1: An illustration showing a user at the origin in presence of blockages. Each
blockage is modeled as linear segment of length `k and orientation θk. A link to any
BS is said to be blocked or unreachable if a blockage falls on the link.

blockage process as β = µ 2
π
E[`] [9]. The analysis performed in this paper can be

extended to Boolean schemes with other shapes such as rectangles or circles [9, 78].

In this paper, we will also consider a special case of the above blockage process where

` and θ are uniformly distributed i.e. ` ∼ U(0, Lm), θ ∼ U(0, π) which is termed a

uniform blockage process.

3.3.2 Connectivity Model

We assume that all the users are simultaneously connected to n closest BSs

(See Fig. 5.1) where n is termed the macro-diversity order. We assume that a user

will be able to quickly establish communication links with any of the n BSs connected

to it. Recall that the link to a BS can be LOS if there are no blockages intersecting
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the link between the BS and the user, otherwise the link is said to be in NLOS. Let Ai
denote the event that the ith BS is LOS. At any point of time, the user will establish

a communication link with the closest LOS BS, termed the associated BS out of these

n connected BSs. If all n of the closest BSs are blocked, we say that the user is not

reachable.

R1
)�

R2

R3

)�

)�
O

B3

B2

B1

Figure 3.2: A cellular system with third order diversity (n = 3). The typical user at
O has three active BSs it can associate to.

The probability of reliability pR of a cellular system is defined as the probability

that at least one connected BS out of the n connected BSs is LOS to a typical user

and is given as

pR = P

[
n⋃
i=1

Ai
]
. (3.1)

The probability of reliability is also useful from the system point of view. For example,

a cellular operator may be interested in the question that if each user can use nth

order macro-diversity, what the required BS density should be to achieve certain level

of reliability probability.
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Table 3.1: Summary of Notation

Notation Description
Ξ, λ The PPP modeling the BS locations, its density.
Ψ, ψ, µ The Boolean scheme modeling the blockage locations, the PPP

modeling the centers of blockages and its density.
`k, θk The length and orientation of the kth blockage.
FL(), FΘ() The distribution of blockage lengths ` and orientations θ. FL(L)

denotes the probability that ` ∈ L.
Ψ(`, θ) The derived blockage process from Ψ. Blockages have length between

` and `+ d` and orientation between θ and θ + dθ.
β, Lm A parameter for the blockage process defined as µE [`] 2

π
, the

maximum blockage length.
Bj, Ri,Zj The jth closest BS from the user at the origin, the distance of this

BS from the user, the link between this BS and the origin.
n The order of macro diversity i.e. the number of simultaneous

connected BSs.
Φi The angle between Zj and Zn.
Φ The angle between Z1 and Z2 for special case of second order

diversity.
Aj The event that the jth link is LOS.
pR The probability of reliability.
Pi The parallelogram constructed on the ith link as shown in Fig. 3.3.

γ A parameter defined to be equal to β

2
√
λπ
.

ω The blocking cone created by the body of the user.

3.4 Reliability Analysis for Second Order Macro-Diversity

In this section, we will consider a system of second order diversity (n = 2). In

this case, the typical user is connected with two BSs, B1 and B2 with link lengths

equal to R1 and R2. Let us denote the angle between the two links Z1 and Z2 as

Φ. Without loss of generality, we assume that x2 is at x axis and Φ ≥ 0. The joint
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distribution of R1 and R2 is given as

f(r1, r2) = (2πλ)2r1r2 exp(−λπr2
2), if r1 ≤ r2 (3.2)

and Φ ∼ Uniform(0, π).

Now, let us consider a derived Boolean scheme Ψ(`, θ) of blockages with lengths

between ` and ` + d` and orientations between θ and θ + dθ. Note that this can be

obtained by thinning the original PP ψ. Therefore, centers of Ψ(`, θ) form a PPP with

intensity µFL(d`)FΘ(dθ). Given the two links Z1 and Z2, let A1 and A2 respectively

denote the events that these links are unblocked. Therefore, the probability that at

least one of the links is not blocked is given as

P [A1 ∪ A2] = P [A1] + P [A2]− P [A1 ∩ A2] . (3.3)

The event that the link Z1 is not blocked by a blockage in Ψ(`, θ) is equivalent

to the event that centers of all blockages in this collection Ψ(`, θ) lie outside the

parallelogram P1 shown in Fig. 3.3. The area of P1 is given as

A1(R1, `, θ,Φ) = `R1 sin(|θ − Φ|).

Hence, the probability of the event that the link Z1 is not blocked by an blockage in

Ψ(`, θ) is given by void probability of a PPP and is equal to exp (−µFL(d`)FΘ(dθ)

A1(R1, φ, `, θ)). Therefore, the probability of the event A1 that the link Z1 is not

blocked is

P [A1] =
∏
`,θ

exp(−µFL(d`)FΘ(dθ)A1(R1, φ, `, θ))
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Figure 3.3: Illustration showing the joint area of the two parallelograms P1 and P2.
Subfigures (a), (b) and (c) show shapes for the region U common in both parallelo-
grams dependent on the values of `, θ, R1, R2 and Φ. The conditions are mentioned
in the subfigures where d1 and d2 are lengths of AC and BC. Fig. (d) The triangle T
circumscribes the common region U .

= exp

(
−
∫ ∞

0

∫ π

0

µA1(R1, φ, `, θ)FL(d`)FΘ(dθ)

)
= exp

(
−
∫ ∞

0

∫ π

0

µ`R1 sin(|θ − Φ|)FL(d`)FΘ(dθ)

)
= exp

(
−µE [`]R1

2

π

)
= exp(−βR1). (3.4)

Similarly the probability of the event A2 that the link Z2 is not blocked is

P [A2] = exp

(
−
∫ ∞

0

∫ π

0

µA2(R2, φ, `, θ)FL(d`)FΘ(dθ)

)
= exp(−βR2). (3.5)

Now we will compute the joint probability P [A1 ∩ A2]. Similar to the previous

71



case, the event that both links are not blocked by any blockage in Ψ(`, θ) is equivalent

to the event that centers of all blockages in the collection Ψ(`, θ) lie outside the shaded

region (which is the union of two parallelograms P1 and P2) shown in Fig. 3.3. Let

A(R1, R2, φ, `, θ) be the area of shaded region. The shape of the intersection (denoted

by U) of the two parallelograms can be triangular or trapezoidal, dependent on the

values of R1, R2,Φ, θ, ` (See Fig. 3.3(a-c)). Let triangle T : ∆ABC denote the triangle

circumscribing U . The area of this triangle is given as

T =
`2 sin(θ) sin(|θ − Φ|)

2 sin(Φ)
.

The trapezoidal shape occurs only when R1 < `1 or R2 < `2. The area of T \ U is

given by
(

1−min
(
R2

`1
, R1

`2

))2

T . Therefore, the area of P1 ∪ P2 is given as

A(R1, R2,Φ, `, θ) = `R1 sin(|θ − Φ|) + `R2 sin(θ)

− 1(θ > φ)
`2 sin(θ) sin(θ − Φ)

2 sin(Φ)

[
1−

(
1−min

(
1,
R1 sin(Φ)

` sin(θ)

R2 sin(Φ)

` sin(θ − Φ)

))2
]
.

(3.6)

Hence, the probability that both of the links are not blocked Ψ(`, θ) is exp (−µFL(d`)

FΘ(dθ)A(R1, R2, φ, `, θ)) and the probability that both links are not blocked is

P [A1 ∩ A2] =
∏
`,θ

exp(−µFL(d`)FΘ(dθ)A(R1, R2, φ, `, θ))

= exp

(
−
∫ ∞

0

∫ π

0

µA(R1, R2, φ, `, θ)FL(d`)FΘ(dθ)

)
(3.7)

Let us define N (R1, R2,Φ) as the mean shaded area averaged over blockage size and

orientation distribution which is given as

N (R1, R2,Φ) =

∫ ∞
0

∫ π

0

A(R1, R2, φ, `, θ)FL(d`)FΘ(dθ). (3.8)
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Then, P [A1 ∩ A2] is given by

P [A ∩A2] = p(R1, R2,Φ) = exp (−µN (R1, R2,Φ)) . (3.9)

Therefore, using (3.3), the probability that at least one of the link is not blocked is

given as

P [A1 ∪ A2] = exp(−βR1) + exp(−βR2)− exp (−µN (R1, R2,Φ)) . (3.10)

Now, the probability of reliability is given as

pR = ER1,R2 [P [A1 ∪ A2]]

=
1

π

∫ ∞
0

∫ ∞
0

∫ π

0

(exp(−βr1) + exp(−βr2)− exp (−µN (r1, r2, φ))) fR1,R2(r1, r2)dφdr1dr2

=
(2πλ)2

π

∫ ∞
0

∫ r2

0

∫ π

0

(exp(−βr1) + exp(−βr2)

− exp (−µN (r1, r2, φ))) r1r2 exp(−λπr2
2)dφdr1dr2.

(3.11)

Using the transformations x1 = βr1, x2 = βr2, we get

pR =
1

4γ4π

∫ ∞
0

∫ x2

0

∫ π

0

(
e−x1 + e−x2 − e−µs(

x1
β
,
x2
β
,φ)
)
x1x2e

− x2
2

4γ2 dφdx1dx2 (3.12)

where

γ =
β

2
√
πλ
. (3.13)

Solving the first two integrals in (3.12), we get the final expression for proba-

bility of reliability which is given in the following Theorem.
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Theorem 5. The reliability probability in a cellular network with second order diver-

sity is given as

pR = 2 + γ2 − γ(5 + 2γ2)W (γ)−
1

4γ4π

∫ π

0

∫ ∞
0

x2 exp

(
− x2

2

4γ2

)∫ x2

0

exp

(
−µs

(
x1

β
,
x2

β
, φ

))
x1dx1dx2dφ (3.14)

where N (r1, r2, φ) is given in (3.8), and

W (x) =

√
π

2
erfcx(x) =

√
π

2
exp (x2)erfc(x). (3.15)

Before going further, we will give the following Lemma regarding the mono-

tonicity of probability of reliability with respect to blockage length’s distribution.

Lemma 6. For all the blockage processes with the same β and scaled length distri-

bution F ′c(d`) = FL(d`/c), the quantity µN (R1, R2,Φ) monotonically decreases with

increasing c and so does the probability of reliability.

Proof. To prove the Lemma, we show that µN (R1, R2,Φ) for the blockage with dis-

tribution F ′c(d`) is less than µN (R1, R2,Φ) for the blockage with distribution FL(d`)

for c > 1. For the rest of the proof, we assume c > 1. It can been shown easily that

given ` and θ,

1

c
A(R1, R2, φ, c`, θ) ≤ A(R1, R2, φ, `, θ).

Now, for the blockage process with distribution F ′c(d`), µN (R1, R2,Φ) is given as

µNc(R1, R2,Φ) = βπ

∫∞
0

∫ π
0
A(R1, R2, φ, `, θ)F

′
c(d`)FΘ(dθ)∫∞

0
`F ′c(d`)
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= βπ

∫∞
0

∫ π
0
A(R1, R2, φ, `, θ)FL(d`/c)FΘ(dθ)∫∞

0
`FL(d`/c)

= βπ

∫∞
0

∫ π
0
A(R1, R2, φ, c`

′, θ)FL(d`/c)FΘ(dθ)

c
∫∞

0
`′FL(d`′)

≤ βπ

∫∞
0

∫ π
0
A(R1, R2, φ, `

′, θ)FL(d`/c)FΘ(dθ)∫∞
0
`′FL(d`′)

= µN (R1, R2,Φ)

which completes the proof.

One direct result of the above Lemma is for uniform distribution of blockage

length ` ∼ U(0, Lm), the probability of reliability decreases with increasing Lm. This

result is intuitive as less but bulky blockages make the blocking probability of two

links more correlated while small but more blockages result in independence between

blocking of any two links.

The function N (·, ·, ·) in Lemma 6 is dependent on on the distribution of `

and θ, and in general, is difficult to compute. In next subsections, we will consider a

few special cases to simplify the function N (·, ·, ·) to get closed form expressions for

the probability of reliability.

3.4.1 Probability of Reliability for Independent Blocking

In this subsection, we consider the independent blocking scenario where both

links are blocked or not independently. Then, P [A1 ∩ A2] is equal to

PIND [A1 ∩ A2] = P [A1]P [A2] = exp(−βR1 − βR2). (3.16)
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Note that the area of P1 ∪ P2 is greater than the sum of the areas of the two

parallelograms i.e.

A(R1, R2,Φ, `, θ) ≤ `R1 sin(|θ − Φ|) + `R2 sin(θ).

Averaging with respect to ` and θ, we get

N (R1, R2,Φ) ≤ µE [`]
2

π
(R1 +R2)

P [A1 ∩ A2] = exp(−µN (R1, R2,Φ)) ≥ exp(−βR1 − βR2) = PIND [A1 ∩ A2] .
(3.17)

Therefore, the independent blocking case upper bounds the probability of reliability

in the dependent blocking scenario. We now provide the probability of reliability for

the independent blocking case in the following Theorem.

Theorem 6. The reliability probability in a cellular network with second order diver-

sity and independent blocking is given as

pR =
1

γ

[
γ3 −W (γ)(2γ4 + 5γ2 − 1) +W (2γ)(8γ2 − 1)

]
.

Proof. For the independent blocking case, the probability of reliability is given as

pR = ER1,R2,Φ [P [A1 ∪ A2]] = ER1,R2,Φ

[
1− P

[
A{

1 ∩ A{
2

]]
= 1− ER1,R2,Φ

[
P
[
A{

1

]
P
[
A{

2

]]
where the last step is due to independence of events A{

1 and A{
2. Now, using (3.4)

and (3.5), we get

pR = 1−
∫ ∞

0

∫ ∞
0

(1− e−βr1)(1− e−βr2)f(r1, r2)dr1dr2 (3.18)
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= 1− (2πλ)2

∫ ∞
0

(1− e−βr2)r2e
−λπr2

2

∫ r1

0

(1− e−βr1)r1dr1dr2. (3.19)

Now using the transformations x1 = βr1 and x2 = βr2, we get

pR = 1− 1

4γ4

∫ ∞
0

(1− e−x2)x2e
−x2

2/(4γ
2)

∫ x1

0

(1− e−x1)x1dx1dx2

= 1− 1

8γ4

∫ ∞
0

e−x
2
2/(4γ

2)x2(1− e−x2)[x2
2 − 2 + 2e−x2(x2 + 1)]dx2

=
1

γ

[
γ3 −W (γ)(2γ4 + 5γ2 − 1) +W (2γ)(8γ2 − 1)

]
.

The above Theorem directly gives the following Corollary.

Corollary 5. Given a certain value of pR, the required BS density is given by λ = β2

4πγ2
s

where γs is the solution of the following equation

γ3 −W (γ)(2γ4 + 5γ2 − 1) +W (2γ)(8γ2 − 1)− γpR = 0. (3.20)

Given pR, the above expression can be easily solved for γ using a numerical

method.

3.4.2 Probability of Reliability for Dependent Uniform Blocking

In this subsection, we will consider a special case of uniform blockage process

and provide a few bounds for the probability of reliability. Note that for this case,

the average LOS radius is given as β = µLm/π.
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3.4.2.1 Lower Bound I

Note that the area A is the sum of A1 (the area of P1) and A2 (the area of

P2) minus the area of the common region U (in shape of either a trapezoid or a

triangle). We can lower bound this area A by replacing the area of U by the area of

its circumscribing triangle T . Note that for certain values of θ and `, the area of T

may become greater than the area of parallelogram P1. In this case, we can lower

bound the area A by just the area of parallelogram P2. Hence, we get the following

lower bound for area A:

A(R1, R2, φ, `, θ) ≥


A1 + A2 for θ ≤ φ

A1 + A2 − T for π > θ > φ, sin(θ) < 2R1 sin(φ)/`

A2 for π > θ > φ, 1 ≥ sin(θ) > 2R1 sin(φ)/`.

(3.21)

Now, integrating (3.21) with respect to distribution of θ and ` gives the lower bound

for N (R1, R2,Φ) which is denoted by N (R1, R2,Φ) and given as

N (R1, R2,Φ) ≥ N (R1, R2,Φ) =
Lm
π

(
R1 +R2 −R1F

(
R1

Lm
,Φ

))
where F (a,Φ) =

0 < Φ ≤ π
2



2a ≤ 1 1
2

+ a
3
(2a− 3) sin2(Φ) + 1

3
T1 − 2

3
T2+

4
3
T3 − 2

3
T4 + 1

12
T6

2a > 1, 2a sin(Φ) ≤ 1 1
2
− a(2a+ 1) sin2(Φ) + 1

3
T1 − 2

3
T2 + 2

3
T3+

1
12
T6 + T7

2a sin(Φ) ≥ 1 1
12a

(1 + (π − Φ) cot(Φ))

π
2
< Φ < π


2a ≤ 1 1

2
+ a

3
(2a− 3) sin2(Φ) + 1

3
T1 − 2

3
T2 + 2

3
T5

+ 1
12
T6

2a > 1 1
12a

(1 + (π − Φ) cot(Φ))
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with

T1 = cos(Φ)
√

1− 4a2 sin2(Φ)

T2 = a2 sin2(Φ) cos(Φ) log

(
1 +

√
1− 4a2 sin2(Φ)

)
T3 = a2 sin2(Φ) cos(Φ) log(2a sin(Φ))

T4 = a2 sin2(Φ) cos(Φ) log(2a(1 + cos(Φ)))

T5 = a2 sin2(Φ) cos(Φ) log(2a(1− cos(Φ)))

T6 =
1

a
cot(Φ) sin−1 (2a sin(Φ))

T7 =
(π − 2Φ)

3
a2 sin2(Φ) cos(Φ).

Note that F (a, 0) = 1 and F (a, π) = 0.

It can be seen that the lower bound on the mean area N (R1, R2,Φ) is de-

pendent on both the blocking parameter β and the maximum blockage length Lm.

The monotonicity of A with respect to Lm (as shown in Lemma 6) implies that for a

constant β, as Lm increases (which means less but big blockages), F (a,Φ) increases to-

wards 1
2
(1 + cos(Φ)). For small Lm, (which means more but small blockages), F (a,Φ)

decreases to 0 which corresponds to the independent case. For intermediate values of

Lm, F (a,Φ) will range between 0 and 1
2
(1 + cos(Φ)).

Now, the lower bound on reliability probability can be obtained by using

Theorem 5 and is given as:

pR ≥ pR = 2 + γ2 − γ(5 + 2γ2)W (γ)

− 1

2γ2π

∫ π

0

∫ ∞
0

exp(−x1(1− F (x1/(βLm), φ)))x1S(x1)dx1dφ
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where S(x) = exp

(
γ2 −

(
1

2γ
x+ γ

)2
)[

1− 2γW
(

1
2γ
x+ γ

)]
.

3.4.2.2 Asymptotic Lower Bound

We can also bound the Area A as follows:

A(R1, R2, φ, `, θ) ≥
{
A1 + A2 for θ ≤ φ

A2 for π > θ > φ
. (3.22)

Now, integrating (3.22) with respect to θ and ` gives the following lower bound

(denoted by N ) for mean area N (R1, R2,Φ):

N (R1, R2,Φ) ≥ N (R1, R2,Φ) =
Lm
π

(
R1 +R2 −R1

1

2
(1 + cos(Φ))

)
. (3.23)

As discussed above, for a given β, the lower bound becomes asymptotically tight as

Lm → ∞. Now, using the lower bound in (3.23) and Theorem 5, a lower bound

(denoted by pR) on reliability probability can be obtained as follows:

pR ≥ pR = 1 + γ2 − γ(5 + 2γ2)W (γ) +
4γ

π

∫ π/2

0

(2 + sin2(φ))W ((1 + sin2(φ))γ))dφ

+
2

π

1

γ

∫ π/2

0

[
W (γ)−W ((1 + sin2(φ))γ))

+2γ2 sin2(φ)W ((1 + sin2(φ))γ))− sin2(φ)γ
]

cosec4(φ)dφ. (3.24)

Proof. Using Theorem 5 and the lower bound of N (R1, R2,Φ) derived in (3.23), the

lower bound on the reliability probability can be given as:

pR =2 + γ2 − γ(5 + 2γ2)W (γ)−
1

4γ4π

∫ π

0

∫ ∞
0

x2 exp

(
− x2

2

4γ2

)∫ x2

0

exp
(
−x1 sin2(φ/2)− x2

)
x1dx1dx2dφ

=2 + γ2 − γ(5 + 2γ2)W (γ)−
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1

4γ4π

∫ π

0

∫ ∞
0

x2 exp

(
−x2 −

x2
2

4γ2

)∫ x2

0

exp
(
−x1 sin2(φ/2)

)
x1dx1dx2dφ

=2 + γ2 − γ(5 + 2γ2)W (γ)−
1

4γ4π

∫ π

0

∫ ∞
0

x2 exp

(
−x2 −

x2
2

4γ2

)
1− exp

(
−x2 sin2(φ/2)

)
(1 + x2 sin2(φ/2))

sin2(φ/2)
dx2dφ.

Now, using a φ/2→ φ substitution and some manipulations, we get

=2 + γ2 − γ(5 + 2γ2)W (γ)− 2

π

1

4γ4

∫ π/2

0

1

sin4(φ)

[∫ ∞
0

x exp(−x− x2/(4γ2))dx

− sin2(φ)

∫ ∞
0

x2 exp(−x(1 + sin2(φ))− x2/(4γ2))dx

−
∫ ∞

0

x exp(−x(1 + sin2(φ))− x2/(4γ2)))dx

]
.

Now, by evaluating the inner integral, we get

pR =2 + γ2 − γ(5 + 2γ2)W (γ)− 2

π

1

4γ4

∫ π/2

0

1

sin4(φ)

[
2γ2(1− 2γW (γ))

− sin2(φ)4γ3
(
W ((1 + sin2(φ))γ)(2(1 + sin2(φ))2γ2 + 1)− (1 + sin2(φ))γ

)
−2γ2(1− 2γ(1 + sin2(φ))W ((1 + sin2(φ))γ))dx

]
.

Now, after some further manipulations, we get

pR =1 + γ2 − γ(5 + 2γ2)W (γ) +
4γ

π

∫ π/2

0

(2 + sin2(φ))W ((1 + sin2(φ))γ))dφ

+
2

π

1

γ

∫ π/2

0

[
W (γ)−W ((1 + sin2(φ))γ))

+2γ2 sin2(φ)W ((1 + sin2(φ))γ))− sin2(φ)γ
]

cosec4(φ)dφ.

