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A Low-Complexity Congestion Control and
Scheduling Algorithm for Multihop Wireless

Networks with Order-Optimal Per-Flow Delay
Po-Kai Huang, Member, IEEE, Xiaojun Lin, Member, IEEE, and Chih-Chun Wang, Member, IEEE

Abstract—Quantifying the end-to-end delay performance in
multihop wireless networks is a well-known challenging problem.
In this paper, we propose a new joint congestion control and
scheduling algorithm for multihop wireless networks with fixed-
route flows operated under a general interference model with
interference degree K. Our proposed algorithm not only achieves
a provable throughput guarantee (which is close to at least 1/K
of the system capacity region), but also leads to explicit upper
bounds on the end-to-end delay of every flow. Our end-to-end
delay- and throughput-bounds are in simple and closed forms,
and they explicitly quantify the tradeoff between throughput
and delay of every flow. Further, the per-flow end-to-end delay
bound increases linearly with the number of hops that the
flow passes through, which is order-optimal with respect to the
number of hops. Unlike traditional solutions based on the back-
pressure algorithm, our proposed algorithm combines window-
based flow control with a new rate-based distributed scheduling
algorithm. A key contribution of our work is to use a novel
stochastic dominance approach to bound the corresponding per-
flow throughput and delay, which otherwise are often intractable
in these types of systems. Our proposed algorithm is fully
distributed and requires a low per-node complexity that does
not increase with the network size. Hence, it can be easily
implemented in practice.

Index Terms—Window-based flow control, rate-based schedul-
ing algorithms, low-complexity and distributed algorithms, super-
modular ordering, order-optimal delay bound.

I. INTRODUCTION

The joint congestion control and scheduling problem in
multihop wireless networks has been extensively studied in
the literature [1], [2]. Often, each user is associated with a
non-decreasing and concave utility function of its rate, and
a cross-layer utility maximization problem is formulated to
maximize the total system utility subject to the constraint that
the rate vector can be supported by some scheduling algorithm.
One optimal solution to this problem is known to be the max-
weight back-pressure scheduling algorithm combined with a
congestion control component at the source [1], [2]. Further,
significant progresses have been made in designing distributed
scheduling algorithms with provable throughput and lower
complexity than the back-pressure algorithm [3]–[8]. However,
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0845968, and the Purdue Research Foundation. Earlier versions of this paper
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The authors are with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907, USA e-mail: ({huang113, linx,
chihw}@purdue.edu).

most of the existing works on joint congestion control and
scheduling have only considered the throughput performance
metric and have not accounted for delay performance issues.

Fig. 1. A wireless network with linear topology.

Although for flows with congestion control (e.g., file transfer)
the throughput is often the most critical performance metric,
packet delay is important as well because practical congestion
control protocols need to set retransmission time-out values
based on the packet delay, and such parameters could signifi-
cantly impact the speed of recovery when packet loss occurs.
Packet delay is also important for multimedia traffic, some of
which have been carried on congestion-controlled sessions.

There are two major issues on the delay-performance of
the back-pressure algorithm. First, for long flows, the end-to-
end delay may grow quadratically with the number of hops.
The reason can be best explained by the following example
[9]. Consider a long flow traverses a fixed route with H
hops. For each link that the long flow traverses, there is a
competing short flow as shown in Fig. 1. Under the back-
pressure algorithm, if a link schedules the long flow, the
queue difference of the long flow must be larger than the
queue length q of the competing short flow. Therefore, when
the joint congestion and scheduling algorithm converges, the
queue length of the long flow at each hop must be around
Hq, (H − 1)q, · · · , q, and the total end-to-end backlog is of
order O(H2). By Little’s law, the end-to-end delay will also
be of order O(H2). Note that a packet needs at least H time
slots to reach the destination. Hence, the optimal order should
have been O(H). This implies that back-pressure algorithm
may have significantly larger end-to-end delay for long flows.
Second, under the back-pressure algorithm it is difficult to
control the end-to-end delay of each flow. The main parameter
to tune a joint congestion control and scheduling algorithm
based on the back-pressure algorithm is the step size in the
queue update. A larger step size may lead to smaller queue
length; however, a smaller step size is needed to ensure that the
joint congestion control and scheduling algorithm converges to
close-to-optimal system throughput. Although one may use the
step sizes to tune the throughput-delay tradeoff, a change of
the step size on one node will likely affect all flows passing
through the node. Hence, it is difficult to tune the throughput-
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delay tradeoff on a per-flow basis.
In this paper, we will provide a new class of joint congestion

control and scheduling algorithms1 that can achieve both
provable throughput and provable per-flow delay. Consider
m flows in a multihop network operating under a general
interference model with the interference degree K (the notion
of the interference degree will be given in Section II), and
each flow m is given a fixed route with Hm hops. Our
algorithm consists of three main components: window-based
flow control, virtual-rate computation, and scheduling. The
main ideas of our algorithm to improve the end-to-end delay
are as follows. First, by using window-based flow control, we
can tightly control the number of packets inside the network.
Second, by using a rate-based scheduling algorithm with the
computed virtual rate as input to schedule packets, we do not
need to wait for the packets to accumulate before making
scheduling decisions. However, the key difficulty in analyzing
the end-to-end throughput and delay under this algorithm is
that the services at different links are correlated. Hence, a
Markov chain analysis will no longer provide a closed-form
solution. We employ a novel stochastic dominance technique
to circumvent this difficulty and derive closed-form bounds
on the per-flow throughput and delay. Specifically, for any
ϵ, ϵm ∈ (0, 1), by appropriately choosing the number of back-
off mini-slots for the scheduling algorithm and the window
size of flow m, our algorithm can guarantee that each flow m
will achieve a throughput no less than rm(1 − ϵ)(1 − ϵm),
where the total utility of the virtual rate allocation vector
r⃗ = [rm] is no smaller than the total utility of any rate vector
within Ω/K, where Ω is the capacity region. Further, the end-
to-end expected delay of flow m can be upper bounded by
Hm/(rm(1−ϵ)ϵm). Therefore, with a reasonable choice of the
parameters of the algorithm, our scheme can utilize a provable
fraction of the total system utility with per-flow expected delay
that increases linearly with the number of hops. Since a flow-m
packet requires at least Hm time slots to reach the destination,
the order of the per-flow delay upper-bound is optimal with
respect to the number of hops. Our proposed algorithm is
fully-distributed and can be easily implemented in practice.
Further, the delay-throughput tradeoff of each flow can be
individually controlled. To the best of our knowledge, this is
the first fully-distributed cross-layer control solution that can
both guarantee order-optimal per-flow delay and a minimum
throughput utilization close to 1

K of the system capacity under
a general interference model.

