8 research outputs found

    Optimal Joint Routing and Scheduling in Millimeter-Wave Cellular Networks

    Full text link
    Millimeter-wave (mmWave) communication is a promising technology to cope with the expected exponential increase in data traffic in 5G networks. mmWave networks typically require a very dense deployment of mmWave base stations (mmBS). To reduce cost and increase flexibility, wireless backhauling is needed to connect the mmBSs. The characteristics of mmWave communication, and specifically its high directional- ity, imply new requirements for efficient routing and scheduling paradigms. We propose an efficient scheduling method, so-called schedule-oriented optimization, based on matching theory that optimizes QoS metrics jointly with routing. It is capable of solving any scheduling problem that can be formulated as a linear program whose variables are link times and QoS metrics. As an example of the schedule-oriented optimization, we show the optimal solution of the maximum throughput fair scheduling (MTFS). Practically, the optimal scheduling can be obtained even for networks with over 200 mmBSs. To further increase the runtime performance, we propose an efficient edge-coloring based approximation algorithm with provable performance bound. It achieves over 80% of the optimal max-min throughput and runs 5 to 100 times faster than the optimal algorithm in practice. Finally, we extend the optimal and approximation algorithms for the cases of multi-RF-chain mmBSs and integrated backhaul and access networks.Comment: To appear in Proceedings of INFOCOM '1

    The Value-of-Information in Matching with Queues

    Full text link
    We consider the problem of \emph{optimal matching with queues} in dynamic systems and investigate the value-of-information. In such systems, the operators match tasks and resources stored in queues, with the objective of maximizing the system utility of the matching reward profile, minus the average matching cost. This problem appears in many practical systems and the main challenges are the no-underflow constraints, and the lack of matching-reward information and system dynamics statistics. We develop two online matching algorithms: Learning-aided Reward optimAl Matching (LRAM\mathtt{LRAM}) and Dual-LRAM\mathtt{LRAM} (DRAM\mathtt{DRAM}) to effectively resolve both challenges. Both algorithms are equipped with a learning module for estimating the matching-reward information, while DRAM\mathtt{DRAM} incorporates an additional module for learning the system dynamics. We show that both algorithms achieve an O(ϵ+δr)O(\epsilon+\delta_r) close-to-optimal utility performance for any ϵ>0\epsilon>0, while DRAM\mathtt{DRAM} achieves a faster convergence speed and a better delay compared to LRAM\mathtt{LRAM}, i.e., O(δz/ϵ+log(1/ϵ)2))O(\delta_{z}/\epsilon + \log(1/\epsilon)^2)) delay and O(δz/ϵ)O(\delta_z/\epsilon) convergence under DRAM\mathtt{DRAM} compared to O(1/ϵ)O(1/\epsilon) delay and convergence under LRAM\mathtt{LRAM} (δr\delta_r and δz\delta_z are maximum estimation errors for reward and system dynamics). Our results reveal that information of different system components can play very different roles in algorithm performance and provide a systematic way for designing joint learning-control algorithms for dynamic systems

    Loop-Free Backpressure Routing Using Link-Reversal Algorithms

    Get PDF
    The backpressure routing policy is known to be a throughput optimal policy that supports any feasible traffic demand in data networks, but may have poor delay performance when packets traverse loops in the network. In this paper, we study loop-free backpressure routing policies that forward packets along directed acyclic graphs (DAGs) to avoid the looping problem. These policies use link reversal algorithms to improve the DAGs in order to support any achievable traffic demand. For a network with a single commodity, we show that a DAG that supports a given traffic demand can be found after a finite number of iterations of the link-reversal process. We use this to develop a joint link-reversal and backpressure routing policy, called the loop free backpressure (LFBP) algorithm. This algorithm forwards packets on the DAG, while the DAG is dynamically updated based on the growth of the queue backlogs. We show by simulations that such a DAG-based policy improves the delay over the classical backpressure routing policy. We also propose a multicommodity version of the LFBP algorithm, and via simulation we show that its delay performance is better than that of backpressure.National Science Foundation (U.S.) (Grant CNS-1116209)United States. Office of Naval Research (Grant N00014-12-1-0064

    A Low-Complexity Congestion Control and Scheduling Algorithm for Multihop Wireless Networks with Order-Optimal Per-Flow Delay

    Get PDF
    Quantifying the end-to-end delay performance in multihop wireless networks is a well-known challenging problem. In this paper, we propose a new joint congestion control and scheduling algorithm for multihop wireless networks with fixedroute flows operated under a general interference model with interference degree K. Our proposed algorithm not only achieves a provable throughput guarantee (which is close to at least 1=K of the system capacity region), but also leads to explicit upper bounds on the end-to-end delay of every flow. Our end-to-end delay- and throughput-bounds are in simple and closed forms, and they explicitly quantify the tradeoff between throughput and delay of every flow. Further, the per-flow end-to-end delay bound increases linearly with the number of hops that the flow passes through, which is order-optimal with respect to the number of hops. Unlike traditional solutions based on the backpressure algorithm, our proposed algorithm combines windowbased flow control with a new rate-based distributed scheduling algorithm. A key contribution of our work is to use a novel stochastic dominance approach to bound the corresponding perflow throughput and delay, which otherwise are often intractable in these types of systems. Our proposed algorithm is fully distributed and requires a low per-node complexity that does not increase with the network size. Hence, it can be easily implemented in practice

    A control theoretic approach for security of cyber-physical systems

    Get PDF
    In this dissertation, several novel defense methodologies for cyber-physical systems have been proposed. First, a special type of cyber-physical system, the RFID system, is considered for which a lightweight mutual authentication and ownership management protocol is proposed in order to protect the data confidentiality and integrity. Then considering the fact that the protection of the data confidentiality and integrity is insufficient to guarantee the security in cyber-physical systems, we turn to the development of a general framework for developing security schemes for cyber-physical systems wherein the cyber system states affect the physical system and vice versa. After that, we apply this general framework by selecting the traffic flow as the cyber system state and a novel attack detection scheme that is capable of capturing the abnormality in the traffic flow in those communication links due to a class of attacks has been proposed. On the other hand, an attack detection scheme that is capable of detecting both sensor and actuator attacks is proposed for the physical system in the presence of network induced delays and packet losses. Next, an attack detection scheme is proposed when the network parameters are unknown by using an optimal Q-learning approach. Finally, this attack detection and accommodation scheme has been further extended to the case where the network is modeled as a nonlinear system with unknown system dynamics --Abstract, page iv
    corecore