The lower bound given in (3.24) can also be approximated using a linear

approximation as follows

pR≈
1

γ

[
3γ + γ3 −W (γ)(2γ4 + 7γ2 + 2) + 2W (2γ)

]
.
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Proof. We start the proof by noting that N in (3.23) can be approximated as

N (R1, R2,Φ) ≈ Lm
π

(
R2 +R1

Φ

π

)
. (3.25)

Now, using Theorem 5 and (3.25), the lower bound on the reliability probability is

given as:

pR ≈2 + γ2 − γ(5 + 2γ2)W (γ)−
1

4γ4π

∫ π

0

∫ ∞
0

x2 exp

(
− x2

2

4γ2

)∫ x2

0

exp (−x1φ/π − x2)x1dx1dx2dφ.

Now, by interchanging the limits for x1 and φ, we get

pR ≈2 + γ2 − γ(5 + 2γ2)W (γ)−
1

4γ4π

∫ ∞
0

x2 exp

(
−x2 −

x2
2

4γ2

)∫ x2

0

x1

∫ π

0

exp (−x1φ/π) dφdx1dx2

=2 + γ2 − γ(5 + 2γ2)W (γ)

− 1

4γ4π

∫ ∞
0

exp(−x2 − x2
2/(4γ

2))x2

∫ x2

0

x1
1− exp(−x1)

x1/π
dx1dx2

=2 + γ2 − γ(5 + 2γ2)W (γ)− 1

4γ4

∫ ∞
0

exp(−x2 − x2
2/(4γ

2))x2(x2 − 1 + e−x2)dx2

=
1

γ

[
3γ + γ3 − (7γ2 + 2γ4 + 2)W (γ) + 2W (2γ)

]
.

Now using the bounds computed above along with Theorem 6 and Lemma 6,

we give the following Theorem.

Theorem 7. The probability of reliability of a cellular system with second order

macro-diversity in the presence of a uniform blockage process of parameter Lm with
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fixed β, is bounded as

pR(β/
√
λ) ≤ pR(λ, µ, Lm) ≤ pR(β/

√
λ) (3.26)

where the lower bound is tight for Lm →∞ and the upper bound for Lm → 0.

It can be seen from Theorem 7 that probability of reliability is bounded above

and lower by expressions which are functions of only β/
√
λ. It implies that BS density

needs to scale as β2 (and hence as square of blockage density (µ2)) to maintain the

same order of reliability. This trend is consistent with a system with no diversity [9].

Self%blocked+
region++

R1#

R2#

O"

ω"
Φ+

User’s+body+

Figure 3.4: Blocking cone created by the user’s own body which can block its own
serving BS.

3.4.3 Reliability Analysis under Self-blocking

In this subsection, we include the self-blocking in our analysis where a user

can self-block its own serving BS. Self-blocking in a cellular network can be modeled
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using a blocking cone with angle ω in the body’s direction which blocks all the BSs

behind the body (see Fig. 3.4) [23, 24]. In this case, we assume that the two control

link BSs for a user will be chosen in a way such that always, at least one of the two

BSs is not blocked by its own body. This means that the angle between the two BSs

must be more than ω. In other words, given the closest BS at distance R1, the second

BS should be chosen such that the angle Φ between the two BSs satisfies π ≥ Φ > ω

or π ≤ Φ < −ω. Let us denote the distance to the second BS is D2. We assume

that the users orientation are uniformly distributed between 0 and 2π. Therefore,

given the two selected control links, the marginal probability that each link is not

self-blocked is given by c = 1 − ω
π

and the joint probability that both links are not

self-blocked is given by c2 = 1− 2ω
π

.

The joint distribution of R1, D2 and Φ can be computed as

fR1,D2,Φ(r1, r2, φ) =

2πλ2r1r2 exp(−λπcr2
2 − λπ(1− c)r2

1)1 (r1 ≤ r2)1 ((π ≥ φ > ω) ∪ (−π ≤ φ < −ω)) .

Integrating the above with respect to Φ and R1, we can get the marginal distribution

of D2 which is given as

fD2(r2) =
2cπλr2

1− c
[
exp

(
−λπcr2

2

)
− exp

(
−λπr2

2

)]
. (3.27)

Now, let A1 be the event that the link Z1 is not blocked (neither blocked by

a blockage or self-blocked). Similarly let A2 be the event that the link Z2 is not

blocked. Then, P [A1] and P [A2] is given as

P [A1] = c exp(−βR1), P [A2] = c exp(−βR2) (3.28)
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and the joint probability of both linked unblocked is given as

P [A1 ∩ A2] = c2 exp(−µN (R1, D2,Φ)) (3.29)

Now, the probability of reliability is given as

pR = ER1,R2 [P [A1 ∪ A2]]

=2πλ2

∫ ∞
0

∫ r2

0

∫ 2π

0

(c exp(−βr1) + c exp(−βr2)− c2 exp (−µN (r1, r2, φ)))

exp(−λπcr2
2 − λπ(1− c)r2

1)1 ((π ≥ φ > ω) ∪ (−π ≤ φ < −ω)) dφdr1dr2. (3.30)

Now using the transformations x1 = βr1 and x2 = βr2, and noting the symmetry of

inner term with respect to φ around x axis, we get

pR =
1

4γ2π

∫ ∞
0

∫ x2

0

∫ π

ω

(c exp(−x1) + c exp(−x2)− c2 exp (−µN (x1/β, x2/β, φ)))

exp(−cx2
2/(4γ

2)− (1− c)x2
1/(4γ

2))dφdx1dx2

=c

(
2− 2γ

1− c

(
W (γ)− W (γ/

√
c)√

c

))
− c2

4γ2π

∫ ∞
0

∫ x2

0

∫ π

ω

exp (−µN (x1/β, x2/β, φ))

× exp(−cx2
2/(4γ

2)− (1− c)x2
1/(4γ

2))dφdx1dx2. (3.31)

For the independent case, the probability of reliability can be obtained by

replacing function N (r1, r1, φ) in (3.31) by βr1 + βr2 to get:

pR =c

(
2− 2γ

1− c

(
W (γ)− W (γ/

√
c)√

c

))
− c2c

4γ2

∫ ∞
0

∫ x2

0

exp (−x1 − x2)

× exp(−cx2
2/(4γ

2)− (1− c)x2
1/(4γ

2))dx1dx2

=c

[
2− 2γ

1− c

(
W (γ)− W (γ/

√
c)√

c

)
− c2

4γ2

∫ ∞
0

∫ x2

0

exp (−x1 − x2)
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× exp(−cx2
2/(4γ

2)− (1− c)x2
1/(4γ

2))dx1dx2

]
. (3.32)

Consider the special case ω = π/2. Here c = 1/2 and the last term can be

further solved owing to the symmetry of the inner terms with respect to x1 and x2:

pR =c

[
2− 2γ

1− c

(
W (γ)− W (γ/

√
c)√

c

)
− c2γ

2(1− c)2

(
1− 2√

1− cW
(

γ√
1− c

))2
]
.

(3.33)

The lower bounds computed in the previous subsections can similarly be ob-

tained for the self-blocking case by replacing the joint distribution of R1, R2 with the

joint distribution of R1, D2 and Φ and adding the probability of self-blocking in terms

P [A1] ,P [A2] and P [A1 ∪ A2]. The asymptotic lower bound is given as

pR = c

(
2− 2γ

1− c

(
W (γ)− W (γ/

√
c)√

c

))
− c2

2γ2π

∫ ∞
0

∫ π

ω

S(x) exp(−x sin2(Φ/2)− (1− c)x2/4γ2)xdx (3.34)

where

S(x) =
1

c
exp

(
γ2
c −

(
1

2γc
x+ γc

)2
)(

1− 2γcW

(
1

2γc
x+ γc

))
. (3.35)

3.5 Reliability Analysis for nth Order Diversity

We now consider the general case with nth order diversity. In this case, the

typical user at the origin O is connected with n BSs B1 · · ·Bn with link lengths

equal to R1 · · ·Rn. Let us denote the angle between the link Zn and other links

Z1,Z2 · · ·Zn−1 respectively as Φ1 · · ·Φn−1. Without loss of generality, we assume
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that xn is at x axis. The joint distribution of Rn’s is given as (see proof below):

f(r1, r2, · · · , rn) = (2πλ)nr1r2 · · · rn exp(−λπr2
n), if r1 ≤ r2 ≤ · · · ≤ rn (3.36)

and Φi ∼ Uniform(0, 2π).

Proof. For any i ≤ n, conditioned on the event Rj = rj(j ≤ i), the distribution of

Ri+1 is given as

P [Ri+1 ≤ ri+1|Rj = rj, j ≤ i]

= P [There exists at least one point in the ring ri ≤ r ≤ ri+1]

= 1− exp
(
−λπ(r2

i+1 − r2
i )
)
. (3.37)

Hence, the conditional PDF of Ri+1 is given as

fRi+1
(ri+1|Rj = rj, j ≤ i) = 2λπri+1 exp

(
−λπ(r2

i+1 − r2
i )
)

(3.38)

=⇒ f{Rj},Ri+1
({rj}, ri+1) = 2λπri+1 exp

(
−λπ(r2

i+1 − r2
i )
)
f{Rj}({rj}). (3.39)

Now iterating (3.39) for n − 1 times from i = n − 1 up to i = 1, we get the joint

distribution as follows

f{Rj},j≤n({rj}) = (2λπ)nrnrn−1 · · · r1

n−1∏
i=1

exp
(
−λπ(r2

i+1 − r2
i )
)

= (2λπ)nrnrn−1 · · · r1 exp
(
−λπr2

n

)
. (3.40)

Following the similar arguments as taken in the second order case, the proba-

bility of reliability can be computed which is given in the following Theorem.
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Theorem 8. Let Pi denote a parallelogram with sides Zi (with length ri and ori-

entation φi) and AB (with length ` and orientation θ) as shown in Fig. 3.5. Let

A(S, {ri}, {φi}, `, θ) is the area of union of parallelograms Pi’s (i ∈ S) where S is

a subset of {1, 2, · · · , n}. Let N ({ri}, {φi}) denote the average of the area A over

(L,Θ) which is given as

N (S, {ri}, {φi}) =

∫ ∞
0

∫ π

0

A(S, {ri}, {φi}, `, θ)FL(d`)FΘ(dθ). (3.41)

Now, the reliability probability in a cellular network with nth order of macro-diversity

is given as

pR =
1

(2π)n−1

∫
[0,2π]n−1

∫
(R+)n

K({ri}, {φi})f{Ri}({ri})dr1dr2 · · · drndφ1 · · · dφn−1

where f{Ri}({ri}) is the joint distribution of Ri’s given in (3.36) and

K({ri}, {φi}) =
n∑

S:S⊂[1,n]

(−1)|S|−1 exp(−µN (S, {ri}, {φi})).

Due to large numbers of variables in Theorem 8, it is not possible to analyt-

ically solve the expression. Hence, we consider the two special cases to bound the

probability of reliability.

3.5.1 Independent Blocking

We first consider the independent blocking case. As argued in the n = 2 case,

the probability of reliability in the independent blocking scenario provides an upper

bound to the probability of reliability in the dependent blocking scenario.
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Figure 3.5: The union of n parallelograms Pn described in Theorem 8.

Let Aj denote the probability that jth link (Zj) is not blocked. Hence, the

probability that at least one link is unblocked is given as

P [∪Aj] = 1− P
[
∩A{

j

]
= 1−

∏
j=1

nP [Aj] = 1−
n∏
j=1

(1− exp(−βRj)).

Therefore the probability of reliability is given as

pR = 1−
∫ ∞

0

∫ ∞
0

· · ·
∫ ∞

0

(1− e−βr1)(1− e−βr2) · · · (1− e−βrn)f(r1, r2, · · · , rn)

dr1dr2 · · · rn

= 1− (2πλ)n
∫ ∞

0

∫ rn

0

· · ·
∫ r2

0

(1− e−βr1)(1− e−βr2) · · · (1− e−βrn)r1r2rn

exp(−λπr2
n)dr1dr2 · · · drn

= 1− 2 · (2γ)−2n−2

Γ(n+ 1)

∫ ∞
0

e−t
2/(4γ2)

[
t2 − 2 + 2e−t(t+ 1)

]n
dt (3.42)

where the last step is due to mathematical induction.

Proof. The probability of reliability for the independence blocking case is given as

pR = 1−
∫ ∞

0

∫ ∞
0

· · ·
∫ ∞

0

(1− e−βr1)(1− e−βr2) · · · (1− e−βrn)f(r1, r2, · · · , rn)dr1dr2 · · · drn
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= 1− (2πλ)n
∫ ∞

0

∫ rn

0

· · ·
∫ r2

0

n∏
i=1

ri(1− e−βri) exp(−λπr2
n)dr1dr2 · · · drn.

Using the substitutions xi = βri, we get

pR = 1− (2πλ)n

β2n

∫ ∞
0

∫ xn

0

· · ·
∫ x2

0

n∏
i=1

xi(1− e−xi) exp

(
−λπ
β2
x2
n

)
dx1dx2 · · · dxn.

(3.43)

Let us define the function J(n− i, y) by the following recursion

J(i, y) =

∫ y

0

t(1− e−t)J(i− 1, t)dt

J(0, y) = 1.

Then, (3.43) can be written as

pR = 1− (2πλ)n

β2n

∫ ∞
0

exp
(
−t2/(4γ2)

)
t(1− e−t)J(n− 1, t)dt. (3.44)

Now, we will prove the following using mathematical induction.

J(i, y) =
1

2i
1

i!

[
y2 − 2 + 2(y + 1)e−y

]i
. (3.45)

Step 1: For i = 0,

J(0, y) =
1

20

1

0!

[
y2 − 2 + 2(y + 1)e−y

]0
= 1.

Step 2: Let us assume

J(i, y) =
1

2i
1

i!

[
y2 − 2 + 2(y + 1)e−y

]i
.

Then

J(i+ 1, y) =

∫ y

0

t(1− e−t)J(i, t)dt =
1

2i
1

i!

∫ y

0

t(1− e−t)
[
t2 − 2 + 2(t+ 1)e−t

]i
dt
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=
(a)
=

1

2i+1

1

i!

∫ y2−2+2(y+1)e−y

0

uidu

=
1

2i+1

1

(i+ 1)!

[
y2 − 2 + 2(y + 1)e−y

]i+1

which proves the identity (3.45). Using this identity in (3.44), we get

pR = 1− 2−2n+1γ−2n

(n− 1)!

∫ ∞
0

exp
(
−t2/(4γ2)

)
t(1− e−t)

[
t2 − 2 + 2(t+ 1)e−t

](n−1)
dt

= 1− 2 · (2γ)−2n−2

Γ(n+ 1)

∫ ∞
0

e−t
2/(4γ2)

[
t2 − 2 + 2e−t(t+ 1)

]n
dt

where the last step is due to integration by part.

3.5.2 Dependent Blocking in Presence of Uniform Blockages

We now consider a cellular system with blockage process where blockage lengths

and orientations are uniformly distributed. Due to number of variables, the area of

the union of parallelograms Pj is complex to be evaluated. Hence, we provide a

tractable lower bound for the dependent blockage case.

Let Aj denote the area of the parallelogram Pj. Now consider a set S =

{i1, i2, · · · , ik} ⊂ {1, 2, · · · , n} with increasing order of indexes. Without loss of

generality assume that Φik = 0. Given θ, let Ej denote event that (θ ≤ Φij ≤ π + θ).

This event is equivalent to the condition that the parallelogram Pij does not overlap

with parallelogram Pik . It can be seen that there can not be two or more mutually

disjoint parallelograms which does not overlap with Pik also.

Now, we can bound the Area A(S, `, θ) from below as follows:

A(S, `, θ) ≥ Aik + Aik−1
1
(
Eik−1

)
+ Aik−2

1

(
E{ik−1

∩ Eik−2

)
+ Aik−3

1

(
∩2
j=1E{ik−j ∩ Eik−3

)
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+ · · ·+ Aik−l1
(
∩l−1
j=1E{ik−j ∩ Eik−l

)
+ · · ·+ 0 · 1

(
∩k−1
j=1E{ik−j

)
. (3.46)

In the above lower bound, we always include the area of the largest parallelogram

Pik . Now, if next largest parallelogram Pik−1
is not overlapping with Pik (which is

equivalent to Eik−1
), then we will include Pik in the lower bound. Now, as discussed

above, there cannot be any other parallelogram Pij (j ≤ k − 1) which does not

overlap with either of the two parallelograms Pik and Pik−1
. But, if Pik−1

overlaps

with Pik , then we will consider the next largest parallelogram Pik−2
. We continue the

search until we get the one parallelogram disjoint to Pik . If there are no such disjoint

parallelogram, then we will keep only the area of Pik in the lower bound.

Now, integrating (3.46) with respect to θ and ` gives the following lower bound

(denoted by N ) of function N (S, {Ri}, {Φi}):

N (S, {Ri}, {Φi}) ≥ N (S, {Ri}, {Φi}) =
Lm
π

(
rik +

k−1∑
j=1

rij
1

2j−1
sin2(Φij/2)

)
.

Proof. Recall that given θ, let Ej denote event that (θ ≤ Φij ≤ π + θ). Hence,

P [Ej] = Eθ
[
θ ≤ Φij ≤ π + θ

]
=

1

2
.

Also, the area of Pij is given as

Aij = Rij` sin(|θ − Φij |).

Now, taking expectation of the both sides of (3.46) with respect to ` and θ,

we get

E [A(S, `, θ)] ≥ E [Aik ] +
k∑

m=1

E
[
Aik−m1

(
∩m−1
j=1 E{ik−j ∩ Eik−m

)]
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= RikE [`] E [sin(|θ − Φik |)] +
k∑

m=1

Rik−mE [`] E
[
sin(|θ − Φik−m|)1

(
∩m−1
j=1 E{ik−j ∩ Eik−m

)]
.

Now Ej’s are mutually independent and also independent to Φm, j 6= m. Therefore,

we get

E [A(S, `, θ)] ≥ Rik

Lm
π

+
Lm
2

k∑
m=1

Rik−mE
[
sin(|θ − Φik−m|)1

(
Eik−m

)]m−1∏
j=1

P
[
E{ik−j

]
=
Lm
π

(
Rik +

k−1∑
j=1

Rij

1

2j−1
sin2(Φij/2)

)
.

Here, the last step is due to the following:

E
[
sin(|θ − Φij |)1

(
Eij
)]

=
1

π

∫ Φij

0

sin(Φij − θ)dθ =
1

π
cos(Φij − θ)

∣∣Φij
0

=
2

π
sin2(Φij/2).

Now using the Theorem 8, the lower bound on the probability of reliability

can be computed which is given as follows:

pR ≥ pR =
1

(2π)n−1

1

2nγ2n

∫
[0,2π]n−1

∫
x1≤x2···≤xn

K({xi}, {φi}) exp
(
−x2

n/(4γ
2)
)

× x1x2 · · ·xndx1dx2 · · · dxndφ1 · · · dφn−1 (3.47)

where

K({xi}, {φi}) =
n∑
k=1

n∑
S:S⊂[1,n],|S|=k

(−1)k−1 exp

(
−xik −

k−1∑
j=1

xij
1

2j−1
sin2(φij/2)

)
.

Similar to the n = 2 case, it can be shown that µA(S, `, θ) and hence proba-

bility of reliability decreases with increasing Lm for a given β, and the lower bound

becomes asymptotic tight for large Lm as Lm → ∞. Now by combining the upper
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bound computed from the independent blocking, lower bound computed above and

monotonicity of probability of reliability, we get the following Theorem.

Theorem 9 (General n case). The probability of reliability of a cellular system with

nth order macro-diversity in presence of a blockage process (with ` ∼ U(0, Lm) and

θ ∼ U(0, π)) with fixed β, is bounded as

pR(β/
√
λ) ≥ pR(λ, µ, Lm) ≥ pR(β/

√
λ) (3.48)

where pR and pR is given in (3.42) and (3.47). The two bounds are achieved when

the maximum blockage size Lm is 0 and ∞ respectively.
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Figure 3.6: Validation of analysis with real building data (a) The used building map
near the University of Texas at Austin. The rectangular area in the center denotes
the locations of generated users. BSs are uniformly generated over the whole space.
(b) The probability of reliability for a cellular system with first and second order
diversity.

94



Blockage Density µ  (× 100/km
2
)

10
0

10
1

P
ro

b
a

b
il

it
y

 o
f 

R
e
li
a

b
il

it
y
 p

R

0.5

0.55

0.6

0.65

0.7

0.75

0.8

First order diversity

Dependent Blocking pR
Independent Blocking pR
LB pR

Asymptotic LB pR

Approximate Asymptotic LB

Figure 3.7: Probability of reliability in presence of blockages with fixed β and varying
density (µ) in a cellular system with second order diversity. The pR for independent
blockage case and computed lower bounds are also shown.

3.6 Numerical Results

In this section, we present few numerical results to provide further insights.

The numerical results are obtained by numerically evaluating the analytical expres-

sions from the previous sections and validated by simulation. We consider blockage

process with uniform distribution of blockages lengths and orientation and with pa-

rameter β. The BS density is assumed to be λ = 30 BS/km2.

Validation with Real Building Data. To validate our analysis, we con-

sider a region near the University of Texas at Austin [14] as shown in Fig. 3.6(a)

with BSs location modeled as PPP and users uniformly located in the smaller rect-

95



angle uniformly. For a system with second order macro-diversity, we plot the actual

reliability probability with the one computed from the analysis in Fig. 3.6(b). The

parameters are obtained by fitting the LOS probability for single BS link and are

given as β = 0.012/m and µ = 2.25 × 10−4m2. It can be observed that analysis

approximates the performance in the real scenario well.

Impact of Blockage Correlation: We now show the impact of blockage

correlation by decreasing the blockage size with fixed β. Fig. 3.7 shows the variation

of probability of reliability with respect to blockage density µ while keeping β fixed

at 6.4km−1. As shown in analysis, the probability of reliability decreases when Lm

increases or µ decreases. Fig. 3.7 also shows pR for the independent blocking case

and asymptotic lower bound for Lm → ∞ case. It can be seen that pR reaches the

independent blocking case for high blockage density and low blockage size. This result

shows that correlation in blockages can decrease the reliability probability by 15%.