Recently, there have been a number of papers that quantify
the delay performance of wireless networks with or without
congestion control [9], [11]–[20]. In [9], [11], the authors
propose methods to reduce the delay of the back-pressure
algorithm. The algorithm proposed in [9] is a shadow back-
pressure algorithm, which maintains a single FIFO queue at
each link and uses multiple shadow queues to schedule the
transmissions. This method decouples the control information
from the real queues and hence reduces the delay. In our

1A related delay bound can be shown for the scheduling algorithm without
congestion control [10]. However, the delay analysis for joint congestion
control and scheduling in this paper is more difficult due to the closed-loop
feedback.

simulation, this algorithm seems to achieve linear delay after
the algorithm converges. However, at the transient period, the
real queues will still follow the shadow queues, which leads
to a large queue backlog (see Fig. 4(c) in this paper and
figures in [9]). In [11], the authors propose another mechanism
FQLA to decouple the control signal from the real queues
by injecting place holder bits into the queues. However, the
FQLA algorithm requires an initial period to determine the
place holder bits for each queue. In this initial period, normal
BP algorithm is used. Hence, the delay performance during
this transient phase would be comparable to that of the BP
algorithm at best. At the end of this initial period, a significant
fraction of packets (that correspond to the place-holder bits)
must be dropped. In contrast, our proposed algorithm does
not drop packets that are admitted, and the delay performance
in the transient phase does not deviate significantly from the
value after convergence. Finally, neither [9] nor [11] provide
closed-form bounds on the per-flow end-to-end delay.

Our result is also different from other works in providing a
per-flow end-to-end delay bound. First, [12], [13] only prove
delay bounds for single-hop flows rather than multihop flows.
Second, [14]–[16] consider the delay among all the flows
rather than the per-flow delay. Similarly, the results in [17]
can be used to construct a bound on the delay averaged over
all flows. However, it is still not a per-flow delay bound. In
contrast, our per-flow delay bound scales with the number of
hops of the flow itself; hence, it is usually much tighter. A
per-flow delay bound is provided in [18], but the bound scales
with the size of the network. Finally, a single flow end-to-end
delay analysis is given in [19] based on an approximation of
the departure process for each hop. However, it is unclear how
to extend the analysis to multiple flows.

Our result is perhaps most comparable to that in [20], where
the authors provide a per-flow delay bound that scales with
the number of hops without considering congestion control.
However, the algorithm in [20] has a factor of 5 loss of
throughput even under the one-hop interference constraint,
where the interference degree is 2. If the network operates
under the two-hop interference constraint, the throughput loss
factor is 4△2, where △ is the maximum degree of the vertices.
In contrast, our algorithm only has a factor of 2 loss of
throughput under the one-hop interference constraint. Under
the two-hop interference constraint, the throughput loss factor
of our algorithm is 2△. Moreover, the algorithm in [20] is
considerably more complicated, e.g., the per-node complexity
is O(N), where N is the number of nodes. In contrast, our
algorithm only requires O(1) complexity per-node.

Our contributions can be summarized as follows.
• We provide a new joint congestion control and scheduling

algorithm that can guarantee a minimum throughput
utilization close to 1

K of the system capacity, i.e., at most
a factor of K loss of throughput, and guarantee an upper
bound on the per-flow end-to-end expected delay that
increases linearly with the number of hops.

• The congestion control algorithm is based on window-
based flow control, which deterministically bounds each
flow’s end-to-end backlog within the network and pre-
vents buffer overflows. Further, each flow’s throughput-
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delay tradeoff can be individually controlled.
• Our algorithm is fully distributed and can be easily

implemented in practice with a low per-node complexity
that does not increase with the network size.

• We use a novel stochastic dominance method to analyze
the end-to-end delay. This method is new and could be
of independent value.

The remainder of this paper is organized as follows. The
system model is presented in Section II. In Section III, we
propose the joint congestion control and scheduling algorithm
and present the main analytical results on per-flow throughput
and delay. Section IV is dedicated to the proof of a key
proposition by a novel stochastic dominance method. Imple-
mentation issues are discussed in Section V, and simulation
results are reported in Section VI. Then we conclude.

II. SYSTEM MODEL

We model a wireless network by a graph G = (V,E), where
V is the set of nodes, and E is the set of links. We use the
notation |E| to denote the total number of links. Each link
ℓ ∈ E consists of a transmitter node b(ℓ) and a receiver node
d(ℓ). Two nodes are one-hop neighbors if they are the end-
points of a common link. Two links are one-hop neighbors if
they share a common node. Two links are two-hop neighbors
if they have a common one-hop neighboring link.

We assume a time-slotted wireless system, where packet
transmissions occur within time slots of unit length. Let cℓ
denote the capacity of link ℓ, which represents the number
of packets that link ℓ can transmit in one time slot. We
assume that cℓ is an integer for all link ℓ. We say two
links interfere with each other, if they can not transmit data
at the same time slot. The set of all links that interfere
with link ℓ is called the interference set of link ℓ and is
denoted as Eℓ. We adopt the convention that ℓ ∈ Eℓ, i.e.,
Eℓ = {ℓ} ∪ {ℓ′ : ℓ′ ∈ E and ℓ′ interferes with ℓ}. Assume
that the interference relationship is symmetric, i.e., if k ∈ Eℓ
then ℓ ∈ Ek. The interference degree of a link ℓ is the
maximum number of links within its interference range that
can be activated simultaneously without interfering with each
other. The interference degree K of a network is the maximum
interference degree over all links [6]–[8]. This interference
model is very general, and it includes the one-hop interference
constraint, i.e., a link will only interfere with all its one-hop
neighboring links, and the two-hop interference constraint.
Note that one-hop interference constraint has been used to
model FH-CDMA systems in [5], [21], [22], and the two-hop
interference constraint has been used to model the interference
relationship in IEEE 802.11 DCF (Distributed Coordination
Function) [6]. Under one-hop interference constraint, the in-
terference degree is at most 2. Under the two-hop interference
constraint, define the in-degree and out-degree of a node v as
the number of links in E that ends in v and originates from
v, respectively. Define the directed degree of a link ℓ as the
sum of the out-degree of transmitting node and in-degree of
the receiving node. The maximum directed link degree in G,
△G, is the maximum directed degree of any link in E. It
has been shown that the value of K can be upper bounded

