3,921 research outputs found

    Certifying floating-point implementations using Gappa

    Full text link
    High confidence in floating-point programs requires proving numerical properties of final and intermediate values. One may need to guarantee that a value stays within some range, or that the error relative to some ideal value is well bounded. Such work may require several lines of proof for each line of code, and will usually be broken by the smallest change to the code (e.g. for maintenance or optimization purpose). Certifying these programs by hand is therefore very tedious and error-prone. This article discusses the use of the Gappa proof assistant in this context. Gappa has two main advantages over previous approaches: Its input format is very close to the actual C code to validate, and it automates error evaluation and propagation using interval arithmetic. Besides, it can be used to incrementally prove complex mathematical properties pertaining to the C code. Yet it does not require any specific knowledge about automatic theorem proving, and thus is accessible to a wide community. Moreover, Gappa may generate a formal proof of the results that can be checked independently by a lower-level proof assistant like Coq, hence providing an even higher confidence in the certification of the numerical code. The article demonstrates the use of this tool on a real-size example, an elementary function with correctly rounded output

    Certified Roundoff Error Bounds Using Semidefinite Programming.

    Get PDF
    Roundoff errors cannot be avoided when implementing numerical programs with finite precision. The ability to reason about rounding is especially important if one wants to explore a range of potential representations, for instance for FPGAs or custom hardware implementation. This problem becomes challenging when the program does not employ solely linear operations as non-linearities are inherent to many interesting computational problems in real-world applications. Existing solutions to reasoning are limited in the presence of nonlinear correlations between variables, leading to either imprecise bounds or high analysis time. Furthermore, while it is easy to implement a straightforward method such as interval arithmetic, sophisticated techniques are less straightforward to implement in a formal setting. Thus there is a need for methods which output certificates that can be formally validated inside a proof assistant. We present a framework to provide upper bounds on absolute roundoff errors. This framework is based on optimization techniques employing semidefinite programming and sums of squares certificates, which can be formally checked inside the Coq theorem prover. Our tool covers a wide range of nonlinear programs, including polynomials and transcendental operations as well as conditional statements. We illustrate the efficiency and precision of this tool on non-trivial programs coming from biology, optimization and space control. Our tool produces more precise error bounds for 37 percent of all programs and yields better performance in 73 percent of all programs

    Formal Proofs for Nonlinear Optimization

    Get PDF
    We present a formally verified global optimization framework. Given a semialgebraic or transcendental function ff and a compact semialgebraic domain KK, we use the nonlinear maxplus template approximation algorithm to provide a certified lower bound of ff over KK. This method allows to bound in a modular way some of the constituents of ff by suprema of quadratic forms with a well chosen curvature. Thus, we reduce the initial goal to a hierarchy of semialgebraic optimization problems, solved by sums of squares relaxations. Our implementation tool interleaves semialgebraic approximations with sums of squares witnesses to form certificates. It is interfaced with Coq and thus benefits from the trusted arithmetic available inside the proof assistant. This feature is used to produce, from the certificates, both valid underestimators and lower bounds for each approximated constituent. The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of multivariate transcendental inequalities. We illustrate the performance of our formal framework on some of these inequalities as well as on examples from the global optimization literature.Comment: 24 pages, 2 figures, 3 table

    Computing the Lambert W function in arbitrary-precision complex interval arithmetic

    Full text link
    We describe an algorithm to evaluate all the complex branches of the Lambert W function with rigorous error bounds in interval arithmetic, which has been implemented in the Arb library. The classic 1996 paper on the Lambert W function by Corless et al. provides a thorough but partly heuristic numerical analysis which needs to be complemented with some explicit inequalities and practical observations about managing precision and branch cuts.Comment: 16 pages, 4 figure
    • …
    corecore