Impact of Self-Blocking: We now consider a cellular system with second

order macro-diversity and self-blocking with blocking angle of 60o. Fig. 3.8 shows

the variation of probability of reliability with respect to blockage density µ while

keeping β fixed at 6.4km−1. Due to self-blocking the probability of reliability has

further decreased than the case with no self-blocking. Fig. 3.8 also shows pR for the

independent blocking case and asymptotic lower bound for Lm → ∞ case. It can

be seen that pR decreases when Lm increases or µ decreases and reaches pR for high

blockage density.

Impact of Blockage Density and Scaling: Fig. 3.9 shows the variation of

probability of reliability with respect to blockage density µ while keeping Lm fixed at
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Figure 3.8: The probability of reliability in presence of self-locking and blockages
with fixed β and varying density (µ) in a second order cellular system. The pR for
independent blockage case and computed lower bounds are also shown.

100m and with fixed BS density, along with pR for the independent blocking case and

asymptotic lower bound for Lm → ∞ case. It can be obeserved that the bounds for

pR become tighter for higher blockage density. Since the BS density is kept fixed, the

probability of reliability decreases significantly with µ. To show the required scaling

requirements, we show in Fig. 3.10, variation of probability of reliability with respect

to blockage density µ while keeping Lm fixed at 100m and scaling BS density as µ2.

It can be seen that the probability of reliability decreases slightly with µ but remains

quite flat with constant upper and lower bounds. This implies that BS density should

scale as µ2 to keep the same level of LOS connectivity in the system.
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Figure 3.9: Probability of reliability in presence of blockages with fixed Lm = 100m
and varying density (µ) in a cellular system with second order diversity. The pR for
independent blockage case and computed lower bounds are also shown. The bounds
become more tight for larger blockage density.

Impact of Macro-Diversity: We now show the gain of macro-diversity. We

assume uniform blockage with density µ = 100/km2 and maximum blockage length

Lm = 100m which is equivalent to β = 6.4km−1. Fig. 3.11 shows required density

(obtained from solving the reverse problem) as a function of pR for various diversity

order for the independent blocking case. It can be seen that if each user can be

connected to four BSs at any time, the required BS density to achieve a certain

probability of reliability is decreased by order of tens. In particular, for pR = 0.9, the

required BS density for n = 4 is 90BS/km2 which is 10 times less than the required

BS density for n = 1.
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Figure 3.10: Probability of reliability in presence of blockages with fixed Lm = 100m
and varying blockage density (µ) and scaling BS density (λ) as µ2 in a cellular system
with second order diversity. pR for independent blockage case and computed lower
bounds are also plotted.

3.7 Conclusions

In this paper, we evaluated the gains of macro-diversity for a mmWave cellular

system in presence of random blockages. We proposed a framework to analyze the

correlation among blocking of multiple links in a cellular system and computed the

system’s reliability. We also study the impact of blockage sizes and show that diversity

gains are higher when blockages are small. We also show that BS density should scale

as square of blockage density to maintain a certain level of system reliability. The work

has numerous extension. First, the proposed framework can be extended to analyze

the coverage probability and rate coverage in the system with multi-BS diversity.
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Figure 3.11: Required BS density versus desired probability of reliability for various
diversity order (n) in independent blockage case. Higher diversity order can reduce
the required BS density by order of magnitudes.

Second, the framework can used to develop a correlated shadowing model to study

the impact of correlated shadowing on cellular systems’ performance. Third, the

framework can be extended to include multi-cell cooperation where a user is served

simultaneously by multiple BSs possibly, with possible load optimization.
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Chapter 4

Uncoordinated Sharing of Spectrum Licenses in

mmWave Cellular Systems

As described in the first chapter, communication at mmWave frequencies has

non-trivial differences when compared to communication at conventional cellular fre-

quencies (below 6GHz). For example, the typical use of many antennas in mmWave

systems results in highly directional communication [7, 79], and under some circum-

stances, it is noise limited [13, 80–82]. In general, mmWave communication causes

less interference to neighboring BSs operating in the same frequency bands compared

to communication at conventional cellular frequencies (CCF) [6, 8] which requires us

to rethink how mmWave spectrum should be licensed. In conventional cellular licens-

ing, commercial operators buy exclusive licenses which give each of them exclusive

and complete control over a band of spectrum. This conventional exclusive licensing

is not efficient for mmWave for the aforementioned reasons. In this chapter,1 we

will explore the possibility of a new kind of sharing which we call as uncoordinated

spectrum license sharing: independent cellular operators who own licenses for sepa-

rate frequency bands agree to share the complete rights of operation in each other’s

bands without any explicit coordination. Sharing licenses (if possible), will allow all

1This work has appeared in [83] and [84] in parts. I am the first author of both of these articles.
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networks to use the full spectrum simultaneously without impacting the individual

achieved rates and help networks to reduce their expenses by sharing the license costs.

Such uncoordinated sharing of licenses was not possible in CCF due to high interfer-

ence caused by serving BSs which renders the channel unusable to any nearby BS of

other networks operating in the same frequency band. In the rest of the chapter, we

will use spectrum license sharing to denote uncoordinated spectrum license sharing

unless explicitly stated.

4.1 Related Work

For mmWave bands, there are no regulatory rules for cellular services yet, al-

though there are many incumbent services including fixed services, satellite to earth

communications, military, and research activities and unlicensed operations. It has

been reported that the spectrum remains underutilized [85] due to this exclusive li-

censing at CCF which is expected to be even worse for mmWave bands. There has

been significant work related to cognitive radios to help fill the gaps in the underuti-

lized spectrum by letting secondary users make use of the spectrum band via sensing

based access control [86–90] for CCF. In [33,91–93], various aspects and performance

of spectrum sharing were studied in a cellular setting. Most related to this paper,

in [33], dynamic spectrum sharing between different operators was shown to achieve

reasonable sensing performance in 3GPP LTE-A systems with carrier aggregation.

Various cognitive license sharing schemes such as licensed shared access (LSA) and

authorized shared access (ASA) were proposed [94,95] which allow more than one en-

tity to use the spectrum. In the presence of incumbent services, the above mentioned
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techniques [94, 95] would authorize a cellular system to transmit, only when the in-

cumbent services are idle [96–98]. Implementation would require some kind of sensing

or central coordination, which may waste important resources resulting in underuti-

lization of spectrum. Further, it was shown in [99,100] that spectrum gaps will be rare

for ultra-dense deployment of small cells in a multi-tier network and spectrum sensing

based cognitive approaches may not give the desired gain. Another way to resolve

the transmission conflicts between multiple licensees (or entities in case of unlicensed

spectrum) is by the use of a central database which keeps track of transmission of

each licensee [101]. This reduces the requirement of continuous listening/sensing of

the spectrum by each licensee/entity but creates significant feedback/transmission

overhead and possibly delay due to the central database.

In recent work, stochastic geometry has emerged as a tractable approach to

model and analyze various wireless systems. For example, the performance of a sin-

gle operator mmWave system had been investigated in prior work using tools from

stochastic geometry [8, 14, 102, 103]. In [102], a stochastic geometry framework for

analysis of mmWave network was proposed. In [8,103], a blocking model for mmWave

communication was proposed to distinguish between line-of-sight (LOS) and non-LOS

(NLOS) transmission links and performance metrics such as coverage probability and

per-user rate were derived using stochastic geometry. In [14], a stochastic geometry

framework was presented for mmWave network with backhaul and co-existent mi-

crowave network. In [104], it was shown that even a very dense mmWave network

tends to be noise limited for certain choices of parameters. A major limitation of the

prior work on mmWave systems [8,14,102–104] is the assumption of a single operator.
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To study the impact of an operator’s active BS on closely located BSs of other oper-

ators, a more general framework containing multiple operators is needed. For CCF,

a heterogeneous system (HetNet) consisting of multiple tiers of the same operator

was studied in [17] where all the tiers were operating in the same frequency band.

Similarly for mmWave, a numerical framework was presented for a mmWave HetNet

with generalized fading in [105]. In [105], only single operator was considered and BSs

were assumed to have open access to all the users, while as envisioned in this paper,

commercial providers are expected to have closed access to its customers or users.

Cognitive networks have also been studied using tools from stochastic geometry for

CCF. For example, in [106], a stochastic geometry model was presented for spec-

trum sharing to characterize the system performance in terms of transmit capacity.

In [107], a cognitive carrier sensing protocol was proposed and analyzed for a network

consisting of multiple primary and secondary users and spectrum access probabil-

ities and transmission capacity were computed. There is limited work to analyze

the impact of spectrum sharing among operators at CCF using stochastic geometry.

For example, in [108], the impact of infrastructure and CCF spectrum sharing was

studied using stochastic geometry. As discussed above, communication at mmWave

frequencies has different characteristics and modeling considerations when compared

to CCF. Therefore, these results need to be reevaluated for mmWave systems and a

new mathematical model is required for possible license sharing in mmWave systems.

In the above mentioned prior work [8, 14, 17, 102–108], the impact of inter-operator

interference in mmWave systems and the feasibility of license sharing are not studied,

which is the main focus here.
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4.2 Contributions

We establish the feasibility of uncoordinated sharing of spectrum licenses in

a multi-operator mmWave system. A main conclusion of our work is that sharing

of spectrum licenses among multiple mmWave operators can improve their overall

performance, even without any explicit coordination among them, if the main beam

is sufficiently narrow. The main contributions of this chapter can be categorized

broadly as follows.

Modeling a multi-operator cellular system: We model a multi-operator

mmWave system using a two-level architecture, where the system consists of multiple

heterogeneous networks, each owned by an independent mmWave cellular operator.

Each operator owns a license for a frequency band and its network consists of its

own BSs and users which are independent of other networks. This model provides a

general framework for access and license sharing by introducing the notion of access

and sharing groups. The operators can form multiple access groups where users of

each member of an access group can connect to BSs of any member of the same

access group. Similarly, the operators can form sharing groups where each member

of a sharing group can use the spectrum of all members of the same sharing group.

Establishing the feasibility of uncoordinated sharing of spectrum

licenses: We derive the combined mean user-load on BSs of each network. We derive

expressions for SINR and rate coverage of a typical user of an operator using the

tools from stochastic geometry. Then, we compare systems with shared licenses and

exclusive licenses and show that spectrum license sharing achieves higher performance

in terms of per user rate. We investigate the effect of antenna beamwidth on the
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feasibility of license sharing and show that spectrum license sharing is more favorable

as communication becomes more directional. Finally, we quantify the benefit of

license sharing in term of license cost reduction and show that networks can possibly

reduce their costs significantly if they share their licenses.

Modeling co-located operators: To include the impact of correlation among

deployments of operators, we also consider a co-located deployment where site loca-

tions are defined by a single PPP and each operator has one BS at each site. We show

that spectrum sharing is feasible even in this case. This important result indicates

that multiple operators can also share site infrastructure (such as macrocell towers,

as is common practice today) while also sharing their spectrum licenses. A practical

deployment with some co-location and some unique sites will lie between these two

extremes of independent and totally co-located BS locations.

4.3 System Model

We consider a system consisting of M different cellular operators which coexist

in a particular mmWave band. Each operator owns a network Φm consisting of its own

BSs and users. The locations of BSs are modeled using a Poisson Point Process (PPP)

with intensity λm and the locations of users are modeled as independent PPP with

intensity λu
m. The PPP assumption can be justified by the fact that nearly any BS

distribution in 2D results in a small fixed SINR shift relative to the PPP [109, 110].

The locations of BSs of multiple operators have been modeled by superposition of

independent PPPs in the past work [108]. Different point processes such as the Log-

Gaussian Cox process can also be used to model the locations of a multi-operator
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system as discussed in [111]. For tractability we have assumed independence among

operators; but, to address the impact of correlation of locations among the operators,

we also consider another case with full spatial correlation among operators where

all operators are co-located with their locations defined by a single PPP. One can

think of real multi-operator deployments as lying between these two corner cases of

complete independence and co-location. The BSs of each network can transmit with

power Pm. We denote the total spectrum by B and suppose that the mth operator

owns a license for an orthogonal spectrum of Bm bandwidth which it can share with

others. We consider a typical user UE0 at the origin without loss of generality. Let

us assume this is a user of the nth operator.

4.3.1 Channel Model

Let us consider a link between this typical user and a BS of network m located

at x distance from the origin. This link can be LOS or NLOS which we denote by the

variable link type s, which can take values s = L (for LOS) or s = N (for NLOS). We

assume that the probability of a link being LOS is dependent on x and independent

of types of other links and is given by p(x) = exp(−βx) [8, 9]. The analysis can be

extended to other blocking models. The path loss from the BS to the user is modeled

as `s(x) = Cs (x)−αs where αs is the pathloss exponent and Cs is the gain for s type

links. Conditioned on this typical user, the BSs of the each network m can be

categorized into LOS or NLOS based on the type of their link to this typical user.

Therefore, the BS PPP of network m can be seen as superposition of the following

two independent (non-homogeneous) BS PPPs because of the independent thinning
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Table 4.1: Summary of Notation

Notation Description
Φm, λm PPP consisting of the locations of BSs of operator m, BS

density of operator m
Pm, Bm,Wm Transmit power of BSs of operator m, licensed bandwidth of

operator m, bandwidth available to operator m via sharing of
licenses

Φu
m, λu

m PPP modeling locations of users of operator m, the density of
this PPP

L,N Possible values of link type: L denotes LOS, N denotes NLOS
{m, p} Notation representing the tier having all BSs of link type p of

operator m
Φmp, λmp The PPP modeling the locations of BSs of the tier {m, p}, the

density of this PPP
G1, G2, θb BS antenna parameters: maximum gain, minimum gain and

beamwidth
Cp, αp Path-loss model parameters: path-loss gain and path-loss

exponent of any link of type p ∈ {L,N}
p(r), β p(r) is the probability of being LOS for a link of distance r, β is

the blocking parameter.
UE0 A typical user at origin for which analysis is performed.
n The operator which UE0 belongs to
Sn The set consisting of all operators which a user of operator n has

access to
BSmj,xmj, xmj jth BS of the network m, its location (here xmj ∈ Φm), its

distance from the origin
smj Fading faced by the link between BSmj and the user, the type of

this link
k, i The operator associated with UE0, the index of the serving BS

of this operator
s, x Type of the link between the serving BS and the user, its

distance from the origin
Qk The sharing group of operator k which is also the set of all

operators interfering to the operator k.
m Indices representing an operator or a network, in particular a

member of set Qk

Dks
mp(x) Exclusion radius for BSs of tier {m, p} when UE0 is associated

with BS of tier {k, s} located at x
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Table 4.1: Cont.

Ank Association probability of a user of network n to be associated with BS
of operator k

Pc
ks Probability of SINR coverage of UE0 when associated with tier {k, s}

Nu
m The mean number of users associated to a BS of network m

κm(z) Probability of a BS of network m having z number of associated users
Rki,R

c
k Instantaneous rate and rate coverage of UE0 when associated with

network k
Rc(ρ) Rate coverage of UE0, i.e. P [Rk ≥ ρ]

theorem [63],

1. Φm,L with density λm,L(x) = λmp(x) containing all the BSs with LOS link to

UE0, and

2. Φm,N with density λm,N(x) = λm(1 − p(x)) containing all the BSs with NLOS

link to UE0.

Note that this results in total 2M classes (known as tiers) of BSs where each

tier is denoted by {m, s}. Here m and s represent the index of the network and the

link type, respectively. The average number of BSs of tier {m, s} in area A is given

by Λm,s(A) =
∫
A
λm,s(‖x‖)dx. Therefore, the average number of LOS and NLOS BSs

in a ball B(r) with radius r for network m are given by

Λm,L(B(r)) = 2π

∫ r

0

λmp(x)xdx = 2π

∫ r

0

λme
−βxxdx = πλm

2

β2
γ(2, βr)

Λm,N(B(r)) = 2π

∫ r

0

λm(1− p(x))xdx = πλm

(
r2 − 2

β2
γ(2, βr)

)
.

Let us denote the jth BS of network m as BSmj. Hence, the effective channel between

BSmj and the user UE0 is given as hmjPm`smj(xmj) where smj denotes the link type
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between the user and BSmj and hmj is an exponential random variable denoting

Rayleigh fading. We observe and show in the numerical section that considering a

more general fading model such as Nakagami does not provide any additional design

insights, but it does complicate the analysis significantly. Therefore we will consider

only Rayleigh fading for our analysis. We do not consider shadowing separately as

it is mostly covered by the blocking model. We show in the numerical section that

including shadowing does not change any of the observed trends.

We assume that BSs of every network are equipped with a steerable antenna

having radiation pattern given as [8]

G(θ) =

{
G1 |θ| < θb/2

G2 otherwise
.

Here G1 � G2 and θb denotes beamwidth. The angle between the BS BSmj antenna

and direction pointing to the user UE0 is denoted by θmj. We have assumed the same

antenna pattern for all networks to avoid complicating the expressions unnecessarily.

The analysis can be extended to a system where each network has a different transmit

antenna pattern. We assume that the user is equipped with a single omni-directional

antenna. Although users will also have directional antennas, it will be analytically

equivalent to aggregating the transmitter and receiver gains at BS antennas. Hence,

considering the UE antenna gain and the BS antenna gain separately does not change

the observed trends. Note that we consider single stream operation in this work.

More advanced mmWave cellular systems may employ massive MIMO [112, 113] or

multi-stream MIMO using hybrid beamforming [65]. Generalizing to these other

architectures is a topic of future work.
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4.3.2 Access and License Sharing Model

We assume that a user of operator n can be associated with any BS from a

particular set of operators denoted by access set Sn. Two special cases of access are

open and closed. In an open access system, a user can connect to any operator and

therefore Sn = {1, 2, · · ·M}. In a closed access system, a user can connect only to

the operator it belongs to, and therefore Sn = {n}.

We assume that license sharing is performed by forming mutually exclusive

groups, known as sharing groups. All the operators in each group share the whole

spectrum license such that each operator within a group has equal bandwidth available

to it. The effective bandwidth available to each operator after sharing is denoted by

Wm. For example, in a system of 5 operators, suppose that operators 1, 2 and 3 form

a group and operators 4 and 5 are in second group. Hence, after license sharing, 1, 2

and 3 will have access to the the aggregate band of total B1 + B2 + B3 bandwidth,

i.e. W1 = W2 = W3 = B1 + B2 + B3. Similarly operators 4 and 5 will have access

to the aggregate band of bandwidth W4 = W5 = B4 + B5. We denote the sharing

group containing the kth operator by Qk. The user UE0 experiences interference

from all networks operating in the spectrum of associated operator k. The set of

the interfering networks is equal to the sharing group containing the kth operator

which is Qk. Note that the aggregate spectrum of a sharing group can be fully

used by all members. Hence, for a particular network, the set of interfering networks

remains the same for its complete available spectrum band. One example of license

sharing is a system with fully shared licenses, in which there is only one sharing group

containing all the operators and all of them can use the whole frequency band. Here,
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the available bandwidth Wk to each operator is B and the set of interfering networks is

Qk = {1, 2, · · ·M}. For the case when all operators have exclusive licenses, there are

M sharing groups each containing only one operator which indicates that no operator

shares its license. Hence, the bandwidth available to the operator k is Wk = Bk and

Qk is equal to {k}.

Now, the effective received power from a BS BSmj at user UE0 is given as

Pmj = Pjhmj`smj(xmj)G(θmj). (4.1)

Hence, the average received power from BSmj at UE0 without the antenna gain is

given by

P avg
mj = Pm`smj(xmj). (4.2)

We assume the maximum average received power based association in which any user

associates with the BS providing highest P avg
mj among all the networks it has access to

(i.e. access set). Let us denote the operator the user UE0 associates with by k and the

index of the serving BS by i. Since the serving BS aligns its antenna with the user,

the angle θki between the serving BS antenna and user direction is 0o and the effective

received power of this BS is given as Pki = Pkhki`ski(xki)G(0) = Pkhki`ski(xki)G1. For

each interfering BS BSmj where m ∈ Qk and (m, j) 6= (k, i), the angle θmj is assumed

to be uniformly distributed between −π and π.

Now, the SINR at the typical user UE0 that is associated with the ith BS of

the operator k is given as

SINRki =
Pkhki`ski(xki)G1

σ2
k + I

(4.3)
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where I is the interference from all BSs of networks in set Qk and is given by I =

∑
m∈Qk

∑
xmj∈Φm

Pmhmj`smj(xmj)G(θmj) =
∑
m∈Qk

∑
p∈{L,N}

∑
xmj∈Φm,p\{xki}

Pmhmj`p(xmj)G(θmj).

(4.4)

Note that the operator \ denotes the set difference operation which is defined as

A\B = {z : z ∈ A, z /∈ B} for any sets A and B. Since the PPP process Φ =
⋃M
m=1 Φm

is a simple PP, the probability that there are two BSs at the same location is 0. If

(m 6= k) or (m = k, p 6= s), then Φm,p \{xki} is equal to {xmj ∈ Φm,p} as there cannot

be a BS in Φm,p at xki. If (m = k, p = s), then Φk,s \ {xki} = {xkj ∈ Φk,s, j 6= i}.

The noise power for operator k is given by σ2
k = N0Wk where N0 is the noise power

density. Since σ2
k is dependent on the allocated bandwidth, it varies accordingly with

association.

4.4 SINR and Rate Coverage Probability

In this section, we will first investigate the association of a typical user of nth

network to a BS and then compute the coverage probability for this user. Recall that

the coverage probability is defined as the probability that the SINR at the user from

its associated BS is above a threshold T

Pc(T ) = P [SINR > T ] . (4.5)

4.4.1 Association Criterion and Probability

Recall that a user of the nth operator can be associated with a BS of any

operator from the set Sn. Let Eki denote the event that the typical user is associated
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with the BS BSki (i.e. the ith BS of operator k). Let us denote the distance of this BS

by x = xki and type by s = ski for compactness. The event Eki is equivalent to the

event that no other BS has higher P avg at the user. This event can be further written

as combination of following two events: (i) the event that no other BS of operator k

has higher P avg at the user, and (ii) that no BS of any other accessible operator m

has higher P avg at the user:

Eki = {P avg
ki > P avg

kj ∀i 6= j} ∩ {P avg
ki > P avg

mj ∀m ∈ Sn \ {k}}. (4.6)

Substituting (4.2) in (4.6),

Eki =

{
Cski

(xki)
αski

>
Cskj

(xkj)
αskj
∀i 6= j

}⋂{
CskiPk

(xki)
αski

>
CsmjPm

(xmj)
αsmj

∀m ∈ Sn \ {k}
}
.