by max(△G − 2, 1) [6]. Since △G ≤ 2△, where △ is the
maximum degree of the vertices, K is at most 2△.

There are M flows in the system, and each flow is associated
with a source node, a destination node, and a fixed route
between them. The routes are given by the matrix [Lℓ

m], where
Lℓ
m = 1 if flow m passes through link ℓ, and Lℓ

m = 0
otherwise. We assume that each flow always has packets to
transmit. The congestion control algorithm will then determine
the rate with which packets are injected into the network
[1]. Each flow is associated with a utility function Um(Rm)
[23], which reflects the “satisfactory level” of user m with
injection rate Rm. We assume that Um(·) is strictly concave,
non-decreasing, and continuously differentiable. The capacity
region Ω of a wireless network is the set of all rate vectors
R⃗ = [Rm] such that there exists a network control policy
to stabilize the network. We then model the joint congestion
control and scheduling problem as:

max
Rm≥0

M∑
m=1

Um(Rm), R⃗ ∈ Ω. (1)

The exact capacity region Ω is often difficult to characterize.
On the other hand, it is well known that Ψ0/K ⊆ Ω ⊆ Ψ0

[8], where

Ψ0 =

{
r⃗
∑
ℓ∈Ek

M∑
m=1

Lℓ
mrm
cℓ

≤ K, for all links k

}
. (2)

Note that equation (2) simply states that, for each link ℓ, the
total normalized load in an interference set must be no larger
than K. This is because at most K links can be scheduled
in any interfere set at a time slot. In Section III, we will
describe how we utilize the relationship between Ω and Ψ0

to approximately solve problem (1). Since we assume infinite
backlog, the delay of a packet is computed from the time it is
injected to the network to the time it reaches the destination.
We are interested in both the throughput and the expected
end-to-end delay of each flow.

III. JOINT CONGESTION CONTROL AND SCHEDULING
ALGORITHM

As we discussed in Section I, there are many approaches
available in the literature to solve problem (1), and most
of them do not consider delay performance. A typical opti-
mal solution can be obtained by a duality approach which
results into the back-pressure algorithm and a congestion-
control component at the source node [1], [2]. Further, a
considerable amount of effort has focused on developing low-
complexity and distributed scheduling algorithms that can
replace the centralized back-pressure algorithm and yet still
achieve provably good throughput performance [3]–[8]. Like
the back-pressure algorithm, these low-complexity scheduling
algorithms are usually also queue-length-based. The drawback
of these approaches, however, is that the end-to-end delay
of the resulting queue-length-based scheduling algorithm is
very difficult to quantify, and as we described in the in-
troduction, under certain cases the back-pressure algorithm
can have poor delay performance [9], [24]. In this paper,
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we will use a window-based flow control algorithm and a
rate-based scheduling algorithm that are very different from
the back-pressure algorithm. Our solution strategy is to first
approximately solve problem (1) and compute the decision
vector r⃗ = [rm]. However, the decision variables rm are NOT
directly used as the rates to inject flow-m packets. For this
reason, we refer to these variables rm as “virtual rates”. We
will use these virtual rates as the control variables in a new
class of rate-based scheduling algorithms. The actual end-to-
end throughput under our algorithm will be denoted as Rm.
As readers will see, for each flow, this new joint congestion
control and scheduling algorithm will guarantee both provable
throughput (close to rm) and provably-low delay. Also, they
are fully distributed and easy to implement in real systems.

A. Virtual-Rate Computation

We first briefly describe how to approximately solve prob-
lem (1). Since the true capacity region Ω is of a complex form,
instead of solving problem (1) directly, we solve the following
optimization problem: (we will make precise the relationship
between optimization problems (1) and (3) in Section III-D.)

max
rm≥0

M∑
m=1

Um(rm), r⃗ ∈ Ψ0/K. (3)

Note that the optimization problem (3) is very similar to
the standard convex-optimization problem in wireline network
with linear constraints [25], [26]. Therefore, it is easy to
apply the approaches in [25], [26] to problem (3). Instead of
elaborating on all the possible approaches to solve problem
(3), we only present one well-known distributed solution.
Specifically, associate a Lagrange multiplier (the dual variable)
λk ≥ 0 to each constraint in (3). The objective function of the
dual problem of (3) becomes:

D(λ⃗) := max
rm≥0

M∑
m=1

Um(rm)−
|E|∑
k=1

λk

(∑
ℓ∈Ek

M∑
m=1

Lℓ
mrm
cℓ

− 1

)
.

We can then use the following gradient algorithm to minimize
D(λ⃗) and compute the optimal virtual-rates.
Virtual-Rate Computation Algorithm: At each time t,

1) The source node of flow m updates rm by equation:

rm(t) = U ′−1
m (

|E|∑
k=1

λk(t)
∑
ℓ∈Ek

Lℓ
m

cℓ
).

2) Each link updates the dual variables by equation:

λk(t+ 1) =

[
λk(t) + γk

(∑
ℓ∈Ek

M∑
m=1

Lℓ
mrm
cℓ

− 1

)]+
,

where γk > 0 is the step size, and [·]+ denotes the
projection to [0,∞).

