3 research outputs found

    Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection

    Get PDF
    In this paper, the future Fifth Generation (5G New Radio) radio communication system has been considered, coexisting and sharing the spectrum with the incumbent Fourth Generation (4G) Long-Term Evolution (LTE) system. The 4G signal presence is detected in order to allow for opportunistic and dynamic spectrum access of 5G users. This detection is based on known sensing methods, such as energy detection, however, it uses machine learning in the domains of space, time and frequency for sensing quality improvement. Simulation results for the considered methods: k-Nearest Neighbors and Random Forest show that these method significantly improves the detection probability

    Space-Time-Frequency Machine Learning for Improved 4G/5G Energy Detection

    Get PDF
    In this paper, the future Fifth Generation (5G New Radio) radio communication system has been considered, coexisting and sharing the spectrum with the incumbent Fourth Generation (4G) Long-Term Evolution (LTE) system. The 4G signal presence is detected in order to allow for opportunistic and dynamic spectrum access of 5G users. This detection is based on known sensing methods, such as energy detection, however, it uses machine learning in the domains of space, time and frequency for sensing quality improvement. Simulation results for the considered methods: k-Nearest Neighbors and Random Forest show that these method significantly improves the detection probability

    A Spectrum Sensing Method Based on Signal Feature and Clustering Algorithm in Cognitive Wireless Multimedia Sensor Networks

    Get PDF
    In order to solve the problem of difficulty in determining the threshold in spectrum sensing technologies based on the random matrix theory, a spectrum sensing method based on clustering algorithm and signal feature is proposed for Cognitive Wireless Multimedia Sensor Networks. Firstly, the wireless communication signal features are obtained according to the sampling signal covariance matrix. Then, the clustering algorithm is used to classify and test the signal features. Different signal features and clustering algorithms are compared in this paper. The experimental results show that the proposed method has better sensing performance
    corecore