The above condition can also be further split over LOS and NLOS tiers of each

network, then it can be expressed as an equivalent condition over locations of all BSs

as follows:

Eki = {xkj > x ∀ skj = s, i 6= j}
⋂{

xkj >

(
Cs′

Cs

) 1
αs′
x
αs
αs′ ∀skj 6= s, i 6= j

}
⋂{

xmj >

(
Pm
Pk

) 1
αs

x ∀smj = s,m ∈ Sn \ {k}
}

⋂{
xmj >

(
PmCs′

PkCs

) 1
αs′
x
αs
αs′ ∀smj 6= s,m ∈ Sn \ {k}

}

where s′ denotes the complement of the link type s. In other words, if s = L, then

s′ = N and if s = N, then s′ = L. The first condition restricts all BSs of operator k

with link type s (same as type of serving BS) to be located outside a 2D ball. The

second term is for all BSs of operator k and link type s′. Similarly the third and
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fourth terms are for BSs of all other accessible operators with link type s and s′,

respectively.

As seen from these conditions, the average received power based association

rule effectively creates exclusion regions around the user for BSs of each network in

Sn. Let us denote the exclusion radius for the tier {m, p} by Dks
mp(x). For example,

the exclusion region for all LOS BSs of operator m when the user is associated with

a NLOS BS of operator k is given by

DkN
mL(x) =

(
Pm
Pk

CL

CN

) 1
αL

x
αN
αL . (4.7)

Note that for BSs of the networks that are not in set Sn, there are no exclusion

regions, i.e. Dks
mp(x) = 0 ∀m /∈ Sn. This exclusion region denotes the region where

interfering BSs cannot be located and hence, affects the sum interference.

The probability that all BSs of the tier {m, p} are outside the exclusion radius d

is given by the void probability of the PPP Φmp which is µm,p(d) = exp(−Λm,p(B(d))).

Since the PPPs of the tiers are mutually independent, the probability that BSs of the

tiers other than {k, i} are located outside the exclusion region, can be calculated by

multiplying the individual void probabilities of each tier:

f ok,s(x) = µk,s′
(
Dks
ks′(x)

) ∏
m∈Sn\{k}

µm,s
(
Dks
ms(x)

)
µm,s′

(
Dks
ms′(x)

)
. (4.8)

Therefore, the probability density function of the distance x to this associated BS is

given as

fk,s(x) = 2πλk,sx µk,s(x) µk,s′
(
Dks
ks′(x)

) ∏
m∈Sn\{k}

µm,s
(
Dks
ms(x)

)
µm,s′

(
Dks
ms′(x)

)
. (4.9)
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The probability that a user of operator n is associated with a BS of operator k can

be computed by summation over both LOS and NLOS tiers:

Ank =

∫ ∞
0

(fk,L(x) + fk,N(x)) dx. (4.10)

Let Pc
kL and Pc

kN denote the coverage probabilities for the typical user which

is associated with a LOS and NLOS BS of operator k, respectively. They can be

computed by integrating the CCDF of SINR from serving BS over pdf of distance x

from serving BS as follows:

Pc
ks(T ) =

∫ ∞
0

P [SINRks(x) > T ] fk,L(x)dx

=

∫ ∞
0

P
[
PkhksCsG(0) > T (I + σ2

k)x
αs
]
fk,s(x)dx. (4.11)

Since hks ∼ exp(1), the probability in (4.11) can be replaced as

Pc
ks(T ) =

∫ ∞
0

E
[
exp

(
− Tσ

2
kx

αs

CsG1Pk
− TIxαs

CsG1Pk

)]
fk,s(x)dx

=

∫ ∞
0

exp

(
−TN0Wkx

αs

CsG1Pk

)
LI
(

Txαs

CsG1Pk

)
fk,L(x)dx (4.12)

where LI(t) denotes the Laplace transform of the interference I caused by BSs of all

networks in set Qk and is defined as LI(t) = E
[
e−tI

]
.

Since the association with different tiers are disjoint events, the SINR coverage

probability of the typical user can be computed by summing these individual tier

coverage probabilities over all accessible tiers:

Pc(T ) =
∑
k∈Sn

Pc
k(T ) =

∑
k∈Sn

[Pc
kL(T ) + Pc

kN(T )] (4.13)
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where Pc
k(T ) is the sum of coverage probabilities of both tiers of the operator k. To

proceed further, we need to first characterize the interference I for which we will

compute its Laplace transform defined as LI(t) = E
[
e−tI

]
.

4.4.2 Interference Characterization

If the user of operator n is associated with operator k, it experiences interfer-

ence from all networks operating in spectrum Wk. Recall that all these interfering

networks form set Qk. Hence, the total interference is given by (4.4). Due to mu-

tual independence of the tiers, its Laplace transform can written as product of the

following terms:

LI(t) = E
[
e−tI

]
=
∏
m∈Qk

LIm(t) =
∏
m∈Qk

(LImL
(t)LImN

(t)) (4.14)

where LIm(t) refers to the interference caused by network m and LImL
(t) and LImN

(t)

denote the Laplace transforms of LOS and NLOS interference from network m which

are given in the following Lemma.

Lemma 7. The Laplace transforms of the interference from LOS and NLOS BSs of

network m to a user of operator n which is associated with a type s BS of operator k

in a multi-operator system are given as

LImL
(t) = exp

(
−λm[θbFL(β, αL, tG1PmCL, D

ks
mL(x))

+(2π − θb)FL(β, αL, tG2PmCL, D
ks
mL(x))]

)
LImN

(t) = exp
(
−λm[θbFN(β, αN, tG1PmCN, D

ks
mN(x))

+(2π − θb)FN(β, αN, tG2PmCN, D
ks
mN(x))]

)
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where FL(b, a, A, x) =

∫ ∞
x

e−byAy−a

1 + Ay−a
ydy, and

FN(b, a, A, x) =

∫ ∞
x

(1− e−by) Ay−a

1 + Ay−a
ydy.

Proof. The interference from all LOS BSs of network m at UE0 is given as

ImL =
∑

xmj∈Φ′m,L

hmj‖xmj‖−αLPmCLG(θmj)

where Φ′m,L = Φm,L ∩ B̄
(
0, Dks

mL(x)
)

and B̄ (0, r) denotes the compliment of a ball of

radius r located at origin. This is due to the fact that all interfering BSs are located

outside the radius Dks
mL(x). The Laplace transform of ImL is given as

LImL
(t) = E

exp

−t ∑
xmj∈Φ′mL

hmj‖xmj‖−αLPmCLG(θmj)

 .
Now, using the PGFL of PPP [63], the Laplace transform can be written as

LImL
(t) = exp

(
−2πλm

∫ ∞
DksmL(x)

p(y)
(

1− E
[
e−thG(θ)PmCLy

−αL

])
ydy

)
.

Now, using the moment generating function (MGF) of exponentially distributed h

and pdf of uniformly distributed θ, we get

LImL
(t) = exp

(
−λm

∫ ∞
DksmL

p(y)

(
2π −

∫ 2π

0

dθ

1 + tG(θ)PmCLy−αL

)
ydy

)
.

Now, integrating with θ and then using the definition of function FL(·), we get

LImL
(t) = exp

(
−λm

∫ ∞
DksmL

∫ 2π

0

tG(θ)PmCLy
−αL

1 + tG(θ)PmCLy−αL
dθe−βyydy

)

= exp

(
−λm

∫ ∞
DksmL

(
θb

tG1PmCLy
−αL

1 + tG1PmCLy−αL
+ (2π − θb)

tG2PmCLy
−αL

1 + tG2PmCLy−αL

)
e−βyydy

)
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= exp
(
−λm

[
θbFL

(
β, αL, tG1PmCL, D

ks
mL(x)

)
+(2π − θb)FL

(
β, αL, tG2PmCL, D

ks
mL(x)

)])
.

The Laplace transform of the interference from the NLOS BSs can be computed

similarly.

Note that the term containing G1 and θb denotes the interference from the

aligned BSs whose antennas are directed towards the considered user while the term

containing G2 and (2π − θb) represents the interference from the unaligned BSs.

Since G1 � G2, the interference from the aligned BS is significantly larger than

the interference from the unaligned BS and hence, dominates the Laplace transform

expression. Therefore, the value of θb plays a significant role in characterizing the

interference and determining the benefits of spectrum license sharing.

Now, we provide the final expression for SINR coverage probability.

Theorem 10. The SINR coverage probability of a typical user of operator n in a

multi-operator mmWave cellular system is given as

Pc(T ) =
∑
k∈Sn

∑
s∈{L,N}

∫ ∞
0

∏
m∈Qk

LImL

(
Txαs

CsG1Pk

)
LImN

(
Txαs

CsG1Pk

)

exp

(
−N0WkTx

αs

CsG1Pk

)
fk,s(x)dx (4.15)

where LImp(t) is computed in Lemma 7 and fk,s(x) is given in (4.9).

Proof. Substituting the value of LI(t) from Lemma 7 in (4.13), we get the result.
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In (4.15), the first summation is over all networks which the user of operator

n can connect to, weighted by the association probability. This weighting is included

inside the term fk,s(x).

Since due to complexity of the above expressions, it is difficult to derive direct

insights, we also consider a simple case to get closed form expressions.

Corollary 6. Consider a mmWave system with n identical operators with closed

access and fully shared licenses. Assuming that the LOS and NLOS channel have

same pathloss parameters with αL = αN = 4 and the side lobe gain G2 = 0, the

probability of coverage for the interference limited scenario is given as

Pc(T ) =
1

1 + θb
2π
T

1
2

(
(n− 1)π

2
+ arctan(T

1
2 )
) . (4.16)

It can be observed from the (4.16) that the probability of coverage decreases

monotonically with the number of operators n.

4.4.3 Rate Coverage

In this section, we derive the downlink rate coverage. Recall that the rate

coverage is defined as the probability of the rate of a typical user being greater than

the threshold ρ,

R(ρ) = P [Rate > ρ] . (4.17)

Let us assume that Ok denotes the frequency resources allocated to each user

associated with the ‘tagged’ BS of operator k. Therefore, the instantaneous rate of
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the considered typical user is given as Rki = Ok log (1 + SINRki). The value of Ok

depends upon the number of users (Nu
k ), equivalently the load, served by the tagged

BS. The load Nu
k is a random variable due to the randomly sized coverage areas of

each BS and random number of users in the coverage areas. As shown in [14, 58]

approximating this load with its respective mean does not compromise the accuracy

of results. Since user distribution of each network is assumed to be PPP, the average

number of users associated with the tagged BS of network k associated with the

typical user can be modeled similarly to [14,58]:

Nu
k = 1 + 1.28

1

λk

∑
m:k∈Sm

λu
mA

m
k . (4.18)

Note that the summation is over all the networks whose users can connect to the

network k and the sum denotes the combined density of associated users from each

network.

Now, we assume that the scheduler at the tagged BS gives 1/Nu
k fraction of

resources to each of the Nu
k users. This assumption can be justified as most schedulers

such as round robin or proportional fair give approximately 1/Nu
k fraction of resources

to each user on average. Using the mean load approximation, the instantaneous rate

of a typical user of operator n which is associated with ith BS of operator k is given

as

Rki =
Wk

Nu
k

log (1 + SINRki). (4.19)

Let Rc
k(ρ) denote the rate coverage probability when user is associated with

operator k. Then the total rate coverage will be equal to the sum of Rc
k(ρ)’s over all
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accessible networks:

Rc(ρ) =
∑
k∈Sn

Rc
k(ρ). (4.20)

Rc
k(ρ) can be derived in terms of SINR coverage probability as follows:

Rc
k(ρ) = P [Rki > ρ] = P [Wk/N

u
k log (1 + SINRki) > ρ]

= P
[
SINRki > 2

ρ
Nu
k

Wk − 1

]
= Pc

k

(
2ρN

u
k /Wk − 1

)
.

Now, the rate coverage is given as

Rc(ρ) =
∑
k∈Sn

Pc
k

(
2ρN

u
k /Wk − 1

)
. (4.21)

We, now, turn back to the simple case considered in Corollary 6 to simplify

the expressions and provide further insights.

Corollary 7. Consider a mmWave system with n identical operators with closed

access and fully shared licenses of bandwidth B̄ each as considered in Corollary 6.

The rate coverage for the interference limited scenario is given as

Rc(ρ) =
1

1 + θb
2π

(2ρ′/n − 1)
1
2

(
(n− 1)π

2
+ arctan((2ρ′/n − 1)

1
2 )
) (4.22)

where ρ′ = ρNu/B̄.

The denominator in (4.22) behaves differently with respect to n for different

regimes of ρ′. For small ρ, rate coverage decreases with respect to n making exclusive

licenses more beneficial. For large ρ, the rate coverage increases with respect to

n which favors sharing spectrum licenses. Let us compare the case of n = 1 and
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n = 2. For θb = 2π, the license sharing becomes more beneficial than exclusive

licenses when ρ′ > 3.3 which is equivalent to Rc = 0.20 indicating that at maximum,

only 20% users would be benefiting if the licenses are shared. This effectively means

that spectrum sharing is not beneficial from the operator’s perspective. Whereas for

θb/2 = 10o, the switch occurs at Rc = 0.83 indicating that 83% users are benefiting

from spectrum sharing and making sharing of licenses favorable from the operator’s

perspective. Therefore, the directionality of antennas (θb) plays a crucial role in

determining the least value of Rc where license sharing starts becoming more beneficial

than exclusive licenses. We later show similar trends with target rate and beamwidth

using simulations.

4.5 Performance Comparison

We use the preceding mathematical framework to compare the benefits of

spectrum license sharing. We enumerate three specific cases (or systems) considering

different combinations of accesses and license sharing schemes. Also see Fig. 4.1 for

a visual explanation.

System 1: Closed Access and Exclusive Licenses: In System 1, each

user must associate with only its own network and each operator can use its own

spectrum only. This case is equivalent to a set of M single operator systems which

has been studied in prior work [8]. This system serves as a baseline case to evaluate

benefits of sharing. The SINR coverage probability of UE0 is given by (4.15) with

k = n, Sn = {n}. Recall that in this system, the spectrum accessible to each operator

is its own licensed spectrum only, i.e. Wn = Bn, Qn = {n}.
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System 2: Open Access and Full Spectrum License Sharing: In

System 2, each user can be associated with any network and the spectrum license is

shared between all operators. In this case, the probability of association of a user

with any BS of the operator k is independent of which operator this user belongs to

and is given as

Ank = Ak = Ak,L + Ak,N =

∫ ∞
0

(fk,L(x) + fk,N(x)) dx.

The SINR coverage probability of UE0 is given by (4.15) with Sn = {1, 2, · · ·M}.

The average load to the tagged BS of operator k is given as Nu
k = 1 + 1.28

∑
m λ

u
m
Ak
λk

.

The spectrum accessible to each operator Wk is the complete band B and Qn =

{1, 2 · · ·M}. Since users can be served by BS of any operator, it requires full coor-

dination, sharing of control channels and technology sharing among operators. The

quality of service to a user will be the same regardless of the operator it belongs to.

This will limit the technological advantage of an operator over other operators and

hence, operators may not want to open up their networks to each other. Therefore,

System 2 is likely not a practical system but instead serves as an upper bound to

the two other more practical systems. Note that if all M networks are identical with

respect to every parameter, then this system is equivalent to a single operator sys-

tem with the aggregate BS and UE density. In this case, from a user association

perspective, there is no discrimination based on the network which a particular BS

belongs to. Also all networks transmit in the same band. So the users effectively see

a single network with aggregate BS density of all the networks. Similarly from the

operator’s perspective, users of all the networks look the same due to open access.
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Network 2 BS Network 1 BS User of network 1 

Figure 4.1: Illustration describing the differences between the four systems. For
a typical user of operator 1, the figure shows all accessible networks this user can
connect to, all interfering networks, and the available spectrum after license sharing.

Hence, the users of different operators can be replaced by users of a single operator

with the aggregate UE density.

System 3: Closed Access and Full Spectrum License Sharing: In

System 3, each user must associate with its own network but the whole spectrum is

shared between all the operators. This case does not require any transmission co-
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ordination among networks or common control channels, nor does it require sharing

of infrastructure or back-haul resources. This system is close to the practical imple-

mentation where subscribers must connect to their respective service providers only.

The SINR coverage probability of the considered typical user of operator n is given

by (4.15) with k = n, Sn = {n}. For this system, the spectrum accessible to each

operator is B and Qn = {1, 2 · · ·M}.

Along with the above three systems, we consider one additional system System

4 as defined below. This system will help us understand if independent operators can

still share BS tower infrastructure while sharing the spectrum licenses. As mentioned

before, there may be correlation among BSs locations of different operators with

possible co-location of BSs, therefore it is important to understand how gain from

license sharing will be affected when the correlation is present.

System 4: Co-located BSs with Closed Access and Full Spectrum

License Sharing: System 4 has closed access and fully shared licenses where the

respective BSs of all the operators are all co-located. The system model for this

case remains the same as the previous three systems except for the following two

differences: 1) The BS locations are modeled by a single PPP Φ = {xj} with intensity

λ and 2) for a typical user, the BSs of all the operators located at the same location are

either all LOS or all NLOS. We first briefly show the computation the probability of

SINR coverage of this system. Consider a typical user of operator n. The BS PPP Φ

can be divided into two independent PPPs, ΦL and ΦN with intensity λL(x) = λp(x)

and λN(x) = λ(1 − p(x)). The probability density function of the distance x to the
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associated BS of operator n is given as

fs(x) = 2λsπx exp (−Λs(B(x))) exp (−Λs′ (B (Ds
s′(x)))) (4.23)

where the exclusion radius Ds
p(x) is the same for BSs of all the operators and given

as Ds
p(x) =

(
Cp
Cs

) 1
αp
x
αs
αp . The interference I at the user from BSs of all the operators

is given as

I = x−αsi Cs
∑

m∈Qn\{n}

PmhmiG(θmi) +
∑
p=L,N

∑
xj∈Φp\{xi}

x
−αp
j Cp

∑
m∈Qn

PmhmjG(θmj).

(4.24)

The following Lemma characterizes the Laplace transform of the interference

in (4.24) in the co-located BSs case.

Lemma 8. The Laplace transform of interference to a typical user of operator n with

closed access which is associated to a BS of type s in a multi-operator system with

co-located BSs is given as

LI(t) =
∏

m∈Qn\{k}

(
θb/(2π)

1 + tx−αsCsPmG1

+
(2π − θb)/(2π)

1 + tx−αsCsPmG2

)

×
∏
p=L,N

exp

(
−2πλ

∫ ∞
Dsp(x)

p(y)

(
1−

∏
m∈Qn

(
θb/(2π)

1 + ty−αpCpPmG1

+

(2π − θb)/(2π)

1 + ty−αpCpPmG2

))
ydy

)
Proof. The Laplace transform of interference in (4.24) can be computed as LI(t) =

Eh,θ
[
e
−tx−αsCs

∑
m∈Qk\{k}

PmhmiG(θmi)
] ∏
p=L,N

EΦp,h,θ

[
e
−t

∑
xj∈Φp\{xi}

x
−αp
j Cp

∑
m∈Qk

PmhmjG(θmj)
]
.
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Now, using the PGFL of PPP and independence of hmi’s and θmi’s, LI(t) can be

written as

LI(t) =
∏

m∈Qk\{k}

Eh,θ
[
e−tx

−αsCsPmhmiG(θmi)
]

∏
p=L,N

exp

(
−2πλ

∫ ∞
Dsp(x)

p(y)Eh,θ
[
1− e

−ty−αpCp
∑

m∈Qk
PmhmG(θm)

]
ydy

)
.

Now, using the MGF of exponentially distributed hmi’s in the first product term and

the independence of hm’s in the second product term, we get

LI(t) =
∏

m∈Qk\{k}

Eθ
[

1

1 + tx−αsCsPmG(θmi)

]
∏
p=L,N

exp

(
−2πλ

∫ ∞
Dsp(x)

p(y)Eθ

[
1−

∏
m∈Qk

Eh
[
e−ty

−αpCpPmhmG(θm)
]]
ydy

)
.

Now, using the MGF of exponentially distributed hm’s, we can write

Eh
[
e−ty

αpCpPmhmG(θm)
]

= 1/
(
1 + ty−αpCpPmG(θm)

)
.

Since G(θm)’s are discrete random variables with P [G(θm) = G1] = θb/(2π) and

P [G(θm) = G2] = 1− θb/(2π), we get the Lemma.

Similar to previous subsections, the coverage probability of the considered

typical user is given as

Pc(T ) =
∑
s=L,N

∫ ∞
0

exp

(
−TN0Wnx

αs

CsG(0)Pn

)
LI
(

Txαs

CsG(0)Pn

)
fs(x)dx (4.25)

where LI(t) is given in Lemma 8 and fs(x) is given in (4.23). Since full sharing of

spectrum licenses is assumed for this system, the spectrum accessible to each operator

is B and and Qn = {1, 2 · · ·M}. Hence, similar to System 3, the average load is given

as Nu
n = 1 + 1.28λu

n
1
λn

.

128



4.6 Partial Loading of the Network

In the previous section, we assumed that all the BSs have at least one user

associated and they are all transmitting. Such an assumption is justified when the

user density is very high in comparison to the BS density resulting in many asso-

ciated users per BS and negligible probability of any BS being inactive. For very

dense networks, however, this assumption will break down and many BSs will not

be occupied at all times. An interesting case to consider is where the system is not

fully loaded and there are some BSs having no (active) users to associate with. In

such a case, interference will reduce which should favor license sharing. From [58],

the number of users associated with a BS of network m for a closed access system

can be approximated as the following distribution:

κm(Nu
m) =

3.53.5

Γ(n+ 1)

Γ(n+ 3.5)

Γ(3.5)
(ηm)n(3.5 + ηm)−n−3.5 (4.26)

where ηm denotes the ratio between density of associated users and BS density for

network m. The κm(Nu
m) approximation has been shown to closely match the load

distribution in simulations [14,58]. For the multi-network system, ηm is computed as

ηm =
∑

q:m∈Sq

λu
q

Aqm
λm

, (4.27)

where the sum is over all the networks whose users can connect to BSs of network m.