Using similar techniques as [25], one can show that as
long as γk are sufficiently small, the above algorithm will
converge to the optimal solution of (3). Note that as in [25],
this algorithm requires passing λk and rm among nodes in
the network. We will give a simple protocol to exchange

such information in Section V. As we emphasized earlier, the
variables rm are “virtual rates”, and they are not directly used
to inject flow-m packets under our proposed algorithm. We
choose not to directly use the virtual rates as the real injection
rates due to the following reasons. First, optimization problems
(1) and (3) are formulated as if the rates are immediately
passed to all links at the same time. In reality, a packet must
traverse the links in a hop-by-hop fashion. In order to control
the end-to-end delay, an additional flow-control algorithm
is needed to regulate this hop-by-hop packet flow. Second,
the low-complexity virtual-rate computation algorithm did not
produce the schedule for link transmission. We still need a
scheduling algorithm to compute the schedule that can support
the virtual rate vector r⃗ = [rm].

Readers who are familiar with the literature will realize that
the back-pressure algorithm can again be used to answer the
above flow control and scheduling questions. However, we
would then return to our starting point that the end-to-end
delay of the back-pressure algorithm is difficult to quantify and
may be poor [9], [24]. Hence, in the sequel, we will use very
different scheduling and flow-control components, for which
we can quantify both the throughput and the end-to-end delay
on a per-flow basis.

B. Scheduling Algorithm

We now present the scheduling algorithm, which is a
modification of the low-complexity distributed scheduling al-
gorithm in [8]. Each time slot consists of an initial scheduling
slot, which is further divided into F mini-slots. The links
that are to be scheduled are selected in the scheduling slot,
and the selected links transmit their packets in the rest of
the time slot. Let aℓ(t) =

∑M
m=1 L

ℓ
mrm(t)/cℓ, which is

the normalized sum of the virtual rate over link ℓ, and let
xℓ(t) = maxi∈Eℓ

(∑
k∈Ei

ak(t)
)
.

Rate-based Scheduling Algorithm: At each time slot t,
1) Each link ℓ first computes Pℓ =

aℓ(t) logF
xℓ(t)

.
2) In the scheduling slot, each link then randomly picks

a backoff mini-slot (B) with distribution: P{B = F +

1} = e−Pℓ and P{B = f} = e−Pℓ
f−1
F − e−Pℓ

f
F , f =

1, · · · , F . If F+1 is picked by link ℓ, it will not attempt
to transmit in this time slot.

3) When the backoff timer for a link expires in the schedul-
ing slot, it begins transmission unless it has already
heard a transmission from one of its interfering links.
If two or more links that interfere begin transmissions
simultaneously, a collision occurs, and both transmis-
sions fail.

4) When a link begins transmission, it will randomly
choose a passing flow m to serve with probability
rm(t)/(aℓ(t)cℓ).

Note that this scheduling algorithm only uses virtual rates
to compute Pℓ, which is different from the queue-length-
based algorithm studied in [8]. For simplicity, our performance
analysis will be based on this scheduling algorithm. On the
other hand, note that this algorithm can be easily improved
by letting each link attempt only if it has packets to transmit,
and if it starts transmission, it will randomly serve a flow
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m with positive backlog (i.e., Qmℓ(t) > 0) with probability
rm(t)∑

{m:Qmℓ(t)>0} Lℓ
mrm(t)

, where Qmℓ(t) is the number of flow-
m packets at link ℓ at time t. It is easy to see that this improved
version will lead to higher throughput. Hence, the bound we
derive in Section IV also holds for this improved version.

C. Window-based Flow Control Algorithm

Now, we describe the congestion control component. Our
approach is to use the window-based flow control. For each
flow, we maintain a window Wm at the source node, and we
only inject new packets to the queue at the source node when
the total number of packets for this flow inside the network
is smaller than the window size. This can be achieved by
letting the destination node send an acknowledgement (ACK)
back to the source node whenever it receives a packet. There
are two advantages for this approach. First, for each flow, we
can tightly control the maximum number of packets in each
intermediate node along the route. This will prevent buffer
overflows, which is an important issue as addressed in [17].
Second, as we will show in Section IV, each flow’s tradeoff
between throughput and delay can be individually controlled
by the window size. Note that when we present the analysis
in Section IV, we assume that there is a feedback channel
from the destination node to the source node at each time
slot. Through this feedback channel, the destination node can
send the ACK to the source node, and the source node can
then decide if it is possible to inject another packet at the next
time slot. In reality, in order to reach the source node, each
ACK will also go through the entire route in a hop-by-hop
fashion in the reverse direction. In Section V, we will discuss
how this can be achieved by piggy-backing the ACK after each
packet transmission. As readers will see, this method can be
analyzed with the same approach presented in Section IV, and
this extra ACK delay does not change the delay order of our
result.

D. Performance Analysis

In this subsection, we will present the main steps of the
analysis and the bounds on the throughput and delay of
the above proposed scheme. We first present a relationship
between optimization problems (1) and (3). Let [r∗m] be the
optimal solution of (3), and let [r′∗m] be the optimal solution
of the following optimization problem:

max
rm≥0

M∑
m=1

Um(rm), r⃗ ∈ Ω/K. (4)

Lemma 1:
∑M

m=1 Um(r∗m) ≥
∑M

m=1 Um(r′∗m).
Proof: Since r∗m is the optimal solution of (3), the total

utility of [r∗m] will be larger than any rate vector in Ψ0/K.
Also, by Ω ⊆ Ψ0, we have that Ω/K ⊆ Ψ0/K. Thus, [r′∗m] is a
rate vector in Ψ0/K, and

∑M
m=1 Um(r∗m) ≥

∑M
m=1 Um(r′∗m).

In other words, if each flow achieves a throughput equal to
the optimal virtual rate r∗m, then the total system utility will
be no less than the maximum utility within Ω/K. Further, we
can show the following property of the scheduling algorithm.

