100 research outputs found

    Software Defined Networking Opportunities for Intelligent Security Enhancement of Industrial Control Systems

    Get PDF
    In the last years, cyber security of Industrial Control Systems (ICSs) has become an important issue due to the discovery of sophisticated malware that by attacking Critical Infrastructures, could cause catastrophic safety results. Researches have been developing countermeasures to enhance cyber security for pre-Internet era systems, which are extremely vulnerable to threats. This paper presents the potential opportunities that Software Defined Networking (SDN) provides for the security enhancement of Industrial Control Networks. SDN permits a high level of configuration of a network by the separation of control and data planes. In this work, we describe the affinities between SDN and ICSs and we discuss about implementation strategies

    Failure Analysis in Next-Generation Critical Cellular Communication Infrastructures

    Full text link
    The advent of communication technologies marks a transformative phase in critical infrastructure construction, where the meticulous analysis of failures becomes paramount in achieving the fundamental objectives of continuity, security, and availability. This survey enriches the discourse on failures, failure analysis, and countermeasures in the context of the next-generation critical communication infrastructures. Through an exhaustive examination of existing literature, we discern and categorize prominent research orientations with focuses on, namely resource depletion, security vulnerabilities, and system availability concerns. We also analyze constructive countermeasures tailored to address identified failure scenarios and their prevention. Furthermore, the survey emphasizes the imperative for standardization in addressing failures related to Artificial Intelligence (AI) within the ambit of the sixth-generation (6G) networks, accounting for the forward-looking perspective for the envisioned intelligence of 6G network architecture. By identifying new challenges and delineating future research directions, this survey can help guide stakeholders toward unexplored territories, fostering innovation and resilience in critical communication infrastructure development and failure prevention

    GPS Anomaly Detection And Machine Learning Models For Precise Unmanned Aerial Systems

    Get PDF
    The rapid development and deployment of 5G/6G networks have brought numerous benefits such as faster speeds, enhanced capacity, improved reliability, lower latency, greater network efficiency, and enablement of new applications. Emerging applications of 5G impacting billions of devices and embedded electronics also pose cyber security vulnerabilities. This thesis focuses on the development of Global Positioning Systems (GPS) Based Anomaly Detection and corresponding algorithms for Unmanned Aerial Systems (UAS). Chapter 1 provides an overview of the thesis background and its objectives. Chapter 2 presents an overview of the 5G architectures, their advantages, and potential cyber threat types. Chapter 3 addresses the issue of GPS dropouts by taking the use case of the Dallas-Fort Worth (DFW) airport. By analyzing data from surveillance drones in the (DFW) area, its message frequency, and statistics on time differences between GPS messages were examined. Chapter 4 focuses on modeling and detecting false data injection (FDI) on GPS. Specifically, three scenarios, including Gaussian noise injection, data duplication, data manipulation are modeled. Further, multiple detection schemes that are Clustering-based and reinforcement learning techniques are deployed and detection accuracy were investigated. Chapter 5 shows the results of Chapters 3 and 4. Overall, this research provides a categorization and possible outlier detection to minimize the GPS interference for UAS enhancing the security and reliability of UAS operations

    Resource Allocation in Networking and Computing Systems: A Security and Dependability Perspective

    Get PDF
    In recent years, there has been a trend to integrate networking and computing systems, whose management is getting increasingly complex. Resource allocation is one of the crucial aspects of managing such systems and is affected by this increased complexity. Resource allocation strategies aim to effectively maximize performance, system utilization, and profit by considering virtualization technologies, heterogeneous resources, context awareness, and other features. In such complex scenario, security and dependability are vital concerns that need to be considered in future computing and networking systems in order to provide the future advanced services, such as mission-critical applications. This paper provides a comprehensive survey of existing literature that considers security and dependability for resource allocation in computing and networking systems. The current research works are categorized by considering the allocated type of resources for different technologies, scenarios, issues, attributes, and solutions. The paper presents the research works on resource allocation that includes security and dependability, both singularly and jointly. The future research directions on resource allocation are also discussed. The paper shows how there are only a few works that, even singularly, consider security and dependability in resource allocation in the future computing and networking systems and highlights the importance of jointly considering security and dependability and the need for intelligent, adaptive and robust solutions. This paper aims to help the researchers effectively consider security and dependability in future networking and computing systems.publishedVersio

    Security for 5G Mobile Wireless Networks

    Get PDF
    The advanced features of 5G mobile wireless network systems yield new security requirements and challenges. This paper presents a comprehensive survey on security of 5G wireless network systems compared to the traditional cellular networks. The paper starts with a review on 5G wireless networks particularities as well as on the new requirements and motivations of 5G wireless security. The potential attacks and security services with the consideration of new service requirements and new use cases in 5G wireless networks are then summarized. The recent development and the existing schemes for the 5G wireless security are presented based on the corresponding security services including authentication, availability, data confidentiality, key management and privacy. The paper further discusses the new security features involving different technologies applied to 5G such as heterogeneous networks, device-to-device communications, massive multiple-input multiple-output, software defined networks and Internet of Things. Motivated by these security research and development activities, we propose a new 5G wireless security architecture, based on which the analysis of identity management and flexible authentication is provided. As a case study, we explore a handover procedure as well as a signaling load scheme to show the advantage of the proposed security architecture. The challenges and future directions of 5G wireless security are finally summarized

    Trust and reputation management for securing collaboration in 5G access networks: the road ahead

    Get PDF
    Trust represents the belief or perception of an entity, such as a mobile device or a node, in the extent to which future actions and reactions are appropriate in a collaborative relationship. Reputation represents the network-wide belief or perception of the trustworthiness of an entity. Each entity computes and assigns a trust or reputation value, which increases and decreases with the appropriateness of actions and reactions, to another entity in order to ensure a healthy collaborative relationship. Trust and reputation management (TRM) has been investigated to improve the security of traditional networks, particularly the access networks. In 5G, the access networks are multi-hop networks formed by entities which may not be trustable, and so such networks are prone to attacks, such as Sybil and crude attacks. TRM addresses such attacks to enhance the overall network performance, including reliability, scalability, and stability. Nevertheless, the investigation of TRM in 5G, which is the next-generation wireless networks, is still at its infancy. TRM must cater for the characteristics of 5G. Firstly, ultra-densification due to the exponential growth of mobile users and data traffic. Secondly, high heterogeneity due to the different characteristics of mobile users, such as different transmission characteristics (e.g., different transmission power) and different user equipment (e.g., laptops and smartphones). Thirdly, high variability due to the dynamicity of the entities’ behaviors and operating environment. TRM must also cater for the core features of 5G (e.g., millimeter wave transmission, and device-to-device communication) and the core technologies of 5G (e.g., massive MIMO and beamforming, and network virtualization). In this paper, a review of TRM schemes in 5G and traditional networks, which can be leveraged to 5G, is presented. We also provide an insight on some of the important open issues and vulnerabilities in 5G networks that can be resolved using a TRM framework
    • …
    corecore