The multiplication of association probability of a user of network q and user density

of network q gives the density of the network q’s associated users for network m.

The probability that a BS is off is equal to the probability that a BS has no

user associated to it which is equal to κm(0). Therefore for Systems 1, 2 and 3, the

129



interfering BSs can be obtained by independent thinning of original BS PPP with

probability 1− κm(0). The coverage probability of the Systems 1, 2 and 3 are given

by Theorem 10 with λm substituted by λ′m = λm(1− κm(0)).

For System 4, the sum interference I at the user from BSs of all the networks

in partial loading case is given as

I = x−αsCs
∑

m∈Qn\{n}

PmhimG(θim)δmi +
∑
p=L,N

∑
xj∈Φp\{xi}

x
−αp
j Cp

∑
m∈Qn

PmhmjG(θmj)δmj

(4.28)

where δmj is an indicator which is 1 when BS BSmj is on. Hence, the Laplace transform

of interference in partial loading can be computed as =

LI (t) =
∏

m∈Qk\{k}

(
κ(0) + (1− κ(0))

∑
j=1,2

aj/π

1 + tx−αsCsPmGj

)

×
∏
p=L,N

exp

(
−2λ

∫ ∞
Dsp(x)

p(y)

(
1−

∏
m∈Qk

(κ(0)

+(1− κ(0))
∑
j=1,2

aj
1 + y−αptCpPmGj

))
ydy

)
(4.29)

where a1 = θb/2, a2 = π − θb/2. The coverage probability of this system is given by

(4.25) with LI(t) given in (4.29) and fs(x) given in (4.23).

Proof. The Laplace transform of interference in partial loading case (4.28) is given as

LI(t) =

Eh,θ
[
e
−tx−αsCs

∑
m∈Qk\{k}

PmhmiG(θmi)δmi
] ∏
p=L,N

EΦp,h,θ

[
e
−t

∑
xj∈Φp\{xi}

x
−αp
j Cp

∑
m∈Qk

PmhmjG(θmj)δmi
]
.
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Since δmi’s are Bernoulli random variables with P [δmi = 0] = κ(0), LI(t) can be

written as

LI(t) =
∏

m∈Qk\{k}

Eh,θ
[
κ(0) + (1− κ(0))e−tx

−αsCsPmhmiG(θmi)
]

∏
p=L,N

exp

(
−2πλ

∫ ∞
Dsp(x)

p(y)Eh,θ,δ
[
1− e−ty−αpCp

∑
m∈Qk

PmhmG(θm)δm
]
ydy

)

=
∏

m∈Qk\{k}

Eθ
[
κ(0) + (1− κ(0))

1

1 + tx−αsCsPmG(θmi)

]
∏
p=L,N

exp

(
−2πλ

∫ ∞
Dsp(x)

p(y)Eθ

[
1−

∏
m∈Qk

(κ(0)

+(1− κ(0))Eh
[
e−ty

αpCpPmhmG(θm)
]) ]

ydy

)

which can be simplified further following the same steps as in the proof of Lemma 8

to get (4.29).

4.7 Numerical Results

In this section, we provide results numerically computed from the analytic ex-

pressions derived in previous sections. We compare the four aforementioned systems

to provide insights and discuss the impact of license sharing. For these numerical

results, we consider a system consisting of two cellular operators with identical pa-

rameters, both operating in mmWave band. Each operator owns a network of BSs

with density of 30/km2 which is equivalent to average cell radius of 103 m and have

users with density of 200/km2. We consider the exponential blockage model i.e.

p(x) = exp(−βx) with β = 0.007 which has an average LOS region of 144 m. The
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Figure 4.2: Probability of SINR coverage in a two-network mmWave system with BS
antenna beamwidth θb = 20o for different cases. Line-curves denote values from the
analysis and markers denote respective values from simulation.

transmit power is assumed to be 26dBm. For most of the results, the operating fre-

quency is 28GHz for which pathloss exponents for LOS and NLOS are αL = 2, αN = 4

and the corresponding gains are CL = −60dB, CN = −70dB. The total system band-

width is 200 MHz. We assume that each operator owns a license to 100 MHz. Recall

that for System 1, each operator can use only its own spectrum. In Systems 2, 3 and

4, both operators share each other’s spectrum licenses and therefore, get 200MHz of

spectrum.

Validation of analysis and SINR coverage trends: Fig. 4.2 compares the

probability of coverage for these systems and validates our analysis with simulation.

The typical user in System 2 has high SINR coverage due to its open access. The

closed access in System 3 allows BSs of another networks to be located closer than the

serving BS and may lead to large interference. Therefore the user in System 3 has low
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SINR coverage. System 1 has the same closed access as System 3, but the spectrum is

not shared. Therefore the user faces no interference from other networks and hence,

the SINR coverage is greater than System 3. In comparing System 1 and System

2, we observe different behaviors for different SINR ranges. Recall that System 2

is similar to System 1, but with double BS and MS density and double bandwidth.

Hence, a serving BS is relatively closer in System 2 from System 1 by a factor of
√

2. Now, for the high SINR region (which is mainly due to LOS serving links), this

increases the received power of a serving BS by a factor of
√

2
αL

= 2. Since the

noise power also increases by a factor of 2 due to increase in bandwidth, it effectively

cancels the increase in the power caused by increased proximity of serving BS. As

far as interference is considered, since doubling density increases the probability of

interferers to be LOS, interference increases significantly in System 2. Therefore SINR

coverage is higher in System 1 than System 2. For the low SINR region (which is

mostly due to NLOS serving links), the received power of a serving BS increases

by a factor of
√

2
αN

= 4 and the probability of serving link turning to LOS is also

increased due to increased proximity of serving BS. Therefore System 2 has higher

SINR coverage than System 1 in the low SINR region. System 4 has similar values

and trends as System 3 when compared to other systems. System 4 has similar values

and trends as System 3 when compared to other systems. While comparing Systems

3 and 4, we see a trade-off similar to [108] . In System 4, there cannot be any BS

of other operators closer to the user than the serving BS which is not the case for

System 3. This causes System 4 to perform better than System 3 for cell edge users

with low serving signal power. The same co-location argument also guarantees that
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System 4 will always have M − 1 interfering BSs of the other operators at the same

location as the serving BS. Therefore, System 3 performs better for users with high

serving power.

Sharing licenses achieves higher rate coverage: Fig. 4.3 compares the

probability of rate coverage for four systems which incorporates the effect of load and

bandwidth. Since each network has a large bandwidth and large SINR coverage in

System 2, its rate coverage is the highest among all systems. Such a system, however,

as mentioned earlier, may not be practical and mainly serves as a benchmark for

practical systems. A more interesting comparison is between System 1 and 3 (or 4).

Here we can see that even though System 1 has higher SINR coverage than System

3 (and 4), the latter achieves higher median rate, due to the extra bandwidth gained

from spectrum license sharing. In particular, System 3 and 4 have respectively 25%

and 32% higher median rates than System 1.

Validation of the model with realistic scenario: To validate our PPP

assumption and to show that it is reasonable, we also present a simulation result

where the BSs are deployed in a square grid and the BS antenna pattern is parabolic,

as specified by the 3GPP standard [1]. In System 2 and 3, both operators have

their own square grid deployments which is shifted from each other by a random

amount in each realization of the simulation. We also consider log-normal shadowing

(σLOS = 5.2dB and σNLOS = 7.6dB). Fig. 4.4 compares the probability of rate coverage

for four systems with these modifications. We observe similar trends for spectrum

license sharing which justifies our assumptions regarding deployment and shadowing.

Fig. 4.5 shows the probability of rate coverage for four systems with Nakagami fading
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Figure 4.3: Rate coverage in a two-network mmWave system with Rayleigh fading
and BS antenna beamwidth θb = 20o for different cases. Systems 3 and 4 with shared
license perform better than System 1 with exclusive licenses.
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Figure 4.4: Rate coverage in a two-network mmWave system with grid BS deployment
and 3GPP antenna pattern [1] for different cases. The trends for this case are similar
to Fig. 4.3 which validates our assumptions regarding the system model.
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Figure 4.5: Rate coverage in a two-network mmWave system with Nakagami fading
(with parameter 10) and BS antenna beamwidth θb = 20o for different cases. When
compared to Rayleigh fading (Fig. 4.3), the insights are similar which justifies the
Rayleigh fading assumption for analysis

(with parameter 10) instead of Rayleigh. It can be seen that the trends are similar

to those of Rayleigh distribution as we claimed in Section IIA.

Impact of beamwidth on median rate: Fig. 4.6 compares the median rate

of the four systems for various values of beamwidth. It can be seen that above a certain

threshold for the beamwidth, it becomes more beneficial to have exclusive license,

due to high interference. As the beamwidth decreases, license sharing becomes more

beneficial. For the given parameters, the threshold is at about 25o. Since mmWave

has typical beamwidth less than 15o, sharing should increase the achievable rate.

Partial loading favors sharing: Fig. 4.7 compares the probability of rate

coverage for four systems under partial loading with user density of 30/km2. It can

be observed that due to reduced interference, System 3 (and 4) has even higher gain
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Figure 4.6: Median rate versus BS antenna beamwidth in two-network mmWave
system under different cases for Rayleigh fading. Systems with sharing of license
outperforms System 1 with no shared license for moderate and low values of antenna
beamwidth.
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Figure 4.7: Rate coverage in a two-network mmWave system under partial loading
with Rayleigh fading for different cases. Partial loading favors spectrum license shar-
ing.
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Figure 4.8: Required bandwidth for each network (with sharing of licenses) to achieve
the same median rate achieved by the network with no sharing of spectrum with each
network having 100MHz spectrum license. Sharing can reduce the license cost by
more than 25%.

than System 1. In particular, System 3 has 40% higher median rate than System

1 in partial loading case compared to only 25% gain in the previous case when user

density was 200/km2.

Sharing reduces spectrum cost significantly: Now, we compare the fol-

lowing two cases. In the first case, each network owns a 100 MHz bandwidth exclusive

license. This case is the same as System 1. In the second case, the networks share

licenses completely and choose to buy just enough spectrum to achieve the same me-

dian rate as in the first case. Fig. 4.8 shows this required spectral bandwidth for each

network. With a 10o beamwidth antenna, each network only needs to buy 75 MHz

of bandwidth which would save 25% of the license cost assuming linear pricing of the

spectrum.
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Figure 4.9: Rate versus number of sharing networks in a mmWave cellular system with
10 networks. A trade-off between increasing the available bandwidth and increasing
interference is observed.

Optimal cardinality of sharing groups depends on the target rate:

Now, we consider a system with 10 operators with 50MHz bandwidth each and closed

access. Fig. 4.9 shows variation of the per-user rate for different percentiles with

respect to cardinality |Qn| of sharing group which is equal to the number of operators

sharing licenses with network n. We can see that the 75th percentile rate increases

with |Qn| while the 25th percentile rate decreases. For the median rate, we see an

increase up to |Qn| = 3 and then the median rate decreases. This trade-off is due

to the fact that as more operators share their licenses, the total available bandwidth

and the sum interference both increase. It can be observed that depending on the

target performance, the optimal number of networks that should share their licenses

varies.

Impact of asymmetry among operators: We now consider the case when
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Figure 4.10: Variation of median rate with BS density of first operator in a two
operator system. The BS density of second operator is fixed at 30/km2. The user
densities of both operators are same and fixed. Both operators gain from license
sharing only when first operator density between 15 to 45/km2. Spectrum license
sharing is more beneficial for the operator with higher density.

both operators are not identical. Fig. 4.10 shows the variation of median rate of

the first and the second operators with respect to BS density of the first operator in

a two-operator system with fixed user density of 200/km2. The BS density of first

operator is fixed at 30/km2. The gain from license sharing increases as the BS density

increases for the operator with higher density and decreases for the other operator.

We can observe that both operators can simultaneously gain from license sharing only

when both operators have similar BS densities which is between 15 to 45/km2 here.

We now consider one more asymmetric case when the first operator size changes

instead of just BS density. Fig. 4.11 shows the variation of median rate of the first and

the second operators with respect to BS density of the first operator in a two-operator

system. Here BS density of the first operator acts as a proxy for its network size.
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Figure 4.11: Variation of median rate with network size of the first operator in a
two operator system. The BS density of second operator is fixed at 30/km2, licensed
bandwidth at 100MHz and user density at 200/km2. Here, BS density, user density
and licensed bandwidth of the first operator vary linearly with network size and all
parameters are the same as second operator when BS density of the first operator
matches with the second operator. Both operators gain from license sharing but the
gain of the operator with lower size is more.

BS density, user density and licensed bandwidth of the first operator vary linearly

with network size. The BS density of second operator is fixed at 30/km2, licensed

bandwidth at 100MHz and user density at 200/km2. For normalization, both opera-

tors are assumed to be identical when BS density of the first operator is 30BSs/km2.

When the first operator’s size is three times more than the second operator, the gain

from license sharing is 26% for the second operator (with lower size) in comparison

to the 9% gain for the first operator. In this case, the spectrum sharing seems more

beneficial to the operator with smaller infrastructure.

Results for 73GHz band: We also consider mmWave communication at

73GHz with 1 GHz bandwidth. The near-field path-loss gains are decreased by a
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Figure 4.12: Rate coverage in a two-network mmWave system at 73 GHz frequency
with Rayleigh fading for different cases. Similar trends for spectrum sharing are
observed for the 28 GHz and 73 GHz bands.

factor of 10 log 10(73/28)2 = 8.32dB when compared with 28GHz for both LOS and

NLOS. Fig. 4.12 compares the rate coverage for four systems for 73GHz and shows

similar trends as 28 GHz. Due to reduced interference, license sharing achieves slightly

higher gain (28%) compared to 28 GHz case (i.e. 25%).

4.8 Conclusions

We have modeled a two-level architecture of a mmWave multi-operator system

and derived the SINR and per-user rate distribution. We show that license sharing

among operators improves system performance by increasing per-user rate. We con-

clude that it is economical for operators to share their spectrum licenses without

increasing any overhead. We show that narrow beams play a key role in making spec-

trum license sharing feasible. Since an increase in the number of networks increases
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both the sum interference and bandwidth, the optimal cardinality of the sharing group

will depend on the target rate.
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Chapter 5

Restricted Secondary Licensing in mmWave

Cellular Systems

In the last chapter, we showed that mmWave systems experience relatively low

interference due to directionality and sensitivity to blockage which leads to possibility

of sharing the mmWave spectrum among different operators without any coordina-

tion. However, due to increased interference from other operators, the cell edge users

suffer and uncoordinated sharing of spectrum licenses results in lower edge rates. Also,

an operator may be ready to share its spectrum, but it may still want to distinguish

itself as the primary owner of a spectrum to achieve certain level of quality of service

or to get a competitive edge in the market. Therefore, it is intuitive to have a licens-

ing scheme where the owner of the spectrum has higher control of the spectrum and

it can impose some restrictions on the other operators it lends the spectrum to. One

important things while imposing such restrictions on the secondary operators is that

too high coordination requirements can eat away the gains from spectrum sharing.

Therefore, there must be a certain limit on how much coordination is required from

the secondary operators. One practical solution is to have some static coordination

based on large channel statistics which does not require continuous sensing of the

1This work has appeared in [114] and [115] in parts. I am the first author of both of these articles.
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spectrum. While spectrum sharing can be beneficial for mmWave systems even with-

out any coordination [83], its gain over exclusive licensing can probably be magnified

with some static coordination. In this chapter, we study such static coordination

based licensing scheme which we term as restricted secondary licensing and explore

the potential gains of such spectrum sharing.

5.1 Related Work

At conventional cellular frequencies, operators own exclusive licenses that give

them the absolute right of using a particular frequency band. One drawback of

exclusive licensing is that some portions of the spectrum remain highly underuti-

lized [85]. To overcome that, secondary network operation–also known as cognitive

radio networks [86–90]–can be used [34,35]. The key operational concept of secondary

networks is to serve their users without exceeding a certain interference threshold at

the primary network, that owns the spectrum. One main approach to guarantee

that is continuous spectrum sensing [34,35]. This, however, consumes a lot of power

and time-frequency resources, which diminishes the practicality of spectrum-sensing

based cognitive radio systems. In the previous chapter, we showed that spectrum

sharing is feasible for mmWave systems even without any coordination. It represents,

therefore, the opposite extreme versus instantaneous spectrum-sensing based cogni-

tive radios. An intermediate solution, between these two extremes, is to allow some

static coordination based on large channel statistics instead of the continuous sensing.

Using stochastic geometry tools, some research has been done on analyz-

ing the performance of cognitive radio networks at conventional cellular frequen-
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cies [35, 116, 117]. In [116], a network of a primary transmitter-receiver pairs and

secondary PPP users was considered, and the outage probability of the primary links

were evaluated. In [35], a cognitive cellular network with multiple primary and sec-

ondary base stations was modeled, and the gain in the outage probability due to

cognition was quantified. In [117], a cognitive carrier sensing protocol was proposed

for a network consisting of multiple primary and secondary users, and the spectrum

access probabilities were characterized. The work in [35, 116, 117], though, did not

consider mmWave systems and their differentiating features. In [83], stochastic ge-

ometry was employed to analyze spectrum-sharing in mmWave systems but with no

coordination between the different operators. When some coordination exists between

these operators, evaluating the network performance becomes more challenging and

requires new analysis, which is one of the contributions in our work.

5.2 Contributions

In this chapter, we consider a downlink mmWave cellular system with a pri-

mary and a secondary operator to evaluate the benefits of secondary licensing in

mmWave systems. The main contributions of this chapter are summarized as follows.

• A tractable model for secondary licensing in mmWave networks: We

propose a model for mmWave cellular systems where an operator owns an

exclusive-use license to a certain band with a provision to give a restricted

license to another operator for the same band. Note that there are different

ideas in the spectrum market for how this restricted license works [118]. We

call the operator that originally owns the spectrum the primary operator, and
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the operator with restricted license the secondary operator. In our model, this

restricted secondary license requires the licensee to adjust the transmit power of

its BSs such that the average interference at any user of the primary operator is

less than a certain threshold. Due to this restriction, the transmit power of the

secondary BSs depends on the primary users in its neighborhood, and hence, it

is a random variable. This required developing new analytical tools to charac-

terize the system performance, which is one of the chapter’s contributions over

prior work.

• Characterizing the performance of the restricted spectrum sharing

networks: Using stochastic geometry tools, we derive expressions for the cov-

erage probability and area spectral efficiency of the primary and restrcited sec-

ondary networks as functions of the interference threshold. Results show that

restricted secondary licensing can achieve coverage and rate gains for the sec-

ondary networks with a negligible impact on the primary network performance.

Compared to the case when the secondary operator is allowed to share the spec-

trum without any coordination [83], our results show that restricted secondary

licensing can increase the sum-rate of the sharing operators. This is in addi-

tion to the practical advantage of providing a way to differentiate the spectrum

access of the different operators.

• Optimal licensing and pricing: We present a revenue-pricing model for

both the primary and secondary operators in the presence of a central licensing

entity such as the FCC. We show that with the appropriate adjustment of
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the interference threshold, both the original operator and the central entity

can benefit from the secondary network license. Therefore, they have a clear

incentive to allow restricted secondary licensing. Further, the results show that

the secondary interference threshold needs to be carefully adjusted to maximize

the utility gains for the primary operator and the central licensing authority.

As the optimal interference thresholds that maximize the central authority can

be different than that of the primary operator, the central authority may have

an incentive to push the primary operator to share even if it experiences more

degradation than otherwise allowable.

5.3 Network and System Model

In this chapter, we consider a mmWave cellular system where an operator owns

an exclusive-use license to a frequency band of bandwidth W . There is a provision

that this licensee can also give a restricted secondary license to another operator for

the same band. To distinguish the two networks, we call the first operator the primary

operator and the second operator as secondary operator.

The primary operator has a network of BSs and users. We model the locations

of the primary BSs as a Poisson point process (PPP) ΦP = {xi} with intensity λP and

the location of users as another PPP ΨP with intensity µP. We denote the distance

of ith primary BS from the origin by xi = ‖xi‖. Each BS of the primary operator

transmits with a power PP. We assume that the secondary license allows the owning

entity to use the licensed band with a restriction on the transmit power: each BS of

the secondary operator adjusts its transmit power so that its average interference on
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any primary user does not exceed a fixed threshold ξ. We model the BS locations

of the secondary operator as a PPP ΦS = {yi} with intensity λS and locations of

its users as another PPP ΨS with intensity µS. Further, we let yi = ‖yi‖ denote

the distance of the ith secondary BS from the origin. The transmit power of the ith

secondary BS is denoted by PSi. We assume that all the four PPPs are independent.

The PPP assumption can be justified by the fact that nearly any BS distribution in

2D results in a small fixed SINR shift relative to the PPP [109, 110] and has been

used in the past to model single and multi-operator mmWave systems [8,14,83,108].

5.3.1 Channel and SINR Model

We consider the performance of the downlink of the primary and secondary

networks separately. In each case, we consider a typical user to be located at the

origin. We assume an independent blocking model where a link between a user and

a BS located at distance r from this user can be either NLOS (denoted by N) with

a probability pN(r) or a LOS (denoted by L) with a probability pL(r) = 1 − pN(r)

independent to other links. One particular example of this model is the exponential

blocking model [8], where pL(r) = exp(−βr). The pathloss from a BS to a user is

given as `t(r) = Ctr
−αt where t ∈ {L,N} denotes the type of the BS-user link, αt is

the pathloss exponent, and Ct is near-field gain for the t type links.

For the typical primary user UEP, let sx denote the type of the link between

the BS at x and this user, and let gx represent the channel fading. Similarly, for the

typical secondary user UES, let txi and hxi denote the type of its link to the BS at x

and its channel fading. For analytical tractability, we assume all the channels have
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normalized Rayleigh fading, which means that all the fading variables are exponential

random variables with mean 1.

We assume that each BS is equipped with a steerable directional antenna. The

BS antennas at the primary BSs has the following radiation pattern [8, 102,119]

GP(θ) =

{
GP1 if |θ| ≤ θPb/2

GP2 if |θ| > θPb/2
, (5.1)

where θ ∈ [−π, π] is the angle between the beam and the user, GP1 is the main

lobe gain, GP2 is the side lobe gain, and θPb is half-power beamwidth. To satisfy

the power conservation constraint, which requires the total transmitted power to be

constant and not a function of the beamwidth, we normalize the gains such that

GP1
θPb

2π
+ GP2

(2π−θPb)
2π

= 1. Similarly, the radiation pattern of the antennas at a

secondary BS is given by GS(θ) with parameters GS1,GS1 and θSb.

