54 research outputs found

    Capacitive vs piezoresistive MEMS gyroscopes: a theoretical and experimental noise comparison

    Get PDF
    AbstractThis work aims both at theoretically formalizing a comparison between piezoresistive (PZR) and capacitive (CAP) gyroscopes in terms of resolution limits, and at validating the predictions through experimental measurements on MEMS devices of both types. As predicted by the developed theory, PZR gyroscopes, well immune to parasitic capacitances and void of feedback resistance noise, show 10-fold better angle random walk (ARW) than CAP gyroscopes for the same nominal mode-split value, the same drive-motion amplitude and the same electronic noise density

    Characterization, Control and Compensation of MEMS Rate and Rate-Integrating Gyroscopes.

    Full text link
    Inertial sensing has important applications in navigation, safety, and entertainment. Areas of active research include improved device structures, control schemes, tuning methods, and detection paradigms. A powerful and flexible characterization and control system built on commercial programmable hardware is especially needed for studying mode-matched gyroscopes and rate-integrated gyroscopes. A gyroscope can be operated in a mode-matched rate-mode for increased sensitivity or rate-integrating mode for greatly increased dynamic range and bandwidth, however control is challenging and the performance is sensitive to the matching of the modes. This thesis proposes a system built on open and inexpensive software-defined radio (SDR) hardware and open source software for gyroscope characterization and control. The characterization system measures ring-down of devices with damping times and automatically tunes the vibration modes from over 40 Hz mismatch to better than 100 mHz in 3 minutes. When used for rate-gyroscope operation the system provides an FPGA implementation of rate gyroscope control with amplitude, rate and quadrature closed-loop control in the SDR hardware which demonstrates 400% improvement in noise and stability over open-loop operation. The system also operates in a RIG mode with hybrid software/firmware control and demonstrates continuous operation for several hours, unlike previous systems which are limited by the gyroscope ring-down time. The hybrid mode also has a simulation module for development of advanced gyroscope control algorithms. Advanced controls proposed for RIG operation show over 1000% improvement in effective frequency and damping mismatch in simulation and 25% reduction in drift due to damping mismatch in a test RIG. By tuning the compensation, the drift can be reduced by almost 90%, with worst case drift decreased to -41 deg/s and RMS drift to -21 deg/s. Harmonic analysis of the anisotropy in a rate-integrating gyroscope measured with this control system is presented to guide development of new error models which will further improve performance.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/96121/1/jagregor_1.pd

    Thin-Film AlN-on-Silicon Resonant Gyroscopes: Design, Fabrication, and Eigenmode Operation

    Get PDF
    Resonant MEMS gyroscopes have been rapidly adopted in various consumer, industrial, and automotive applications thanks to the significant improvements in their performance over the past decade. The current efforts in enhancing the performance of high-precision resonant gyroscopes are mainly focused on two seemingly contradictory metrics, larger bandwidth and lower noise level, to push the technology towards navigation applications. The key enabling factor for the realization of low-noise high-bandwidth resonant gyroscopes is the utilization of a strong electromechanical transducer at high frequencies. Thin-film piezoelectric-on-silicon technology provides a very efficient transduction mechanism suitable for implementation of bulk-mode resonant gyroscopes without the need for submicron capacitive gaps or large DC polarization voltages. More importantly, in-air operation of piezoelectric devices at moderate Q values allows for the cointegration of mode-matched gyroscopes and accelerometers on a common substrate for inertial measurement units. This work presents the design, fabrication, characterization, and method of mode matching of piezoelectric-on-silicon resonant gyroscopes. The degenerate in-plane flexural vibration mode shapes of the resonating structure are demonstrated to have a strong gyroscopic coupling as well as a large piezoelectric transduction coefficient. Eigenmode operation of resonant gyroscopes is introduced as the modal alignment technique for the piezoelectric devices independently of the transduction mechanism. Controlled displacement feedback is also employed as the frequency matching technique to accomplish complete mode matching of the piezoelectric gyroscopes.Ph.D