Lemma 2: If flow m passes through link ℓ, the probability
that link ℓ will schedule flow m at time slot t is no smaller
than rm(t)(1− ϵ)/(xℓ(t)cℓ), where ϵ = logF+1

F .
Proof: The proof of this lemma is similar to the proof of

Lemma 1 in [8]. In the following proof, we drop the index t
from the notation Pℓ(t) when there is no cause of confusion.
Let Eℓ be the event that link ℓ is scheduled. By equation (17)
in [8], we have that

P (Eℓ) ≥ (e
Pℓ
F − 1)

F∑
f=1

e
− f

F

∑
h∈Eℓ

Ph . (5)

We first find an upper bound for the term
∑

h∈Eℓ
Ph in

equation (5). Let α = logF At time t, we have that∑
h∈Eℓ

Ph = α
∑
h∈Eℓ

ah(t)

max
i∈Eh

(∑
k∈Ei

ak(t)

) ≤ α. (6)

From (5) and (6), we know that

P (Eℓ) ≥ (e
Pℓ
F − 1)

F∑
f=1

e−α f
F ≥ Pℓ

F

F∑
f=1

e−α f
F

=
Pℓ

F

1− e−α

1− e−
α
F
e−

α
F .

Since α = logF and F > 1, we can see that α
F /(1−e−α/F ) ≥

1, e−α/F ≥ 1− logF/F , and 1− e−α = 1− 1/F. Hence,

P (Eℓ) ≥ aℓ(t)
xℓ(t)

(1− logF+1
F )

≥ aℓ(t)
xℓ(t)

(1− ϵ),
(7)

where F is chosen such that ϵ ≥ logF+1
F . We can then

conclude that

P ( link ℓ is scheduled to transmit a flow m packet)
= P (flow m is scheduled|Eℓ)P (Eℓ)

≥ rm(t)
aℓ(t)cℓ

aℓ(t)
xℓ(t)

(1− ϵ)

= rm(t)
xℓ(t)cℓ

(1− ϵ).

Note that this lemma holds at all time-slot t even before the
virtual-rate computation algorithm converges. Next, we focus
on the system performance after the virtual-rate computation
algorithm converges2. After the virtual-rate converges, the
value of rm(t) will be equal to the optimal solution r∗m.
Furthermore, we have from the constraints of optimization
problem (3) that xℓ(t) ≤ 1. It then follows from Lemma 2
that every link ℓ along the path of flow m will serve flow m
with probability no smaller than r∗m(1 − ϵ)/cℓ, independent
across time slots. Intuitively, if the window size of flow m is
large, the end-to-end throughput of flow m, i.e., Rm, will be
at least r∗m(1−ϵ). However, a large window size will also lead
to a large end-to-end packet delay. If we reduce the window
size, although the delay will decrease, the throughput of flow
m will also decrease. Clearly, the key is then to analyze the

2We note that a comparable bound on the probability of scheduling flow
m on link ℓ can also be obtained by assuming that rm(t) is within some
small neighborhood of r∗m. For ease of exposition, we do not pursued this
direction further in this paper.
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throughput and delay as a function of the window size. The
following proposition, which will be proved in Section IV, is
the key result of the paper. Note that this analysis is difficult
because Lemma 2 only provides a lower-bounded marginal
probability for services. Further, the exact statistics of the
correlation among links is hard to characterize because of the
interference constraint.

Let cmmax be the maximum capacity of any link along the
route of flow m. For simplicity, in the following derivations,
we assume that the window-size of flow m is chosen as a
multiple of cmmax, i.e., Wm = cmmaxw, where w is a positive
integer.

Proposition 1: After the virtual-rate computation algo-
rithm converges, for each flow m, our congestion con-
trol and scheduling algorithm can achieve average through-
put no smaller than r∗m(1−ϵ)w

w+Hm−1 , where ϵ is chosen as in
Lemma 2. Moreover, the average delay is upper bounded by
cmmax(w+Hm−1)

r∗m(1−ϵ) .
This proposition has the following two implications. First, for
any ϵm ∈ (0, 1), let w be the smallest positive integer such
that w > (Hm − 1)(1 − ϵm)/ϵm. This implies that w/(w +
Hm − 1) > (1 − ϵm). It then follows from Proposition 1
that the average throughput Rm will be lower bounded by
r∗m(1−ϵ)(1−ϵm), which can be arbitrary close to r∗m. Note that
by Lemma 1, the total utility of the rate vector r⃗∗ = [r∗m] is
no smaller than the total utility of any rate vector within Ω/K.
Hence, our joint congestion control and scheduling algorithm
guarantees a minimum throughput utilization close to 1

K of
the system capacity. Second, since w is the smallest positive
integer such that w > (Hm − 1)(1 − ϵm)/ϵm, we have that
w ≤ (Hm − 1)(1− ϵm)/ϵm + 1. Thus,

w +Hm − 1

r∗m(1− ϵ)
≤ Hm + ϵm − 1

r∗m(1− ϵ)ϵm
<

Hm

r∗m(1− ϵ)ϵm
.

It then follows from Proposition 1 that the delay will be upper
bounded by cmmaxHm/(r∗m(1− ϵ)ϵm). As discussed in Section
I, this implies that our per-flow delay upper-bound is order
optimal with respect to the number of hops.

Note that the assumption that the window size is a multiple
of cmmax is needed only for proving the explicit expression for
end-to-end throughput and delay. In practice, any integer value
of window size can be used for the algorithm. Our simulation
results show that, by choosing the window size to be (cmmin +
cmmax)Hm,3 where cmmin is the minimum capacity of any link
along the route of flow m, the algorithm can achieve both
reasonable throughput and linear order delay.

IV. PROOF OF PROPOSITION 1

Assume that the virtual-rate computation algorithm has
converged at time t. Thus, rm(t) = r∗m for the following time
slots. This implies that, for a particular flow, its service at
every hop is identically and independently distributed (i.i.d.)