Both operators follow maximum average received power based association

where a user connects to a BS providing the maximum received power averaged

over fading. We call this BS the tagged BS. The tagged BS steers its antenna beam

towards the user to guarantee the maximum antenna gain (GP1 or GS1). We take

this steering direction as a reference for the other directions. We denote the angle

between the antenna of a BS at x and the primary user by θx and the secondary user

by ωx . We assume that a user can connect only to a BS in their own network. Now,

we provide the SINR expression for the typical user of each operator (See Fig. 5.1).

1. Primary user UEP at the origin: Let us denote the tagged BS by x0 ∈ ΦP. The
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Table 5.1: Summary of Notation

Notation Description
ΦP, λP,xi For the primary operator: PPP modeling locations of BSs, BS

density, location of ith BS.
ΨP, µP,UEP For the primary : PPP modeling locations of users, user

density, the typical user at the origin.
PP, GP(·), NP For the primary : transmit power of BSs, BS antenna pattern,

and number of BS antennas.
W, ξ Licensed bandwidth, maximum interference limit for secondary

operator.
ΦS, λS,yi For the secondary operator: PPP modeling locations of BSs,

BS density, location of ith BS.
ΨS, µS,UES For the secondary: PPP modeling locations of users, user

density, the typical user at the origin.

PSi, ζi, GP(·), NS For the secondary: transmit power of the ith BS, Normalized
transmit power of the the ith BS defined as PSi/ξ , BS antenna
pattern, and number of BS antennas.

L,N Possible values of link type: L denotes LOS, N denotes NLOS.
sx , gx For the link between UEP and BS at x: sx ∈ {L,N} denotes

the link type and gx is the fading.
tx , hx For the link between UES and BS at x: tx ∈ {L,N} denotes

the link type and hx is the fading.
Hi, Ti, Fi Hi is the closet (radio distance wise) primary user for the ith

secondary BS, Ti is the type of the link between this BS and
Hi, Fi is the fading.

Ct and αt Path-loss model parameters: path-loss gain and path-loss
exponent of any link of type t ∈ {L,N}.

pL(r), pN(r) The probability of being LOS or NLOS for a link of distance r.
Est(x) Exclusion radius for primary users of type t from the secondary

BS when it is associated with a s type primary user located at
distance x.

σ2
P, σ

2
S Noise power at the UEP and UES.

P c
P(·), P c

S(·) Coverage probability of UEP and UES.
Rc

P(·),Rc
P(·) Rate coverage of UEP and UES.

MP(·),MS(·) Revenue functions for the primary and secondary operator.
PP(·),PSC(·) License cost functions for the primary and secondary operators

to the central entity.
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Table 5.1: Cont.

PSP(·) License cost functions given by the secondary operator to the
primary operator.

UP(·),US(·),UC(·) The total revenue functions of the primary operator, the
secondary operator and the central entity.

SINR for this typical user is then given as

SINRP0 =
PPGP1gx0Csx0

x
−αsx0
0

σ2
P +

∑
xi∈ΦP\x0

PPGP(θi)gxiCsxix
−αsxi
i +

∑
yi∈ΦS

PSiGS(ωi)gyiCsyiy
−αsyi
i

.

(5.2)

2. Secondary user UES at the origin: Let us denote the tagged BS by y0 ∈ ΦS.

The SINR for this typical user is then given as

SINRS0 =
PS0GS1hy0Cty0

y
−αty0
0

σ2
S +

∑
xi∈ΦP

PPGP(θi)hxiCtxix
−αtxi
i +

∑
yi∈ΦS\y0

PSiGS(ωi)hyiCtyiy
−αtyi
i

.

(5.3)

5.3.2 Restricted Secondary Licensing

We now describe the restrictions on the secondary licenses and the sensing

mechanism used by the secondary licensee. We assume that all secondary BSs scan

for primary users in their neighborhood. Each secondary BS associates itself with

the closest (radio-distance wise i.e. the one providing it the highest average received

power) primary user. We call this associated primary user as the home primary user

of the ith secondary BS and denote it byHi. Also, we call the secondary BSs attached

to the ith primary user as its native BSs (see Fig. 5.2) and denote the set of these

BSs by Ni.
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Figure 5.1: System model illustrating the SINR model for the typical primary and
the secondary user. ith secondary BS is attached to the closest primary user where
distance between the two is denoted by Ri.

Let us denote the distance between ith secondary BS and its home primary

user Hi by Ri, and the type of the link between them by Ti. Note that Ri for a

secondary BS is not independent to the Ri’s of its adjacent secondary BSs. This is

due to the fact that the transmit power of each secondary BS is determined by the

same primary user process.

For a given Ri = r and Ti = T , all the other primary users will be outside

certain exclusion regions, which is different for the LOS and NLOS users. For a

primary user of link type t, the radius of its exclusion region, denoted by ETt(r), is

given as

ETt(r) = (Ct/CT )
1
αt r

αT
αt . (5.4)

Now, the joint distribution of Ri and Ti is given as follows:

fRi(r, Ti = T ) = 2πµPpT (r)r exp (−µP (VL(ETL(r)) + VN(ETN(r)))) , (5.5)
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Figure 5.2: The association of secondary BSs (diamonds) to their home primary user
(circles) in a particular realization of the adopted mmWave system. Each secondary
BS adjusts its transmit power to keep the interference on its home primary user less
than a given limit ξ.

where VT (r) denotes the volume for LOS or NLOS and is defined as VT (r) = 2π
∫ r

0
pT (r)rdr.

Note that ETt(r) = r when T = t.

Proof. Here, we compute the joint distribution of Ri and Ti = L. The proof for

Ti = N is similar. Consider the ith secondary BS. Now, the primary user PPP can be

divided into two independent PPPs: ΨPL consisting of all primary user having LOS

link to the ith secondary BS and ΨPN with all primary user having NLOS link to the

ith secondary BS. Now, let RLi denote the distance of the closest primary user in ΨPL
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whose distribution can computed as follows:

P [RLi > r] = exp

(
−
∫ ∞

0

µPpL(r)2πrdr

)
= e−µPVL(r)

fRLi
(r) =

d

dr
P [RLi > r] = 2πµPpL(r)r exp(−µPVL(r))

where the first step is from the void probability of the non-homogenous PPP ΨPL.

Similarly the distance distribution of the closest primary user in ΨPN can also be

computed. Now, the joint probability of the event Ri > r and the event that Hi is a

LOS BS (i.e. Ti = L) is computed as

P [Ri > r, Ti = L] =

∫ ∞
r

fRLi
(u)P

[
CNR

−αN
Ni < CLu

−αL
]

du

=

∫ ∞
r

fRLi
(u)P

[
RNi >

(
CN

CL

) 1
αN

u
αL
αN

]
du

=

∫ ∞
r

fRLi
(u)P [RNi > ELN(u)] du =

∫ ∞
r

2πµPpL(u)r exp(−µPVL(u)− µPVN(ELN(u)))du

where the last step is from the void probability of ΨPN. Therefore, the joint distri-

bution can be computed as follows:

fRi(r, Ti = L) =
d

dr
P [Ri > r, Ti = L] = 2πµPpL(r)r exp(−µPVL(r)− µPVN(ELN(r))).

Recall that the ith secondary BS is restricted to transmit at a certain power

such that the average interference at the home user, which is equal to PSiCTi/R
αTi
i m

is below a threshold ξ. Therefore, its transmit power is given by

PSi = ξR
αTi
i /CTi . (5.6)
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The joint distribution of PSi and Ti can be computed using transformation of variables

as

fPSi
(p, Ti = T ) =

2πµPa
2

αT
p

2
αT
−1
pT

(
ap

1
αT

)
exp

(
−µPVT

(
ap

1
αT

)
− µPVT {

(
ETT {

(
ap

1
αT

)))
,

where a = (CT/ξ)
1/αT and T { denotes the complement of T i.e. T { = L if T = N and

vice-versa.

Independent transmit power approximation (ITPA): As discussed ear-

lier in this section, Ri for a secondary BS is not independent to the Ri’s of its adjacent

secondary BSs and the Ri’s and Ti’s of any two nearby secondary BSs are highly cor-

related and hence, their transmit powers PSi’s are also correlated. It is very difficult to

analyze this correlation and compute the joint distribution of {PSk, k ∈ I ⊂ N}. For

tractability, we will further approximate the analysis by assuming that Ri and Ti are

independent over i, which is a standard assumption in modeling similar association

of the interfering mobile transmitters to their respective BSs in uplink analysis [120].

In Section 5.6, we will validate this approximation and show that this approxima-

tion provides very close results in comparison with the exact analysis. With this

approximation, we can replace PSi with another random variable ζi with the same

distribution as PSi but independent with other ζk’s (i 6= k). The derived PPP such

formed from ΦS is denoted by ΦIS. When exact expressions are not possible, we will

solve the expressions assuming ITPA. Finally, if ζi = PSi/ξ denotes the independent

random variable version of normalized transmit power of ith BS, then ζi = R
αTi
i /CTi ,

which is a random variable independent of ξ.
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5.4 Performance Analysis

In this section, we compute the coverage probability of the typical users

UES and UEP. Recall that it is defined as the probability that the SINR at a typical

user from its associated BS is above a threshold τ ,

Pc(τ) = P [SINR > τ ] . (5.7)

5.4.1 Coverage Probability of the Secondary Operator

From the perspective of UES, the secondary BSs can be divided into two

independent PPPs: LOS BSs ΦSL and NLOS BSs ΦSN based on the link type tyi of

each BS. Similarly, the primary BSs are divided into LOS BSs ΦPL and NLOS BSs

ΦPN. Recall that we adopt a maximum average received power based association, in

which any secondary user will associate with the BS providing highest average received

power. Since each BS has a different transmit power PSi, the BS association to the

typical user will be affected by this transmit power. Let LI(s) denote the Laplace

transform of interference I. Now, we give the approximate coverage probability of

UES in the following Lemma.

Lemma 9. The coverage probability of a typical secondary user can be approximated

as

Pc
S(τ) ≈ Pc,app

S (τ) (5.8)

where Pc,app
S (τ) is the coverage probability of a typical secondary user under ITPA and

is given as
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Pc,app
S (τ) =

∑
t0∈{L,N}

∫ ∞
0

2πλSKt0 (u) exp

(
−τu

αt0

ξGS1

σ2
S

)
LIP

(
τuαt0

ξGS1

)
LI′S

(
τuαt0

ξGS1

)

exp

(
−2πλS

∫ u
αt0

/αL

0

KL (z) zdz − 2πλS

∫ u
αt0

/αN

0

KN (z) zdz

)
udu (5.9)

where IP is the interference from the primary BSs, I ′S is the interference from the

secondary BSs satisfying u−αty0 > ζCtyjy
−αtyj
j with ITPA assumption and Kt (u) is

defined as

Kt (u) = Eζ

[
pt

(
uζ

1
αtC

1
αt
t

)
ζ

2
αt

]
C

2
αt
t . (5.10)

Proof. Let Φ be an arbitrary PPP. Now let us assign to each ith secondary BS, a

mark e(yi,Φ) as indicator of yi being selected as serving BS from Φ and another

mark S(yi,Φ) as SINR at SU0 if BS at yi is selected for serving and interferers are

from Φ,

e(yi,Φ) = 1

(
PSiCtyi
‖yi‖αtyi

>
PSjCtyj
‖yj‖αtyj

∀j,∈ Φ

)
, S(yi,Φ) =

GS1hyiPSiCtyi‖y‖
−αtyi

IP + IS(Φ) + σ2
S

(5.11)

where IP =
∑

xj∈ΦP

PPGP(θj)hxjCtxjx
−αtxj
j , and IS(Φ) =

∑
yj∈Φ

PSjGP(ωj)hyjCtyj y
−αtyj
j .

Using the above two indicators, the coverage probability of UES can be written as

Pc
S(τ) =

∑
t0∈{L,N}

E
[∑

yi∈Φ2t0

1(S(yi,ΦS \ yi) > τ, e(yi,ΦS \ yi) = 1)

]
. (5.12)

This is due to the fact that e(yi,ΦS \ yi) can be 1 only for one BS that is at y0,

therefore (5.12) will give the coverage probability provided by BS at y0. (5.12) can
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be further written as

Pc
S(τ)

(a)
=
∑

t0∈{L,N}

∫ ∞
0

λSpt0(‖y‖)Py! [S(y,ΦS) > τ, e(y,ΦS) = 1] dy

(b)
=
∑

t0∈{L,N}

∫ ∞
0

λSpt0(‖y‖)P
[
S(y,Φ′S) > τ

∣∣∣∣ e(y,Φ′S) = 1

]
P [e(y,Φ′S) = 1] dy

(5.13)

where (a) is due to the Campbell Mecke theorem and (b) is due to the Slivnyak

theorem. Note that Φ′S is the process ΦS conditioned on the value of PS0. This is due

to the fact that the secondary BSs transmit powers are not independent to each other

and the fact that serving BS power is PS0, will change the distribution of all PSi’s. To

clarify this dependence explicitly, we have used the notion Φ′S to denote the process

ΦS with modified PS distribution. Due to the dependency, it is difficult to solve (5.13)

further. Therefore, we will approximate the Pc
S(τ) using ITPA. We will replace PSi’s

of each BSs in ΦS with ζi’s which are independent across secondary BSs, but have the

same distribution as PSi’s. Let us denote this new derived PPP as ΦIS. This derived

PPP ΦIS is not dependent on the value of PS0 and we can now replace Φ′S with ΦIS

in (5.13). This approximation has been used in past for uplink analysis and shown

to provide good approximations [120]. The secondary SINR coverage Pc,app
S (τ) under

the independent transmit power approximation is given as

Pc,app
S (τ)

=
∑

t0∈{L,N}

∫ ∞
0

λSpt0(‖y‖)P
[
S(y,ΦIS) > τ

∣∣∣∣ e(y,ΦIS) = 1

]
P [e(y,ΦIS) = 1] dy

(5.14)

Now P [e(y,ΦIS) = 1] can be computed as

P [e(y,ΦIS) = 1]
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= P

[
1

(
ζ0Ct0
yαt0

>
ζjCtj

y
αtj
j

∀yj ∈ ΦIS

)]
= P

 ∏
yj∈ΦIS

1

(
ζ0Ct0
yαt0

>
ζjCtj

y
αtj
j

)
(a)
=
∏

t∈{L,N}
P
[∏

yj∈ΦISt

1
(
ζ0Ct0/y

αt0 > ζjCt/y
αt
j

)]
(b)
=
∏

t∈{L,N}
exp

(
−2πλS

∫ ∞
0

Eζ [1 (ζCt/u
αt > ζ0Ct0/y

αt0 )] pt(u)udu

)
(c)
=
∏

t∈{L,N}
exp

(
−2πλS

∫ ∞
0

Eζ
[
1
(
ζCt/u

αt > ζ0Ct0/y
αt0
)]
pt(u)udu

)
where (a) is due to independence of LOS and NLOS tiers, (b) is from PGFL of PPP

and (c) is due to the fact that ζ = ζξ. Now using the transformation u = (ζCt)
1
αt z,

we get

P [e(y,ΦIS) = 1]

=
∏

t∈{L,N}

exp

(
−2πλS

∫ ∞
0

Eζ

[
1

(
1

zαt
>
ζ0Ct0
yαt0

)
pt((ζCt)

1
αt z)(ζCt)

2
αt zdz

])

=
∏

t∈{L,N}

exp

−2πλS

∫ (ζ0Ct0/y
αt0 )

− 1
αt

0

Kt (z) zdz

 . (5.15)

Using the value from (5.15), (5.13) can be written as

Pc,app
S (τ) =

∑
t0∈{L,N}

Eζ0

[∫ ∞
0

λpt0(y)

P

[
GS1hyζ0ξCt0y

−αt0

IP + IS + σ2
S

> τ |
(
ζ0ξCt0
yαt0

>
ζjξCtj
yαtj

∀j ∈ ΦIS

)]

exp

−2πλS

∫ (ζ0Ct0/y
αt0 )

− 1
αL

0

KL (z) zdz


exp

−2πλS

∫ (ζ0Ct0/y
αt0 )

− 1
αN

0

KN (z) zdz

 2πydy

 .
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Now, substituting y = uζ
1/αt0
0 C

1/αt0
t0 , we get

Pc,app
S (τ) =

∑
t0∈{L,N}

Eζ0

[∫ ∞
0

λpt0(uζ0
1/αt0C

1/αt0
t0 )

P

[
GS1ξhyu

−αt0

IP + IS + σ2
S

> τ

∣∣∣∣
(
uαt0 <

yαtj

ζjCtj
∀j ∈ ΦIS

)]

exp

(
−2πλS

∫ u
αt0

/αL

0

KL (z) zdz

)

exp

(
−2πλS

∫ u
αt0

/αN

0

KN (z) zdz

)
ζ0

2/αt0CL
2/αt0 2πudu

]
which can be further simplified by moving the expectation inside as

Pc,app
S (τ) =

∑
t0∈{L,N}

∫ ∞
0

2πλSEζ0
[
pt0(uζ0

1/αt0C
1/αt0
t0 )ζ0

2/αt0
]
P
[
GS1ξhyu

−αt0

IP + I ′S + σ2
S

> τ

]

exp

(
−2πλS

∫ u
αt0

/αL

0

KL (z) zdz

)
exp

(
−2πλS

∫ u
αt0

/αN

0

KN (z) zdz

)
CL

2/αt0udu

(5.16)

where I ′S is interference from the conditioned secondary PPP. Using the MGF of hy ,

the inner SINR probability term can be written as

P
[
GS1hyξu

−αt0

IP + I ′S + σ2
S

> τ

]
= exp

(
−τu

αt0

ξGS1

σ2
S

)
LIP

(
τuαt0

ξGS1

)
LI′S

(
τuαt0

ξGS1

)
(5.17)

Using the definition of Kt (z) and substituting (5.17) in (5.16), we get the Lemma.

This result is interesting because the distribution of the secondary transmit

power PS is decoupled from most of the terms, which noticeably simplifies the final

expressions. As seen from (5.3), the term PS is present in the association rule, serving

power, and the interference. In Lemma 9, this dependency of the coverage probability

161



on PS is reduced to only one function Kt(·) (see the above proof for the techniques

used), making the whole integral easily computable, which is a key analytical contri-

bution of the chapter. Now, we derive the Laplace transforms of IP and I ′S which are

given in the following Lemmas.

Lemma 10. The Laplace transform of the interference I ′S from the derived secondary

network ΦIS is given as

LI′S(s) = exp

(
−λS

2∑
k=1

akFS(sξGSk, u
αt0 )

)
(5.18)

where a1 = θSb/(2π), a2 = 1− a1 and FS(B, e) = 2π
∑

t∈{L,N}

∫ ∞
e

1
αt

Kt (v)

1 +B−1vαt
vdv.

Proof. The interference from the derived conditional secondary PPP is given as

I ′S =
∑

yi∈ΦIS

hyi1

(
y
αtyi
i

ζiCtyi
> uαt0

)
ξζiCtyiy

−αtyi
i GS(θi).

Therefore, the Laplace transform of I ′S can be expressed as

LI′S(s) = E

[
exp

(
−s

∑
yi∈ΦIS

hyi1

(
y
αtyi
i

ζiCtyi
> uαt0

)
ξζiCtyiy

−αtyi
i GS(θi)

)]
(5.19)

Note that ζi terms in (5.19) are independent marks.

I ′S can be split into interference from LOS and NLOS BSs in ΦS as I ′S =

I ′SL + I ′SN. Hence, the Laplace transform of I ′S can be expressed as product of Laplace

transforms of I ′SL and I ′SN. Now, the Laplace transform of I ′SL is given as

LI′SL
(s) = E

exp

−s ∑
yi∈ΦSL

hyi1

(
yαL
i

ζiCL

> uαt0
)
ξζiCLy

−αL
i GS(θi)

 (5.20)
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(a)
= exp

(
−λS2πEPS,θ

[∫ ∞
0

(
1− e−shyξζCLy

−αLGS(θ)
)
1

(
yαL

ζCL

> uαt0
)
pL(y)ydy

])
(5.21)

where (a) is due to PGFL of the PPP. Now using the transformation y = v(ζCL)1/αL ,

we get

LI′SL
(s) = exp

(
−λS2πEPS,θ

[∫ ∞
0

(
1− e−shyξv−αLGS(θ)

)
1 (vαL > uαt0 ) pL(v(ζCL)

1
αL )(ζCL)

2
αL vdv

])
.

Now moving the expectation with respect to θ and ζ inside the integration, we get

LI′SL
(s) = exp

(
−λS2π

∫ ∞
u

αt0
αL

Eθ
[
1− e−shyξv−αLGS(θ)

]
KL (v) vdv

)
. (5.22)

Now, using definition of ak’s, the inner term can be written as

1− E
[
exp

(
−shyξv−αLGS(θ)

)]
= E

[
sξv−αLGS(θ)

1 + sξv−αLGS(θ)

]
=

2∑
k=1

ak

1 + ξ−1s−1G−1
Sk v

αL
.

(5.23)

Using (5.23) in (5.22), we get

LISL
(s) = exp

(
−λS2π

∫ ∞
u

αt0
αL

2∑
k=1

ak

1 + ξ−1s−1G−1
Sk v

αL
KL (v) vdv

)
.

Similarly LI′SN
(s) can be computed. Multiplying the values of LI′SL

(s) and LI′SN
(s)

and using the definition of FS(B, e), we get the Lemma.

Lemma 11. The Laplace transform of the interference IP from the primary network

is given as

LIP(s) = exp

(
−λP

2∑
k=1

bkFP(sGPk)

)
(5.24)
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where b1 = θPb/(2π), b2 = 1− b1,

FP(B) = 2π
∑

t∈{L,N}

∫ ∞
0

Mt (u)

1 +B−1vαt
vdv, and Mt (u) = pt

(
uP

1
αt

P C
1
αt
t

)
P

2
αt

P C
2
αt
L .

