227 research outputs found

    Towards the Avoidance of Counterfeit Memory: Identifying the DRAM Origin

    Full text link
    Due to the globalization in the semiconductor supply chain, counterfeit dynamic random-access memory (DRAM) chips/modules have been spreading worldwide at an alarming rate. Deploying counterfeit DRAM modules into an electronic system can have severe consequences on security and reliability domains because of their sub-standard quality, poor performance, and shorter life span. Besides, studies suggest that a counterfeit DRAM can be more vulnerable to sophisticated attacks. However, detecting counterfeit DRAMs is very challenging because of their nature and ability to pass the initial testing. In this paper, we propose a technique to identify the DRAM origin (i.e., the origin of the manufacturer and the specification of individual DRAM) to detect and prevent counterfeit DRAM modules. A silicon evaluation shows that the proposed method reliably identifies off-the-shelf DRAM modules from three major manufacturers

    Block the Root Takeover: Validating Devices Using Blockchain Protocol

    Get PDF
    This study addresses a vulnerability in the trust-based STP protocol that allows malicious users to target an Ethernet LAN with an STP Root-Takeover Attack. This subject is relevant because an STP Root-Takeover attack is a gateway to unauthorized control over the entire network stack of a personal or enterprise network. This study aims to address this problem with a potentially trustless research solution called the STP DApp. The STP DApp is the combination of a kernel /net modification called stpverify and a Hyperledger Fabric blockchain framework in a NodeJS runtime environment in userland. The STP DApp works as an Intrusion Detection System (IPS) by intercepting Ethernet traffic and blocking forged Ethernet frames sent by STP Root-Takeover attackers. This study’s research methodology is a quantitative pre-experimental design that provides conclusive results through empirical data and analysis using experimental control groups. In this study, data collection was based on active RAM utilization and CPU Usage during a performance evaluation of the STP DApp. It blocks an STP Root-Takeover Attack launched by the Yersinia attack tool installed on a virtual machine with the Kali operating system. The research solution is a test blockchain framework using Hyperledger Fabric. It is made up of an experimental test network made up of nodes on a host virtual machine and is used to validate Ethernet frames extracted from stpverify

    Non-invasive Techniques Towards Recovering Highly Secure Unclonable Cryptographic Keys and Detecting Counterfeit Memory Chips

    Get PDF
    Due to the ubiquitous presence of memory components in all electronic computing systems, memory-based signatures are considered low-cost alternatives to generate unique device identifiers (IDs) and cryptographic keys. On the one hand, this unique device ID can potentially be used to identify major types of device counterfeitings such as remarked, overproduced, and cloned. On the other hand, memory-based cryptographic keys are commercially used in many cryptographic applications such as securing software IP, encrypting key vault, anchoring device root of trust, and device authentication for could services. As memory components generate this signature in runtime rather than storing them in memory, an attacker cannot clone/copy the signature and reuse them in malicious activity. However, to ensure the desired level of security, signatures generated from two different memory chips should be completely random and uncorrelated from each other. Traditionally, memory-based signatures are considered unique and uncorrelated due to the random variation in the manufacturing process. Unfortunately, in previous studies, many deterministic components of the manufacturing process, such as memory architecture, layout, systematic process variation, device package, are ignored. This dissertation shows that these deterministic factors can significantly correlate two memory signatures if those two memory chips share the same manufacturing resources (i.e., manufacturing facility, specification set, design file, etc.). We demonstrate that this signature correlation can be used to detect major counterfeit types in a non-invasive and low-cost manner. Furthermore, we use this signature correlation as side-channel information to attack memory-based cryptographic keys. We validate our contribution by collecting data from several commercially available off-the-shelf (COTS) memory chips/modules and considering different usage-case scenarios

    AICPA audit and accounting manual as of June 1, 2011 : nonauthoritative technical practice aid

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1805/thumbnail.jp

    AICPA audit and accounting manual as of June 1, 2010 : nonauthoritative technical practice aid

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1634/thumbnail.jp

    DATAM: Digital Approaches to Teaching the Ancient Mediterranean

    Get PDF
    DATAM: Digital Approaches to Teaching the Ancient Mediterranean provides a series of new critical studies that explore digital practices for teaching the Ancient Mediterranean world at a wide range of institutions and levels. These practical examples demonstrate how gaming, coding, immersive video, and 3D imaging can bridge the disciplinary and digital divide between the Ancient world and contemporary technology, information literacy, and student engagement. While the articles focus on Classics, Ancient History, and Mediterranean archaeology, the issues and approaches considered throughout this book are relevant for anyone who thinks critically and practically about the use of digital technology in the college level classroom. DATAM features contributions from Sebastian Heath, Lisl Walsh, David Ratzan, Patrick Burns, Sandra Blakely, Eric Poehler, William Caraher, Marie-Claire Beaulieu and Anthony Bucci as well as a critical introduction by Shawn Graham and preface by Society of Classical Studies Executive Director Helen Cullyer.https://commons.und.edu/press-books/1015/thumbnail.jp
    corecore