3The intuition behind this choice is the following. Suppose that the window
size is 2βHm. Then β could be used to tune the tradeoff between throughput
and delay. If β is too small, the link with larger capacity may not fully utilize
its capacity when it serves packets. If β is too large, packets start to pile
up at the link with smaller capacity. Therefore, we let β =

(cmmin+cmmax)

2
to

achieve good tradeoff.

across time. This observation allows us to isolate flow m out
of the network and view the flow-m as passing through a
virtual tandem network of Hm queues. Furthermore, for ease
of presentation, we assume that there is a feedback channel
from the destination node to the source node for the window-
based flow control at each time slot as discussed in Section
III-C. (This assumption will be removed in Section V.) Now,
we focus on a particular flow m. The analysis for other flows
is the same. To ease the notation, we drop the index m from
the notations Wm, Hm, and cmmax. We can then model this
flow as a H-hop closed tandem network. Label the link along
the route from 1 to H , where 1 is the link closest to the source
node. Let the capacity of the ith link be ci. By the discussion
after Lemma 2, we know that

µℓcℓ ≥ µ , r∗m(1− ϵ), (8)

where µℓ is the probability that link ℓ will serve a flow-
m packet. Since we use the window-based flow control, and
flow m always has packets to transmit, the number of flow-
m packets in the network will be W at each time slot. We
can thus use discrete-time Markov Chain (MC) analysis to
study the closed tandem network for flow m. Specifically, let
Q⃗(t) = (Q1(t), · · · , QH(t)) be the system state, where Qi(t)
is the number of flow-m packets at the ith hop at the beginning
of time t. Furthermore, let S⃗(t) = (S1(t), · · · , SH(t)) be
the random schedule vector for flow m at time t, where
Si(t) = 1{link i is scheduled at time t}. Since S⃗(t) is i.i.d. across
time slots, the state at time t + 1 will only depend on the
current state Q⃗(t) and the schedule S⃗(t). It can be verified
that this MC is ergodic, i.e., irreducible, positive recurrent,
and aperiodic.

Fig. 2. Left: The incoming and outgoing transitions to and from state
(2, 1, 2). Right: The distribution of the random schedule vector S⃗(t). The
capacities of links 1, 2, and 3 are 1, 1, and 2, respectively.

Fig. 2 illustrates an example of the MC for a 3-hop closed
tandem network with 5 packets. The capacities of links 1,
2, and 3 are 1, 1, and 2, respectively. We know that the
throughput of flow m is the average number of packets that
leave the system, which is equivalent to the average number
of packets that leave the last hop, i.e., link H . If the MC is
in steady state, we can compute the actual throughput Rm by
computing the average number of packets that leave the last
hop as follows:

Rm =

∞∑
i=1

min(i, cH)µHP{QH = i}. (9)

If we can compute the actual throughput Rm, then the delay
can be obtained by Little’s law. Unfortunately, it appears
impossible to directly solve the MC. The reason is because the
services of different links are correlated. For example, link 1
and link 2 will never be scheduled together due to interference,
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and there is a good chance that link 1 and link 3 will be
served together. Further, the exact statistics of such correlation
is hard to characterize. Moreover, since the capacity of each
link is different, it is possible that one link may not be able
to use the full capacity to transmit the packets for some flow
m. All that we know (from Lemma 2) is a lower-bounded
marginal probability µ/cℓ that link ℓ is activated to send a
flow m packet. Hence, it is difficult to solve the MC directly.
To circumvent this difficulty, we next use a novel stochastic
dominance approach. Specifically, we construct a sequence
of systems such that one system stochastically dominates the
other. Through this series of comparison, the original system
is reduced to a system where throughput and delay can be
directly computed.

A. Comparison Step 1

We start with some definitions and assumptions. In the rest
of this section, when we refer to a particular system, we mean
a version of the H-hop closed tandem network with window-
based flow control and window size W . For each system, the
random schedule vector is always i.i.d. across time. Further, for
different systems, the initial condition for the packet placement
is the same, i.e., the number of packets in each queue is the
same at time 0. However, within a time slot, the distribution of
the schedule vector is different depending on the system that
we refer to. We abuse the notation and denote a system by S⃗(·)
when the corresponding random schedule vector is denoted
by S⃗(t). Furthermore, we denote T (S⃗(·)) and D(S⃗(·)) as the
throughput and delay of system S⃗(·).

Consider a system S⃗(1)(·). Let the probability distribution
of S⃗(1)(t) be P{S⃗(1)(t) = x⃗i} = p′i, i = 0, · · · , I , where x⃗i =
(xi1, · · · , xiH) is the ith schedule vector, xij = 1 if link j is
activated under the ith schedule vector, and xij = 0 otherwise.
We use the convention that x⃗0 = 0⃗. Let Aℓ = {i|xiℓ = 1}.
Notice that µ′

ℓ ,
∑

i∈Aℓ
p′i is the marginal probability that link

ℓ is scheduled at one time slot. Assume that system S⃗(1)(·)
satisfies the following property. (We will discuss in Section
IV-D how to treat the case when property (10) is not satisfied.)

H∑
ℓ=1

µ′
ℓ =

H∑
ℓ=1

∑
i∈Aℓ

p′i ≤ 1, and µ′
ℓcℓ ≥ µ′. (10)

Recall that the key difficulty of analyzing the system is the
correlation of the services among links. We now introduce
a splitting procedure that convert a given system to another
system where links are less likely to be scheduled together.

Construct system S⃗(2)(·) as follows. First, pick a schedule
vector of S⃗(1)(t) with positive probability such that at least
two links are scheduled. Assume that this schedule vector is
x⃗1. Next, choose the smallest ℓ such that x1ℓ = 1. Let e⃗ℓ be
the schedule that only schedules link ℓ, and let x⃗1 − e⃗ℓ be
the schedule that removes link ℓ from x⃗1. The distribution of
S⃗(2)(t) is:

P{S⃗(2)(t) = x⃗1 − e⃗ℓ} = p′1, P{S⃗(2)(t) = e⃗ℓ} = p′1,

P{S⃗(2)(t) = x⃗0} = p′0 − p′1, P{S⃗(2)(t) = x⃗i} = p′i, i ≥ 2.

Note that the schedule x⃗1 is now split into two schedules e⃗ℓ
and x⃗1 − e⃗ℓ. Let |x⃗i| be the number of links scheduled by x⃗i,

and recall that |x⃗1| ≥ 2. We can then show that

p′0 − p′1 = 1−
∑

i ̸=0 p
′
i − p′1 ≥ 1−

∑
i ̸=0 |x⃗i|p′i

= 1−
∑

i ̸=0

∑H
ℓ=1 1{i∈Aℓ}p

′
i

= 1−
∑H

ℓ=1

∑
i ̸=0 1{i∈Aℓ}p

′
i

= 1−
∑H

ℓ=1

∑
{i∈Aℓ} p

′
i ≥ 0.