Proof. The primary interference is given as IP =
∑

xi∈ΦP
hxiPPCtxix

−αtxi
i GP(θi). Sim-

ilar to the proof of Lemma 10, LIP(s) = LIPL
(s)LIPN

(s). Using the PPP’s PGFL,

LIPL
(s) can be computed as

LIPL
(s) = exp

(
−λP2πEθ

[∫ ∞
0

(
1− e−shxiPPCLx

−αLGP(θ)
)
pL(x)xdx

])
.

Now using the transformation x = v(PPCL)1/αL , we get LIPL
(s)

= exp

(
−λP2πEPS,θ

[∫ ∞
0

(
1− e−shxiv−αLGP(θ)

)
pL(v(PPiCL)

1
αL )(PPCL)

2
αL vdv

])
.

Now, interchanging the order of expectation and integration and using Mt (·)’s defi-

nition, we get

LIPL
(s) = exp

(
−λP2π

∫ ∞
0

Eθ
[
1− e−shxv−αLGP(θ)

]
ML (v) vdv

)
. (5.25)

Now, using definition of bk’s, the inner term can be written as

1− E
[
exp

(
−shxv−αLGP(θ)

)]
= E

[
sv−αLGP(θ)

1 + sv−αLGP(θ)

]
=

2∑
k=1

bk

1 + s−1G−1
Pkv

αL
. (5.26)

Using (5.26) in (5.25), we get

LIPL
(s) = exp

(
−λS2π

∫ ∞
0

2∑
k=1

bk

1 + s−1G−1
Pkv

αL
ML (v) vdv

)
.

Similarly LIPN
(s) can be computed. Using the values of LIPL

(s) and LIPN
(s) and the

definition of FP(B), we get the Lemma.
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Now, substituting the Laplace transform of the primary and secondary inter-

ference at the UES in Lemma 9, we can compute the final expression of the coverage

probability, which we give in the following theorem. 1

Theorem 11. The coverage probability of a typical user of the secondary operator

in a mmWave system with restricted secondary licensing can be approximated using

ITPA assumption as

Pc
S(τ) ≈ Pc,app

S (τ)

=
∑

t0∈{L,N}

∫ ∞
0

2πλS exp

[
−λP

2∑
k=1

bkFP

(
τuαt0GPk

ξGS1

)
− λS

2∑
k=1

akFS

(
τuαt0GSk

GS1

, uαt0
)

−τu
αt0

ξGS1

σ2
S − 2πλS

∫ u
αt0

/αL

0

KL (z) zdz − 2πλS

∫ u
αt0

/αN

0

KN (z) zdz

]
Kt0(u)udu.

(5.27)

Since the expression in Theorem 11 is complicated, we consider the following

three special cases to give simple and closed form expressions.

Special Cases:

(i) Consider a mmWave network with identical parameters for LOS and NLOS

channels (which is also the typical assumption for a UHF system). For this

case, we can combine the LOS and NLOS PPPs in to a single PPP of type t

for which Kt (u) is given as

Kt (u) = Eζ
[
ζ

2
α

]
C

2
α = E

[
R2
]

= (µPπ)−1 , (5.28)

1Note that Theorem 11 as well as Theorem 12 is an approximate expression due to the fact that
the transmit powers of secondary BSs are assumed to be independent to each other in the derivation.
We have commented on the accuracy of this approximation in Section 5.6.
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which is no longer a function of u. Let us denote this constant by K. Similarly,

Mt (u) can be simplified as Mt (u) = P
2
α

P C
2
α , which is no longer a function of

u and hence can be denoted by M . Therefore, FS(B, e) and FP(B/ξ) can be

simplified as follows:

FS(B, e) = K

∫ ∞
(e)

1
α

1

1 + (B)−1vα
2πvdv = KB

2
α

∫ ∞
(e/B)

1
α

1

1 + vα
2πvdv,

FP(B/ξ) =

∫ ∞
0

2πP
2
α

P C
2
α
t

1 + ξB−1vα
vdv = (ξB−1)−

2
α

∫ ∞
0

2πP
2
α

P C
2
α

1 + vα
vdv.

Now, Let us define ρ(α, τ) =

∫ ∞
τ−1/α

1

1 + vα
2vdv and ρ(α) = ρ(α,∞), then

FS(B, e) = πKB
2
αρ(α,B/e)⇒

FS

(
τuα

GS1

GSk, u
α

)
= πKτ

2
αu2

(
GSk

GS1

) 2
α

ρ

(
α,
τGSk

GS1

)
,

FP

(
B

ξ

)
= π

(
BPPC

ξ

) 2
α

ρ(α)⇒ FP

(
τuαGPk

ξGS1

)
= π

(
PPτC

ξ

GPk

GS1

) 2
α

u2ρ(α).

Let us define

F ′′P =
2∑

k=1

bk

(
GPk

GS1

) 2
α

ρ(α)

and

F ′′S (τ) =
2∑

k=1

ak

(
GSk

GS1

) 2
α

ρ

(
α,
τGSk

GS1

)
. Then, the approximate coverage probability is given as

Pc,app
S (τ) = 2πλSK

∫ ∞
0

e
− τσ2

S
ξGS1

uα−u2
(
πλPξ

− 2
α τ

2
α (PPC)

2
α F ′′P +πλSKτ

2
α F ′′S (τ)+πλSK

)
udu.

(ii) Consider a mmWave system with identical LOS and NLOS channels in the

interference limited scenario. In this case, the coverage probability is given as
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Pc
S(τ) ≈[

1 + τ
2
α

(
λP

ξ
2
αλS

(PPC)
2
α

(µPπ)−1

2∑
k=1

bk

(
GPk

GS1

) 2
α

ρ(α) +
2∑

k=1

ak

(
GSk

GS1

) 2
α

ρ

(
α,
τGSk

GS1

))]−1

(5.29)

Impact of secondary densification and ξ: We can see from the result in

(5.29) that Pc
S(τ) is invariant if the term ξλ

α/2
S is kept constant. This is due

to the following observation: if we increase the secondary BS density λS by a

factor of a, the distance of the secondary BSs decreases by a factor of
√
a and

therefore, the secondary interference increases by the factor of aα/2, and if we

increase the interference limit ξ by a, the secondary interference also increases by

a. Therefore, densifying the secondary network while reducing its interference

threshold by the appropriate ratio keeps the coverage probability constant.

Impact of narrowing secondary antenna: If we assume that the secondary

antennas are uniform linear arrays of NS antennas, then ak’s and GSk’s can be

approximated as [121]

a1 =
κ

NS

, GS1 = NS, a2 = 1− κ

NS

, and GS2 =
(1− κ)NS

NS − κ
(≈ 1− κ for large NS)

where κ is some constant. Now, the term denoting primary interference de-

creases as κ

N
2/α
S

and the term denoting the secondary interference decreases as

κ
N
ρ(α, τ)+

(
1−κ
NS

)2/α

ρ
(
α, τ 1−κ

NS

)
. Therefore, narrowing the secondary antennas

beamwidth noticeably improves the secondary performance.

Impact of narrowing primary antenna: With a similar assumption for the

primary BSs to have uniform linear arrays of NP antennas, bk’s and GPk’s can
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be approximated as b1 = κ
NP
, GP1 = NP, b2 = 1 − κ

NP
, and GP2 = (1−κ)NP

NP−κ
(≈

1− κ for large N). Now, the term denoting the primary interference decreases

as κ

N
1−2/α
P

+ (1− κ)2/α while the term denoting the secondary interference re-

mains constant. Therefore, narrowing the primary beamwidth slightly improves

the secondary performance. For high value of ξ where the secondary interfer-

ence dominates, the secondary performance does not improve by narrowing the

primary antennas.

(iii) Suppose that both operators have the same beam patterns with zero side-lobe

gain. In this case, the coverage probability can be simplified to a closed form

expression:

Pc
S(τ) =

[
1 +

θb
2π
τ 2/α

(
λP

λS

ξ−
2
α

P
2
α

P ρ(α)

(µPπC
2
α )−1

+ ρ(α, τ)

)]−1

which, for α = 4, becomes

Pc
S(τ) =

[
1 +

θb
√
τ

2π

(
1√
ξ

λP

λS

√
CPP

(µP)−1

π2

2
+ tan−1(

√
τ)

)]−1

.

5.4.2 Coverage Probability of the Primary Operator

Similar to the secondary case, for UEP also, all the primary and secondary BSs

can be divided into two independent LOS and NLOS PPPs based on the link type

between each BS and UEP. Recall that we have assumed maximum average received

power based association, in which any primary user will associate with the BS x0

providing highest average received power. We, now compute the coverage probability

of the typical primary user which is given in Lemma 12.
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Lemma 12. The coverage probability of the primary operator is given as

P c
P(τ) =

∑
t0∈{L,N}

∫ ∞
0

2πλPMt0 (u) exp

(
−τu

αt0

GP1

σ2
P

)
LI′P

(
τuαt0

GP1

)
LIS

(
τuαt0

GP1

)

exp

(
−2πλP

∫ u
αt0

/αL

0

ML (z) zdz − 2πλP

∫ u
αt0

/αN

0

MN (z) zdz

)
udu (5.30)

where I ′P is the interference from the primary operator conditioned on the fact that

the serving BS is at x0 and I ′S is the interference from the secondary operator.

Proof. The proof is similar to the proof of Lemma 9. The only difference is that the

computations for the primary and secondary operators are interchanged and there

will not be any expectation with respect to the transmit power of the primary BSs

as the primary transmit power is deterministic. We also do not need to approximate

ΦS with ΦIS to get this Lemma.

We now compute the Laplace transforms of the primary and secondary inter-

ference which is given in the following two Lemmas.

Lemma 13. The Laplace transform of the interference I ′P from the conditioned pri-

mary network is given as

LI′P(s) = exp

(
−λP

2∑
k=1

bkEP(sGPk, u
αt0 )

)
(5.31)

where EP(B, e) is given as: EP(B, e) = B
2
αt

∑
t∈{L,N}

∫ ∞
(e/B)

1
αt

1

1 + vαt
Mt

(
vB

2
αt

)
2πvdv.

Proof. The proof is similar to the proof of Lemma 10 with only difference being lack

of any expectation with respect to the primary BSs’ transmit powers.
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The following Lemma gives the approximate Laplace transform of the inter-

ference from the secondary operator where functions EFS and ENS are due to IFS

and INS respectively.

Lemma 14. The Laplace transform of the interference from the secondary network

can be approximated as

LIS(s) ≈ LIapp,S
(s). (5.32)

Here, LIapp,S
(s) is the Laplace transform of the interference under the ITPA assump-

tion and is given as

LIapp,S
(s) = exp

(
−λS

2∑
k=1

ak (EFS (sGSk, ξ) + ENS(sGSk))

)
, (5.33)

where EFS(B, ξ) and ENS(B) are given as

EFS(B, ξ) = (Bξ)
2
αt

∑
t∈{L,N}

∫ ∞
(ξB)

− 1
αt

Kt

(
v(Bξ)

1
αt

)
1 + vαt

2πvdv (5.34)

ENS(B) =
1

1 + (Bξ)−1

∫ 1

0

(KL (v) +KN (v))2πvdv. (5.35)

Proof. The secondary interference is given as

IS(s) =
∑

t∈{L,N}

∑
yi∈ΦSt

gyiPSiCty
−αt
i GS(θi) (5.36)

We first note that the transmit powers of secondary BS are correlated which makes

the expression intractable. Therefore, we will replace ΦS with ΦIS to approximate the

above expression as

IS(s) ≈ Iapp,S(s) =
∑

t∈{L,N}

∑
yi∈ΦISt

gyiζiCty
−αt
i GS(θi) (5.37)
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Now, note that the transmit power of each secondary BS is correlated with the

location of the typical primary user. Since we have conditioned on the location of this

typical user, the distribution of ζ may change. Including the exact correlation among

these is difficult and it may make analysis intractable. Therefore, in this analysis, we

model this correlation by truncating the distribution of ζ for the BSs in native N0 and

for those who are not in this set. In Section 5.6, we will validate this approximation

with other approximations.

The approximate secondary interference Iapp,S can be written as sum of fol-

lowing two interferences: the interference IFS from the BSs that are not in native set

N0 and interference INS from the BSs that are in N0. Let us first consider IFS which

is given as

IFS(s) =
∑

t∈{L,N}

∑
yi∈ΦSt

gyi1
(
CTiR

−αTi
i > Cty

−αt
i

)
ξζiCty

−αt
i GS(θi) (5.38)

where the indicator term denotes that only those secondary BSs are considered whose

receiver power at the their home primary user is greater than their received power

at UEP which means that UEP is not the home primary user for these BSs. Now its

Laplace transform is equal to

LIFS
(s)

(a)
=

∏
t∈{L,N}

E

exp

−s ∑
yi∈ΦSt

gyi1
(
1/ζ > Cty

−αt
i

)
ξζiCty

−αt
i GS(θi)


(b)
=
∏
t

exp

(
−λS2πEζ,θ

[∫ ∞
0

(
1− e−sgyξζCty−αtGS(θ)

)
1
(
ζ < C−1

t yαti
)
pt(y)ydy

])
where (a) is from independence of LOS and NLOS tiers and (b) is due to the PGFL
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of PPP. Now, using the transformation y = v(ζCt)
1/αt , we get

LIFS
(s) =

∏
t

exp

(
−λS2πEζ,θ

[∫ ∞
0

(
1− exp

(
−sgyξv−αtGS(θ)

)
(5.39)

×1 (v > 1)) pt(v(ζCt)
1
αt )v(ζCt)

2
αt dv

])
(a)
=
∏
t

exp

(
−λS2πEθ

[∫ ∞
1

(
1− exp

(
−sgyξv−αtGS(θ)

))
Kt (v) vdv

])
where (a) is due to interchanging the integration and the expectation with respect to

ζ and applying Kt’s definition.

Now, using the MGF of gy and the distribution of GS(θ), we get

LIFS
(s) =

∏
t

exp

(
−λS2π

∫ ∞
1

2∑
k=1

ak

1 + s−1ξ−1G−1
Sk v

αt
Kt (v) vdv

)
.

Now substituting u = (sξGSk)
−1/αtv, we get LIFS

(s)

=
∏
t

exp

(
−λS2π(sξGSk)

2/αt

∫ ∞
(sξGSk)−1/αt

2∑
k=1

ak
1 + uαsy

Kt

(
(sξGSk)

1/αtu
)
udu

)
.

Using the definition of EFS(B, ξ), we get

LIFS
(s) = exp

(
−λS

2∑
k=1

akEFS (sGSk, ξ)

)
. (5.40)

Now, let us consider INS which is given as

INS(s) =
∑

t∈{L,N}

∑
i∈ΦSL

gyi

(
1− 1

(
CTiR

−αTi
i > CLy

−αL
i

))
ξGS(θi)

where the indicator term are exact opposite of the previous case and denotes that only

those secondary BSs are considered whose receiver power at the their home primary
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user is not greater than their received power at UEP. Note that the interference from

each of these secondary BSs is equal to ξ. Hence, its Laplace transform is given as

LINS
(s) =

∏
t∈{L,N}

E

exp

−s ∑
i∈ΦSL

gyi1
(
CTiR

−αTi
i < Cty

−αt
i

)
ξGS(θi)


(a)
=

∏
t∈{L,N}

exp

(
−λS2πEζ,θ

[∫ ∞
0

(1− exp (−sgyξGS(θ)

×1
(
yαt

ζCt
< 1

)))
pt(y)ydy

])
where (a) is due to PGFL of a PPP. Substituting y = (ζCt)

1/αtv, we get

LINS
(s) =

∏
t∈{L,N}

exp

(
−λS2πEζ,θ

[∫ ∞
0

(
1− e−sgyξGS(θ)

)
(5.41)

1 (vαt < 1) pt((ζCt)
1
αt v)(ζCt)

2
αt vdv

])
.

Now using the MGF of exponential gy and the PMF of GS(θ), we get

LINS
(s) = exp

(
−λS2π

[
2∑

k=1

ak
1 + (sξGSk)−1

](∫ 1

0

KL (v) vdv +

∫ 1

0

KN (v) vdv

))
.

(5.42)

Using (5.40) and (5.42), we get the Lemma.

Now, substituting the Laplace transforms of I ′P and IS in Lemma 12, we can

compute the final expression of the coverage probability, which is given in the following

theorem.

Theorem 12. The coverage probability of a typical user of the primary operator in

a mmWave system with secondary licensing can be approximated as

Pc
P(τ) ≈ Pc,app

P (τ). (5.43)
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Here, Pc,app
P (τ) is the coverage probability of a typical user of the primary opertor

under ITPA assumption and is given as

Pc,app
P (τ) =

∑
t0∈{L,N}

∫ ∞
0

2πλPMt0 (u) e
− τu

αt0
GP1

σ2
S

e
−λP

∑2
k=1 bkEP

(
τu
αt0

GP1
GPk,u

αt0

)
−λS

∑2
k=1 akEFS

(
τu
αt0

GP1
GSk,ξ

)
× e

−λS
∑2
k=1 akENS

(
τu
αt0

GP1
GSk

)

e

(
−2πλP

∫ uαt0/αL

0 ML(z)zdz−2πλP

∫ uαt0/αN

0 MN(z)zdz

)
udu. (5.44)

Special Cases: Similar to the secondary case, consider a mmWave network with

identical parameters for LOS and NLOS channels. For this case, Mt (u) and Kt (u)

are replaced by constant M and K. Now, EP(B, e), EFS(B) and EFS(B, ξ) can be

simplified as follows:

EP(B, e) = πMB
2
αρ(α,B/e),

EFS(B, ξ) = (ξB)
2
απKρ(α, ξB),

ENS(B) =
πK

1 + (Bξ)−1

Now,

EP

(
τuα

GP1

GPk, u
αt0

)
= πMu2τ

2
α

(
GPk

GP1

) 2
α

ρ

(
α,
τGPk

GP1

)
,

EFS

(
τuαGSk

GP1

, ξ

)
= πKu2

(
τξ
GSk

GP1

) 2
α

ρ

(
α, ξ

τuαGSk

GP1

)
,

ENS

(
τuαGSk

GP1

)
=

πK

1 + ( τGSk

GP1
ξ)−1u−α

Then, the primary coverage probability under ITPA assumption is given as

Pc,app
P (τ) = 2πλPM

∫ ∞
0

e
− τuα

ξGS1
σ2

S−u
2πτ

2
α

(
λP
∑2
k=1 bkM

(
GPk
GP1

) 2
α
ρ
(
α,
τGPk
GP1

))
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e
−u2πτ

2
α

(
λS
∑2
k=1 akKξ

2
α

(
GSk
GP1

) 2
α
ρ
(
α,ξ

τuαGSk
GP1

))
−πλS

∑2
k=1 akK/

(
1+
(
τGSk
GP1

ξ
)−1

u−α
)
−πλPMu2

udu.

Assuming similar assumptions for the primary and secondary antennas as

taken in the secondary case, we can get insights about how antenna beamwidth affects

the primary performance.

Impact of narrowing primary antenna beamwidth: The term denoting

secondary interference decreases with NP as

u2c
2
αρ

(
α, uα

c

NP

)
κ

N
2/α
P

+
1

1 +NPu−α/c

(
≈ 1

NP

c

uα
as NP →∞

)
.

Here, c is some variable independent of NP. Similarly, the term denoting the primary

interference decreases with NP as

κ

NP

ρ(α, τ) +

(
1− κ
NP

)2/α

ρ

(
α, τ

1− κ
NP

)
.

Therefore, narrowing the primary antennas beamwidth improves the primary perfor-

mance significantly.

Impact of narrowing secondary antenna beamwidth: Here, the term

denoting the secondary interference changes with NS as

u2d
2
αρ (α, uαNSd)

κ

N
1−2/α
S

+
κ

NS

1

1 + u−α/(NSd)

+ u2((1− κ)d)
2
αρ (α, uα(1− κ)d) +

1

(1 + u−α/((1− κ)d))
,

where d is some variable independent of NS. The term denoting the primary in-

terference remains unchanged with with NS. Therefore, narrowing the secondary

beamwidth has very little affect on the primary performance.
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5.4.3 Rate Coverage for the Primary and Secondary Operators

In this section, we derive the downlink rate coverage which is defined as the

probability that the rate of a typical user is greater than the threshold ρ, Rc(ρ) =

P [Rate > ρ].

Let OS (or OP) denote the time-frequency resources allocated to each user

associated with the ‘tagged’ BS of a secondary user (or a primary user). The in-

stantaneous rate of the considered typical secondary user can then be written as

RS = OS log (1 + SINRS). The value of OS depends upon the number of users (nS),

equivalently the load, served by the tagged BS. The load nS is a random variable

due to the randomly sized coverage areas of each BS and random number of users in

the coverage areas. As shown in [14, 58], approximating this load with its respective

mean does not compromise the accuracy of results. Since the user distribution of

each network is assumed to be PPP, the average number of users associated with the

tagged BS of each networks associated with the typical user can be modeled similarly

to [14, 58]: nS = 1 + 1.28µS

λS
and nP = 1 + 1.28µP

λP
. Now, we assume that the sched-

uler at the tagged BS gives 1/n fraction of resources to each user. This assumption

can be justified as most schedulers such as round robin or proportional fair give ap-

proximately 1/nS (or 1/nP) fraction of resources to each user on average. Using the

mean load approximation, the instantaneous rate of a typical secondary user which

is associated with BS at y0 is given as

RS =
W

nS

log (1 + SINRS). (5.45)
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Now, Rc
S(ρ) and Rc

P(ρ) can be derived in terms of coverage probability as follows:

Rc
S(ρ) = P [RS > ρ] = P

[
W

nS

log (1 + SINRS) > ρ

]
= P

[
SINRS > 2ρ

nS
W − 1

]
= Pc

S

(
2ρnS/W − 1

)
,

Rc
P(ρ) = Pc

P

(
2ρnP/W − 1

)
. (5.46)

We now define the median rate which works as a proxy to the network perfor-

mance.

Definition 1. Let B denote a region with unit area. The median rate R of an operator

is define as the sum of the median rates of all the users served in B, which is

R = E

[ ∑
u∈Ψ∩B

Mu [R]

]
(5.47)

where Mu [R] is the median rate of the user at u.