    Inertial MEMS: readout, test and application

    Get PDF
    This thesis moves towards the investigation of Micro Electro-Mechanical Systems (MEMS) intertial sensors from different perspectives and points of view: readout, test and application. Chapter 1 deals with the state-of-the-art for the interfaces usually employed for 3- axes micromachined gyroscopes. Several architecture based on multiplexing schemes in order to extremely simplify the analog front-end which can be based on a single charge amplifier are analysed and compared. A novel solution that experiments an innovative readout technique based on a special analog-Code Division Multiplexing Access (CDMA) is presented; this architecture can reach a considerable reduction of the Analog Front-End (AFE) with reference to other multiplexing schemes. Many family codes have been considered in order to find the best trade-off between performance and complexity. System-level simulations prove the effectiveness of this technique in processing all the required signals. A case study is also analysed: a comparison with the SD740 micro-machined integrated inertial module with tri-axial gyroscope by SensorDynamics AG is provided. MEMS accelerometers are widely used in the automotive and aeronautics fields and are becoming extremely popular in a wide range of consumer electronics products. The cost of testing is a major one within the manufacturing process, because MEMS accelerometer characterization requires a series of tests that include physical stimuli. The calibration and the functional testing are the most challenging and a wide selection of Automatic Test Equipments (ATEs) is available on the market for this purpose; those equipments provide a full characterization of the Device Under Test (DUT), from low-g to high-g levels, even over temperature. Chapter 2 presents a novel solution that experiments an innovative procedure to perform a characterization at medium-g levels. The presented approach can be applied to low-cost ATEs obtaining challenging results. The procedure is deeply investigated and an experimental setup is described. A case study is also analysed: some already trimmed Three Degrees of Freedom (3DoF)-Inertial Measurement Unit (IMU) modules (three-axes accelerometer integrated with a mixed signal ASIC), from SensorDynamics AG are tested with the experimental setup and analysed, for the first time, at medium-g levels. Standard preprocessing techniques for removing the ground response from vehicle- mounted Ground Penetrating Radar (GPR) data may fail when used on rough terrain. In Chapter 3, a Laser Imaging Detection and Ranging (LIDAR) system and a Global Positioning System (GPS)/IMU is integrated into a prototype system with the GPR and provided high-resolution measurements of the ground surface. Two modifications to preprocessing were proposed for mitigating the ground bounce based on the available LIDAR data. An experiment is carried out on a set of GPR/LIDAR data collected with the integrated prototype vehicle over lanes with artificially rough terrain, consisting of targets buried under or near mounds, ruts and potholes. A stabilization technique for multi-element vehicle-mounted GPR is also presented

    Advanced interface systems for readout, control, and self-calibration of MEMS resonant gyroscopes

    Get PDF
    MEMS gyroscopes have become an essential component in consumer, industrial and automotive applications, owing to their small form factor and low production cost. However, their poor stability, also known as drift, has hindered their penetration into high-end tactical and navigation applications, where highly stable bias and scale factor are required over long period of time to avoid significant positioning error. Improving the long-term stability of MEMS gyroscopes has created new challenges in both the physical sensor design and fabrication, as well as the system architecture used for interfacing with the physical sensor. The objective of this research is to develop interface circuits and systems for in-situ control and self-calibration of MEMS resonators and resonant gyroscopes to enhance the stability of bias and scale factor without the need for any mechanical rotary stage, or expensive bulky lab characterization equipment. The self-calibration techniques developed in this work provide 1-2 orders of magnitude improvement in the drift of bias and scale factor of a resonant gyroscope over temperature and time.Ph.D

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc

    Integrated interface electronics for capacitive MEMS inertial sensors

    Get PDF
    This thesis is composed of 13 publications and an overview of the research topic, which also summarizes the work. The research presented in this thesis concentrates on integrated circuits for the realization of interface electronics for capacitive MEMS (micro-electro-mechanical system) inertial sensors, i.e. accelerometers and gyroscopes. The research focuses on circuit techniques for capacitive detection and actuation and on high-voltage and clock generation within the sensor interface. Characteristics of capacitive accelerometers and gyroscopes and the electronic circuits for accessing the capacitive information in open- and closed-loop configurations are introduced in the thesis. One part of the experimental work, an accelerometer, is realized as a continuous-time closed-loop sensor, and is capable of achieving sub-micro-g resolution. The interface electronics is implemented in a 0.7-µm high-voltage technology. It consists of a force feedback loop, clock generation circuits, and a digitizer. Another part of the experimental work, an analog 2-axis gyroscope, is optimized not only for noise, but predominantly for low power consumption and a small chip area. The implementation includes a pseudo-continuous-time sense readout, analog continuous-time drive loop, phase-locked loop (PLL) for clock generation, and high-voltage circuits for electrostatic excitation and high-voltage detection. The interface is implemented in a 0.35-µm high-voltage technology within an active area of 2.5 mm². The gyroscope achieves a spot noise of 0.015 °/s/√H̅z̅ for the x-axis and 0.041 °/s/√H̅z̅ for the y-axis. Coherent demodulation and discrete-time signal processing are often an important part of the sensors and also typical examples that require clock signals. Thus, clock generation within the sensor interfaces is also reviewed. The related experimental work includes two integrated charge pump PLLs, which are optimized for compact realization but also considered with regard to their noise performance. Finally, this thesis discusses fully integrated high-voltage generation, which allows a higher electrostatic force and signal current in capacitive sensors. Open- and closed-loop Dickson charge pumps and high-voltage amplifiers have been realized fully on-chip, with the focus being on optimizing the chip area and on generating precise spurious free high-voltage signals up to 27 V