Note that the last inequality follows from the fact that S⃗(1)(·)
has property (10). Thus, the probability distribution of S⃗(2)(t)
is valid. We call S⃗(2)(·) a split version of S⃗(1)(·). The
key intuition behind split S⃗(1)(·) to S⃗(2)(·) is that there is
a stochastic ordering relation called supermodular ordering
between S⃗(1)(·) and S⃗(2)(·). We review the basic definitions,
and readers are referred to [27], [28] for other definitions and
basic properties of stochastic ordering.

Definition 1: (Supermodular Function) A function ϕ(x⃗) :
{0, 1}n → R is said to be supermodular if, for any n-
dimensional vectors x⃗1 and x⃗2, it satisfies that

ϕ(x⃗1) + ϕ(x⃗2) ≤ ϕ(x⃗1 ∧ x⃗2) + ϕ(x⃗1 ∨ x⃗2), (11)

where ∧ and ∨ mean componentwise minimum and maximum.
Definition 2: (Supermodular Ordering) Let F be the

class of all supermodular functions from {0, 1}n into R. For
two n-dimensional random vectors X⃗ and Y⃗ , X⃗ is said to be
smaller than Y⃗ in supermodular order (denoted by X⃗ ≤sm Y⃗ )
if E[ϕ(X⃗)] ≤ E[ϕ(Y⃗ )], for all ϕ ∈ F .

Lemma 3: If we have a system S⃗(1)(·) with property (10),
and another system S⃗(2)(·), which is the split version of system
S⃗(1)(·), then S⃗(1)(t) ≥sm S⃗(2)(t), ∀t.

Proof: For any supermodular function ϕ : {0, 1}H → R,

E[ϕ(S⃗(1)(t))]− E[ϕ(S⃗(2)(t))]

=
∑I

i=0 ϕ(x⃗i)p
′
i − ϕ(x⃗1 − e⃗ℓ)p

′
1 − ϕ(e⃗ℓ)p

′
1

−ϕ(x⃗0)(p
′
0 − p′1)−

∑I
i=2 ϕ(x⃗i)p

′
i

= ϕ(x⃗1)p
′
1 + ϕ(x⃗0)p

′
1 − ϕ(x⃗1 − e⃗ℓ)p

′
1 − ϕ(e⃗ℓ)p

′
1 ≥ 0,

where the last equality follows from the definition of a
supermodular function and the fact that x⃗1 = {x⃗1 − e⃗ℓ} ∨ e⃗ℓ,
and x⃗0 = {x⃗1 − e⃗ℓ} ∧ e⃗ℓ. Hence, S⃗(1)(t) ≥sm S⃗(2)(t).
Definition 2 and Lemma 3 only involve the comparison of the
expected value of ϕ taking only one random vector as input.
However, later we will compare the throughput which takes
a sequence of random vectors as input. Define S⃗(i)(t1, t2) as
the sequence of scheduling vectors S⃗(i)(t1), · · · , S⃗(i)(t2) for
system S⃗(i)(·). A useful lemma that reduces the complexity
of comparison is as follows.

Lemma 4: Consider two systems S⃗(1)(·) and S⃗(2)(·)
such that the number of packets in each queue is the same
for both systems at time 0, i.e., the same initial condition
for packet placement. If under any initial condition for
packet placement, we have that E[ϕ(S⃗(1)(1, t))|S⃗(1)(2, t)] ≥
E[ϕ(S⃗(2)(1), S⃗(1)(2, t))|S⃗(1)(2, t))], then we have that
E[ϕ(S⃗(1)(1, t))] ≥ E[ϕ(S⃗(2)(1, t))].

Proof: Under any initial condition for packet
placement, we know that E[ϕ(S⃗(1)(1, t))|S⃗(1)(2, t))] ≥
E[ϕ(S⃗(2)(1), S⃗(1)(2, t))|S⃗(1)(2, t))]. This statement can be
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used to show that for any k = 1, 2, . . . , t,

E[ϕ(S⃗(2)(1, k − 1), S⃗(1)(k, t))|S⃗(2)(1, k − 1), S⃗(1)(k + 1, t)]

≥E[ϕ(S⃗(2)(1, k), S⃗(1)(k + 1, t))|S⃗(2)(1, k − 1), S⃗(1)(k + 1, t)].
(12)

The reason is that the schedules before and after time k are
fixed. Hence, the only randomness is then the schedule at time
k. By viewing k as a virtual time 1, equation (12) is true by
the condition of the lemma. Take expectation to both sides,
we have that

E[ϕ(S⃗(2)(1, k − 1), S⃗(1)(k, t))]

≥E[ϕ(S⃗(2)(1, k), S⃗(1)(k + 1, t))],
(13)

Now, we can iteratively change a random schedule vector at
a particular time t1 from S⃗(1)(t1) to S⃗(2)(t1) and use equation
(13) to show that E[ϕ(S⃗(1)(1, t))] ≥ E[ϕ(S⃗(2)(1, t))]. This
ends the proof.
Remark: note that E[ϕ(S⃗(1)(1, t))|S⃗(1)(2, t)] ≥
E[ϕ(S⃗(2)(1), S⃗(1)(2, t))|S⃗(1)(2, t))] would hold if the
function ϕ is a supermodular function with respect to the
schedule at time 1 because the schedules from time 2 to
time t are fixed to S⃗(1)(2, t) by the conditioning. Hence,
according to Lemma 4, showing that ϕ is a supermodular
function with respect to the schedule at time 1 is sufficient
for E[ϕ(S⃗(1)(1, t))] ≥ E[ϕ(S⃗(2)(1, t))].4

Next, we treat the function ϕ as the throughput function f .
Since system S⃗(i)(·) is ergodic, we know that T (S⃗(i)(·)) =
lim
t→∞

E[f(S⃗(i)(1, t))]/t. By establishing that f is a supermod-
ular function with respect to the schedules at time 1, we can
then prove the following result.