From the stationarity of the user PPP,

R = E

[ ∑
u∈Ψ∩B

Mu [R]

]
= µ

∫
B
M0 [R] du = µM0 [R] (5.48)

where M0 denotes the median rate at the origin under Palm (i.e. conditioned on the

fact that there is a user at 0). Note that this is equal to the rate threshold where

rate coverage of the typical user at the origin is 0.5. Let (Pc)−1(·) denote the inverse

of Pc(·). Now using (5.46), we can compute the median rate of the primary and

secondary operators as follows:

RP = W
µP

1 + 1.28µP/λP

log
(
1 + (Pc

P)−1 (0.5)
)

(5.49)

RS = W
µS

1 + 1.28µS/λS

log
(
1 + (Pc

S)−1 (0.5)
)
. (5.50)
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5.5 License Pricing and Revenue Model

In this section, we present the utility model, and describe the general license

pricing and revenue functions. We assume a centralized licensing model in which

a central entity, such as FCC, has a control over the licensing for the primary and

secondary operators. Therefore, even though the primary operator has an ”exclusive-

use” license, the decision to sell a restricted license to a secondary operator is taken

by both the primary operator and the central licensing authority. These two entities

will also share the revenue of the restricted secondary license.

LetMP(RP) define the per-unit-area revenue function of the primary operator

from its own users when it provides a sum rate of RP. Similarly, we define the

secondary revenue functionMS(·) that models the revenue of the secondary network

from its users. One special case is the linear mean revenue function, which is given

as follows

MP(RP) = MPRP, MS(RS) = MSRS, (5.51)

with MP and MS representing the linear primary and secondary revenue constants.

To characterize the licensing cost, we assume the licenses are given on a unit

area region basis. Let the primary licensing function PP(RP) denote the license price

paid by the primary to central entity when it provides the median rate of RP to its

users. Similarly, we define secondary licensing function PSC(·) which denotes the price

paid by the secondary operator to the central entity. We also assume that secondary

operator has to pay some license price to the primary operator as an incentive to let

it use the primary license band which is given as PSP(RS). We also define a special
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case as linear licensing function where the licensing cost paid by the primary and

the secondary operators to the central entity and by the secondary operator to the

primary operator are given as

PP(RP) = ΠPRP, PSC(RS) = ΠSCRS, PSP(RS) = ΠSPRS.

The utility function of an entity is defined by its total revenue which for the

three entities is given as follows:

UP(RP) =MP(RP)− PP(RP) + PSP(RS), (5.52)

US(RS) =MS(RS)− PSC(RS)− PSP(RS), (5.53)

UC(RS) = PP(RP) + PSC(RS). (5.54)

Note that the secondary median rate depends on the maximum interference

limit ξ. By increasing this limit, secondary network can increase its median rate

for which it has to pay more to central entity and the primary operator. Increasing

this limit, however, decreases the primary median rate which impacts the primary

network revenue from its own users. Therefore, there exists a trade-off when varying

the interference limit ξ.

5.6 Simulation Results and Discussion

In this section, we provide numerical results computed from the analytical

expressions derived in previous sections, and draw insights into the performance of

restricted secondary licensing in mmWave systems. For these numerical results, we

adopt an exponential blockage model, i.e., the LOS link probability is determined by
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pL(x) = exp(−x/β), with a LOS region β = 150m. The LOS and NLOS pathloss

exponents are αL = 2.5 and αN = 3.5, and the corresponding gains are CL = CN =

−60dB. Unless otherwise mentioned, the primary network has an average cell radius

of 100m, which is equivalent to a BS density of ≈ 30/km2. The transmit power of the

primary BSs is 40dBm, while the transmit power of each secondary BS is determined

according to (5.6) to ensure that its average interference on its home primary user

in less than the threshold ξ. Both networks operate at 28GHz carrier frequency over

a shared bandwidth of 500MHz. Note that the noise power at the BS is −110dB.

Therefore, if ξ is between −110dB and −120dB, the secondary interference will be

in the order of the noise. For the antenna patterns, the primary and secondary BSs

employ a sectored beam pattern models as described in Section 5.3.1. First, we verify

the derived analytical results for the primary and secondary coverage probabilities,

before delving into the spectrum sharing rate and utility characterization.

5.6.1 Coverage and Rate Results

Since the secondary operator shares the same time-frequency resources with

the primary, it is important to characterize the impact of sharing on the primary

performance. In this subsection, we evaluate the coverage and rate for both opera-

tors, and study the impact of secondary network’s densification and narrowing the

beamforming beams on the performance of the two networks.

Validation of analysis: Recall that in the secondary performance analysis,

we assumed for tractability that the transmit powers of secondary BSs are indepen-

dent to each other. Additionally, for the primary performance analysis, we assumed
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Figure 5.3: Coverage probabilities of the two licensees for two different values of λS

with ξ = −120dB. The secondary can improve its coverage by choosing an appropriate
density without impacting the primary coverage.

that the correlation between the location of the typical primary user and the transmit

power of any secondary BS can be modeled by a simple truncation of the distribution

of PS. In the simulation, we relax this approximation. Instead, in each iteration, we

first generate all four processes (ΦP,ΨP,ΦS and ΨS). We, then, compute and assign

the home primary user to each secondary BS based on the pathloss and compute each

secondary BS’s transmit power. Finally, we compute the SINR for each typical user.

Fig. 5.3 shows the coverage probabilities of both operators for two different values

of the secondary density, λS = 30 BSs/km2 and λS = 60 BSs/km2 along with results

from the analysis. The density of the primary BSs is fixed at λP = 30 BSs/km2

and the maximum secondary interference threshold is set to -120 dB. We can see

that despite the various assumptions taken in the analysis, the analysis matches the
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Figure 5.4: Sum median rate of the primary and secondary networks as well as the
total sum median rate versus ξ. The networks have equal density of 56 BS/km2,
which corresponds to an average cell radius of 75m.

simulations closely. Rest of the results in this section are obtained using simulations

without the ITPA assumption.

Impact of the secondary densification: An interesting note from Fig. 5.3

is that increasing the secondary network density significantly improves the secondary

network coverage while causing a negligible impact on the primary network perfor-

mance. In particular, when λS increases from 30 to 60 BSs/km2, the median SINR of

the secondary network increases from -4dB to 6dB while the median SINR of primary

network decreases only by 2 dB. This indicates that in mmWave, both primary and

secondary can achieve significant coverage probability by selecting appropriate values

of ξ and BS densities.
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Impact of the secondary antenna beamwidth: One important feature of

mmWave systems is their ability to use large antennas arrays and narrow directional

beams. To examine the impact of antenna beamwidth, we plot the median per-

user rate of both the primary and secondary networks along with their sum-rate for

two different values of number of secondary antennas in Fig. 5.4. These rates are

plotted versus the secondary interference threshold ξ. First, Fig. 5.4 shows that the

secondary network performance improves as the number of its BS antennas increase

(or equivalently as narrower beams are employed). Another interesting note is that the

primary performance is almost invariant of the secondary antennas beamwidth. This

means that the secondary network can always improve its performance by employing

narrower beamforming beams without impacting the primary performance. This will

also lead to an improvement in the overall system performance. Finally, we note that

for every secondary BS beamwidth, there exists a finite value for the interference

threshold ξ at which the sum-rate is maximized. Therefore, this threshold need to

be wisely adjusted for the spectrum sharing network based on the different network

parameters to guarantee achieving the best performance.

To verify the insights drawn from the analytical expressions about narrowing

the primary and secondary beamforming beamwidth in Sections 5.4.1 - 5.4.2, we plot

the primary and secondary median rates versus the BS antenna beamwidth in Fig.

5.5. This figure shows the narrowing the beams of the BSs in one network (primary

or secondary) improves the performance of this network with almost no impact on

the other network performance. This trend happens even with higher secondary

interference threshold as depicted in Fig. 5.5.
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Figure 5.5: Effect of primary and secondary antenna beamwidth over primary and
secondary operators for two values of interference threshold ξ. Both operators have
equal density of 60 BSs/km2. Secondary antenna beamwidth significantly improves
its own performance but does not impact primary performance. Therefore, secondary
antennas can be made narrow to get high rates without causing additional interference
on primary. Similar trends can also be observed for primary antennas.

Comparison with uncoordinated spectrum sharing: Now, we compare

the gain from restricted secondary licensing proposed in this chapter over the un-

coordinated spectrum sharing considered in [83]. We consider a scenario where two

operators buy exclusive licenses to two different mmWave bands with equal band-

width. The two operators decide to share their licenses in the following way: each

operator is known as a primary in its own band and a secondary in the other op-

erator’s band. In the restricted secondary licensing, each operator can transmit in
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other operator bands with the restriction on its transmit power. In the uncoordi-

nated sharing, the two operators are allowed to transmit in each other bands with no

restriction. For simplicity, we assume that the two operators, in the uncoordinated

sharing case, have the same transmit power. To have a fair comparison, we choose the

transmit power in uncoordinated case such that the total power (sum of the transmit

power of the two operators) is equal to the total power of the restricted secondary

sharing case. Fig. 5.6(a) compares the median rates of an operator achieved in its

primary and secondary bands as well as its aggregate median rate for the two sharing

cases. First, this figure shows that restricted secondary licensing can achieve higher

sum rates compared to uncoordinated sharing if the interference threshold is appro-

priately adjusted. The figure also indicates that the restricted licensing approach

provides a mean for differentiating the access to guarantee that the primary user gets

better performance in its band. This is captured by the higher rate of the primary

operator in the restricted secondary licensing case compared to the primary rate in

the uncoordinated sharing for wide range of ξ values.

In Fig. 5.6(b), we show the impact of secondary network density (λS) on the

gain of restricted secondary licensing over uncoordinated sharing. Fig. 5.6(b) illus-

trates that increasing λS decreases the rate of the primary operator in two sharing

approaches, which is expected. Interestingly, the degradation in the primary perfor-

mance is smaller in the restricted licensing case which leads to higher overall gain

compared to the uncoordinated sharing. This also means that the gain of restricted

licensing over uncoordinated sharing increases in dense networks, which is particularly

important for mmWave systems. In conclusion, the results in Fig. 5.6(a) - Fig. 5.6(b)
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indicate that static coordination is in fact beneficial for mmWave dense networks as

it leads to higher rates and provides a way of differentiating the access between the

spectrum sharing operators.

5.6.2 Primary and Secondary Utilities: The Benefits of Spectrum Sharing

In this subsection, we explore the potential gains of secondary licensing in

mmWave cellular systems. We adopt the pricing model from Section 5.5, with revenue

constants MP = 1,MS = 1, and licensing cost constants ΠP = 0.25,ΠSC = 0.125.

Gain of the primary network from restricted secondary licensing: In

Fig. 5.7, we plot the utility functions of the primary operator, the secondary operator,

and the central licensing authority, defined in (5.52)-(5.54), versus the secondary

interference threshold ξ for three different values of the secondary-to-primary licensing

constant ΠSP. In this result, we consider a primary network of density 30/km2, and

a secondary network of density of 60/km2. First, the figure shows that increasing ξ

improves the secondary operator utility which is expected. Interestingly, the utility of

the primary network does not always decrease with increase in ξ. The figure indicates

that ξ that maximizes the primary network utility is finite, which means that the

primary network can actually benefit from the restricted secondary licensing. The

intuition is that the secondary network needs to pay for its interference to the primary

network. As this interference increases, the money that the primary network gets from

the restricted secondary licensing is more that its revenue from its own network. This

underling trade-off normally yields an optimal value for the secondary interference

threshold that maximizes the primary network utility. This means that the primary
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Figure 5.6: Comparison of restricted secondary licensing over uncoordinated sharing.
(a) Variation of median rates of an operator in the primary and secondary bands
and its sum median rate with ξ. Both operators have equal density of 60 BSs/km2.
Secondary licensing can achieve higher sum rates compared to uncoordinated sharing
if ξ is appropriately adjusted. (b) Variation of median rates of an operator in the
primary and secondary bands and its sum median rate with secondary density λS.
Primary BS density is kept constant at 60 BSs/km2. The gain of restricted secondary
licensing over uncoordinated sharing increases with λS.
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network has clear incentive to share its spectrum using restricted secondary licensing.

Joint optimization of the primary and the central entity: The utility

of the central licensing authority remains constant for different values of ΠSP, which

can be noted from (5.52)-(5.54). As the value of ξ that maximizes the utility of the

central authority can be larger than that maximizing the primary utility as shown

in Fig. 5.7, the central licensing authority has the incentive to push the primary to

share with more degradation than the primary would otherwise share. Fig. 5.7, also

plots the total utility function which defined as the sum of the primary and central

licensing authority’s utilities. Intuitively, the optimal threshold for the total utility

falls in between the optimal thresholds of the primary and central entity utilities.
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5.7 Conclusion

In this chapter, we modeled a mmWave cellular system with a primary opera-

tor that has an “exclusive-use” license with a provision to sell a restricted secondary

license to another operator that has a maximum allowable interference threshold.

This licensing approach provides a way of differentiating the spectrum access for

the different operators, and hence is more practical. Due to this restriction on the

secondary interference, though, the transmit power of a secondary BSs is a random

variable. This required developing new analytical tools to analyze the network cover-

age and rate. Results showed that secondary can achieve good rate coverage with a

small impact on the primary performance. Results also indicated that narrow beams

and dense networks can further improve secondary network performance. Compared

to uncoordinated sharing, we showed that a reasonable gain can be achieved with the

proposed static coordinated sharing approach. Further, restricted secondary licensing

can guarantee a certain spectrum access quality for the primary user, which is not the

case in uncoordinated sharing. We also considered a revenue model for both operators

in the presence of a central licensing authority. Using this model, we showed that

the primary operator can achieve good benefits from restricted secondary licensing,

and hence has a good incentive to share its spectrum. Results also illustrated that

the central licensing authority can get more gain with restricted secondary licensing.

As the optimal interference thresholds for the central licensing and primary opera-

tors can be different, the central authority may push the primary operator to share

with more degradation than the primary would otherwise share. Overall, the primary

and secondary operators as well as the central licensing authority can benefit from
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restricted secondary licensing.
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Chapter 6

Conclusions

6.1 Summary

In this dissertation, various cell selection rules to optimize coverage probability

and rate coverage were discussed for a downlink multi-antenna HetNet. Due to use

of multiple antennas, there is a natural expansion of coverage regions of small cells

whenever small cells can use multi-antenna transmission for range expansion, e.g.,

by using beamforming. This leads to a natural balancing of load across tiers, which

reduces the additional artificial cell selection bias needed to offload sufficient traffic

to small cells. The approximate selection biases were computed to maximize coverage

which also provide good starting points for numerical search algorithms to find rate

maximizing biases. Then, this dissertation evaluated the gains of macro-diversity

for a cellular system in presence of random blockages and showed that the use of

multiple BSs can reduce the required network infrastructure to achieve the same

level of reliability. In the last two contributions, the gains of spectrum sharing for

mmWave cellular systems were studied. The third contribution studied the feasibility

of uncoordinated spectrum sharing in mmWave bands and showed that license sharing

among operators improves system performance by increasing per-user median rate.

However, the sharing of spectrum can degrade the performance of cell edge users

due to additional inter-operator interference. Therefore, the dissertation also studied
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the impact of static coordination in a mmWave cellular system with primary and

secondary operators in presence of a central entity. It was shown that the secondary

can achieve good rate coverage with a small impact on the primary performance. This

implied that it may be important to have some level of coordination among operators

to guarantee some level of quality of service.

6.2 Future Work

The research performed in this dissertation has numerous extensions. Some of

the extensions have already been implemented by others, for example, in [122–127].

In this section, we discuss some of the future extensions of this dissertation.

6.2.1 Incorporating UEs with Multiple Antennas

This dissertation assumes single antenna at UEs. It is important to generalize

this analysis to the case where mobile users have multiple antennas. This adds another

dimension to system design and it is important to understand how to best use the

additional degrees of freedom. In the HetNet MIMO system considered in the first

contribution, the channel distribution will change if UEs have multiple antennas.

Hence, the optimal association rules and cell selection biases may change in presence

of multi-antenna UEs. For the multi-operator mmWave systems considered in last two

contributions, the UE antennas will create further directionality in the transmission.

This decreases the inter-operator interference further favoring spectrum sharing even

more. This effect need to be characterized to accurately evaluate the gain from

spectrum sharing.
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6.2.2 Impact of Multi-user MIMO on Spectrum Sharing

It is worth investigating how multi-antenna techniques such as multiplexing

multiple users affect the insights about uncoordinated license sharing and restricted

secondary licensing. For example, if we schedule more users in single resource block

using any multi-user multiplexing, the interference at typical user will increase. In

addition, it will be difficult to form non-overlapping directional beams as the prob-

ability of users being close to each other will increase. Hence, it is important to see

how many users can be scheduled in a single block without hurting the system perfor-

mance. Using the analysis in [128], we can derive expressions for the rate coverage for

multi-operator mmWave systems with multiuser MIMO and characterize the gains of

spectrum sharing for these systems.

Active BS

Passive BS

User buffer 
queue

Figure 6.1: A mmWave cellular system with buffers to keep track of users. The BSs
with empty buffer can be switched off to reduce the interference.
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6.2.3 Considering File Traffic Models

If the user density is small, there is a chance that some BSs may not have any

users associated to them. In this case, such BSs can be switched off which further

reduces the interference. In the third contribution of this dissertation, we model this

scenario using an independent on-off model where each BS is either active or idle

according to an indicator which is independent to other BSs. In real systems, the

BSs use buffers to keep track of their users and to schedule them. The interference

from other BSs reduces the average data throughput and hence, elongates the user

buffer. This creates a correlation among buffer sizes of neighboring BSs. One way

to model this impact is using a file transfer protocol model. It is worth exploring

how temporal variations in the traffic demands for the operators impact the network

performance to derive more accurate quantitative performance. Such an analysis is

in general non-tractable, however, there has been some recent work which proposes

approximate approaches to handle it [129–131].

6.2.4 Infrastructure Sharing

In the dissertation, we showed that multi-operator mmWave cellular system

even with co-located BSs can achieve significant performance gain from spectrum

license sharing in terms of median rate. This result indicates that multiple operators

can also share site infrastructure (such as macrocell towers, as is common practice

today) while also sharing their spectrum licenses. It is interesting to understand

how other essential infrastructure including backhaul can be shared among networks

reducing the cost further, especially in the case of co-located BSs.
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6.2.5 Modeling Partial Co-location Among Cellular Operators

In our dissertation, we have assumed independence for BS deployment among

operators and modeled the BSs locations using superposition of multiple independent

PPPs. In practical cases, there is some correlation among different operator owing

to various geographical constraints and user requirements. To include the impact of

correlation among deployments of operators, we also considered a co-located deploy-

ment where site locations are defined by a single PPP and each operator has one BS

at each site. This is the other extreme case of BSs deployment when compared to the

independent PPPs’ superposition case. A practical deployment with some co-location

and some unique sites will lie between these two extremes of independent and fully

co-located BS locations. Therefore, it is important to carefully model this partial co-

location among operators to accurately characterize the gains from spectrum sharing

for mmWave cellular systems.

6.2.6 Economical Perspective of Spectrum Sharing

In this dissertation, it was shown that spectrum sharing is beneficial for

mmWave cellular operators from technical perspective. However, technological gains

may not be directly proportional to economic benefits for operators and users. Cellu-

lar markets provide coverage and networks services to users which are network based

good. When there is a network based good, there is an extra buying incentive propor-

tional to the network size for users [132]. Due to sharing, the network size increases

for all operators, providing some extra gain to users. However, sharing also can affect

competition among operators. Consider the case when there are two operators pro-
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viding different level of quality in services and having different level of prices. Now,

when the operators share some resources, they may be able to provide higher quality

of service for the same level of price. This will cause some customers of the operator

with higher quality and price to move to the other operator as they can now get the

same service at lower price. This will negatively affect the profit of the higher qual-

ity operator and may stop it from sharing its resources. Such a model was studied

recently in [126] for systems with open access and full sharing and it was shown that

the leading service provider in a duopoly market prefers to share resources only when

sharing gains are small or the market is highly segmented so that lower operators can

get only small advantage from sharing and can not affect its own market segment.

The same approach can also be applied to closed access systems with full spectrum

sharing and co-located deployments to understand the economical gains of spectrum

sharing.
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Appendix A

Stochastic Geometry

In this appendix, we will discuss some basic concept of PPP and stochastic

geometry. A more detailed tutorial discussing stochastic geometry and its application

to wireless networks can be found in [120].

Point processes (PP) are the central concept of stochastic geometry. A PP

Φ = {xi, i ∈ N} is a random collection of points residing in a Euclidean space Rd.

The expectation measure of a point process is a function which maps a set A to the

mean number of points in it and is given as

Λ(A) = E [# points in A] . (A.1)

The point process widely used in cellular analysis is Poisson point process (PPP). A

PPP is a point process with expectation measure Λ(·) such that

1. The number of points in A is Poisson distributed with mean Λ(A) for every set

A.

2. For any m disjoint sets A1, · · · ,Am, the number of points in these sets are

independent.
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Base%sta'ons*

Figure A.1: Random spatial model for cellular networks. BSs locations are modeled
by a PPP and the cell area of each BS is determined by the Voronoi tessellation.

Let B(r) denote a ball of radius r and center at the origin. The intensity (or density)

of an isotropic PPP is defined as

λ(r) =
1

2πr

d

dr
Λ(B(r)). (A.2)

PPPs can be categorized into homogenous or non-homogeneous PPPs. The homo-

geneous PPP is a PPP with uniform intensity λ. An important property of a ho-

mogeneous PPP is that conditioned on the number of points in A, all the points are

independently and uniformly distributed in A. Similarly, the non-homogeneous PPP

is a PPP with non-uniform intensity λ(r).

For a distance dependent function y = f(‖x‖), the probability generating

functional (PGFL) of a PP is defined as the mean of the product of the function’s

values at each point of the PP, i.e.

PΦ(f) = E

[∏
xi∈Φ

f(‖xi‖)
]
. (A.3)
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For an isotropic PPP, the PGFL is further simplified as

PΦ(f) = exp

(
−2π

∫ ∞
0

(1− f(r))λ(r)rdr

)
. (A.4)

The PGFL is useful for converting an expectation of a product of the points in the

PPP into a (hopefully computable) integral, primarily while computing the Laplace

transform of the interference. We refer the reader to [120] for detailed treatment on

how to compute the Laplace transform of the interference using PGFL.

While evaluating performance of a cellular system, we often are interested in

the performance of a typical user. If the user distribution is stationary, this typical

user can be taken at the origin without loss of generality.
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