    System and circuit design for a capacitive MEMS gyroscope

    Get PDF
    In this thesis, issues related to the design and implementation of a micro-electro-mechanicalangular velocity sensor are studied. The work focuses on a system basedon a vibratory microgyroscope which operates in the low-pass mode with a moderateresonance gain and with an open-loop configuration of the secondary (sense) resonator.Both the primary (drive) and the secondary resonators are assumed to have a high qualityfactor. Furthermore, the gyroscope employs electrostatic excitation and capacitivedetection. The thesis is divided into three parts. The first part provides the background informationnecessary for the other two parts. The basic properties of a vibratory microgyroscope,together with the most fundamental non-idealities, are described, a shortintroduction to various manufacturing technologies is given, and a brief review of publishedmicrogyroscopes and of commercial microgyroscopes is provided. The second part concentrates on selected aspects of the system-level design of amicro-electro-mechanical angular velocity sensor. In this part, a detailed analysis isprovided of issues related to different non-idealities in the synchronous demodulation,the dynamics of the primary resonator excitation, the compensation of the mechanicalquadrature signal, and the zero-rate output. The use of ΣΔ modulation to improveaccuracy in both primary resonator excitation and the compensation of the mechanicalquadrature signal is studied. The third part concentrates on the design and implementation of the integratedelectronics required by the angular velocity sensor. The focus is primarily on the designof the sensor readout circuitry, comprising: a continuous-time front-end performingthe capacitance-to-voltage (C/V) conversion, filtering, and signal level normalization;a bandpass ΣΔ analog-to-digital converter, and the required digital signal processing(DSP). The other fundamental circuit blocks, which are a phase-locked loop requiredfor clock generation, a high-voltage digital-to-analog converter for the compensationof the mechanical quadrature signal, the necessary charge pumps for the generationof high voltages, an analog phase shifter, and the digital-to-analog converter used togenerate the primary resonator excitation signals, together with other DSP blocks, areintroduced on a more general level. Additionally, alternative ways to perform the C/Vconversion, such as continuous-time front ends either with or without the upconversionof the capacitive signal, various switched-capacitor front ends, and electromechanicalΣΔ modulation, are studied. In the experimental work done for the thesis, a prototype of a micro-electro-mechanicalangular velocity sensor is implemented and characterized. The analog partsof the system are implemented with a 0.7-µm high-voltage CMOS (ComplimentaryMetal-Oxide-Semiconductor) technology. The DSP part is realized with a field-programmablegate array (FPGA) chip. The ±100°/s gyroscope achieves 0.042°/s/√H̅z̅spot noise and a signal-to-noise ratio of 51.6 dB over the 40 Hz bandwidth, with a100°/s input signal. The implemented system demonstrates the use of ΣΔ modulation in both the primaryresonator excitation and the quadrature compensation. Additionally, it demonstratesphase error compensation performed using DSP. With phase error compensation,the effect of several phase delays in the analog circuitry can be eliminated, andthe additional noise caused by clock jitter can be considerably reduced

    System design of a low-power three-axis underdamped MEMS accelerometer with simultaneous electrostatic damping control

    Get PDF
    Recently, consumer electronics industry has known a spectacular growth that would have not been possible without pushing the integration barrier further and further. Micro Electro Mechanical Systems (MEMS) inertial sensors (e.g. accelerometers, gyroscopes) provide high performance, low power, low die cost solutions and are, nowadays, embedded in most consumer applications. In addition, the sensors fusion has become a new trend and combo sensors are gaining growing popularity since the co-integration of a three-axis MEMS accelerometer and a three-axis MEMS gyroscope provides complete navigation information. The resulting device is an Inertial measurement unit (IMU) able to sense multiple Degrees of Freedom (DoF). Nevertheless, the performances of the accelerometers and the gyroscopes are conditioned by the MEMS cavity pressure: the accelerometer is usually a damped system functioning under an atmospheric pressure while the gyroscope is a highly resonant system. Thus, to conceive a combo sensor, aunique low cavity pressure is required. The integration of both transducers within the same low pressure cavity necessitates a method to control and reduce the ringing phenomena by increasing the damping factor of the MEMS accelerometer. Consequently, the aim of the thesis is the design of an analog front-end interface able to sense and control an underdamped three-axis MEMSaccelerometer. This work proposes a novel closed-loop accelerometer interface achieving low power consumption The design challenge consists in finding a trade-off between the sampling frequency, the settling time and the circuit complexity since the sensor excitation plates are multiplexed between the measurement and the damping phases. In this context, a patenteddamping sequence (simultaneous damping) has been conceived to improve the damping efficiency over the state of the art approach performances (successive damping). To investigate the feasibility of the novel electrostatic damping control architecture, several mathematical models have been developed and the settling time method is used to assess the damping efficiency. Moreover, a new method that uses the multirate signal processing theory and allows the system stability study has been developed. This very method is used to conclude on the loop stability for a certain sampling frequency and loop gain value. Next, a 0.18μm CMOS implementation of the entire accelerometer signal chain is designed and validated
    • …
    corecore