Theorem 1: If we have an ergodic system S⃗(1)(·) with
property (10), and an ergodic system S⃗(2)(·), which is the
split version of system S⃗(1)(·), then T (S⃗(1)(·)) ≥ T (S⃗(2)(·)).
Moreover, S⃗(2)(·) has property (10).

Proof: The proof is given in Appendix A.
In other words, with the same window-based flow control,
splitting will not increase the average throughput. To the best
of our knowledge, this important relationship has not been
reported in the literature. Clearly, if Theorem 1 holds, we
can iteratively perform further splitting procedures on system
S⃗(2)(·). After a finite number of iterations, we will reach a
system S⃗(3)(·) such that each schedule vector only schedules
one link! The distribution of S⃗(3)(t) is P{S⃗(3)(t) = e⃗ℓ} =
µ′
ℓ, ℓ = 1, · · · ,H and P{S⃗(3)(t) = x⃗0} = 1 −

∑H
ℓ=1 µ

′
ℓ.

Further, we have that

T (S⃗(1)(·)) ≥ T (S⃗(3)(·)). (14)

4Careful readers may raise the question that why don’t we directly prove
ϕ to be a supermodular function with respect to the entire sequence of
schedules from 1 to t. It turns out that when we take the function ϕ as
the throughput function f in the following derivation, such a function is not
supermodular with respect to the entire sequence of schedules, even though
it is supermodular with respect to each variable (see Appendix C for the
detailed example.) Hence, the simplification offered by Lemma 4 is in fact
quite essential to establish our main Theorem 1.

B. Comparison Step 2

Although for system S⃗(3)(·) each schedule vector only
schedules one link, the capacity of each link is still different.
Hence, it is still difficult to compute the throughput directly
from the MC. We continue with the comparison to reach a
system such that the capacity for each link is the same.

Consider a system S⃗(4)(·). For this system, the capacity of
link 1 is cmax, and the capacities of every other links ℓ is still
cℓ. The distribution of S⃗(4)(t) is given by P{S⃗(4)(t) = e⃗1} =
µ′′
1 , P{S⃗(4)(t) = e⃗ℓ} = µ′

ℓ, ℓ = 2, · · · ,H and P{S⃗(4)(t) =

x⃗0} = 1 − µ′′
1 −

∑H
ℓ=2 µ

′
ℓ, where µ′′

1cmax = µ′
1c1. In other

words, system S⃗(3)(·) and S⃗(4)(·) only differ in the capacity
and scheduling probability of link 1. Further, system S⃗(4)(·)
still satisfies property (10). It turns out that we can still prove
the throughput order relation between S⃗(3)(·) and S⃗(4)(·) as
illustrated in the following proposition.

Proposition 2: T (S⃗(3)(·)) ≥ T (S⃗(4)(·)).
Proof: The proof is given in Appendix B.

This proposition says that when the product of the schedul-
ing probability and the capacity remains fixed, if a link is
scheduled more often but with less capacity, it will achieve
higher throughput. The intuition is that in the system with
higher capacity links, the service is more bursty, which will
lead to smaller throughput.5 It is not hard to see that using
Proposition 2, we can iteratively show that

T (S⃗(3)(·)) ≥ T (S⃗(5)(·)), (15)

where for system S⃗(5)(·), the capacity of all the links is cmax,
and the probability of scheduling each link ℓ is µ′′

ℓ , where
µ′′
ℓ cmax = µ′

ℓcℓ. As we will see in Section IV-C, the lower
bound of T (S⃗(5)(·)) can be easily calculated.

C. Comparison Step 3

Let us take one more step. Consider another system S⃗(6)(·).
The capacity for all the links is cmax. The distribution of
S⃗(6)(t) is P{S⃗(6)(t) = e⃗ℓ} = µ′′

min, ℓ = 1, · · · ,H and
P{S⃗(6)(t) = x⃗0} = 1 − Hµ′′

min, where µ′′
min = min

ℓ
µ′′
ℓ . It

can be verified that T (S⃗(5)(·)) ≥ T (S⃗(6)(·)).
Lemma 5: T (S⃗(5)(·)) ≥ T (S⃗(6)(·)).

Proof: To prove that T (S⃗(5)(·)) ≥ T (S⃗(6)(·)), we can
use similar techniques in Theorem 1 to reduce the problem to
proving that for system S⃗(5)(·) and S⃗(6)(·) under any initial
condition for packet placement, we have that

E[f(S⃗(5)(1, t))|S⃗(5)(2, t)]

≥E[f(S⃗(6)(1), S⃗(5)(2, t))|S⃗(5)(2, t)].
(16)

Recall that the capacity of all link ℓ of system S⃗(5)(·) and
S⃗(6)(·) is cmax, and the probability distribution of S⃗(5)(·) is
P{S⃗(5)(t) = e⃗ℓ} = µ′′

ℓ , P{S⃗(5)(t) = x⃗0} = 1−
∑H

ℓ=1 µ
′′
ℓ .

5A similar observation has been reported in the literature for continuous-
time systems when the holding-time distribution is more bursty. There, a
stochastic ordering relationship called increasing convex ordering was used
[29]. Proposition 2 can be viewed as an extension to discrete-time systems
with batch service.
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Now, we prove equation (16). Assume that S⃗(5)(2, t) equal
to a sequence of fixed schedules y⃗(2, t). Denote ϕ(z⃗) =
f(z⃗, y⃗(2, t)). We have that

E[f(S⃗(5)(1, t))|S⃗(5)(2, t)]

− E[f(S⃗(6)(1), S⃗(5)(2, t))|S⃗(5)(2, t)]

=
H∑
ℓ=1

ϕ(e⃗ℓ)µ
′′
ℓ + ϕ(x⃗0)

(
1−

H∑
ℓ=1

µ′′
ℓ

)

−
H∑
ℓ=1

ϕ(e⃗ℓ)µ
′′
min − ϕ(x⃗0)

(
1−

H∑
ℓ=1

µ′′
min

)

=

H∑
ℓ=1

(µ′′
ℓ − µ′′

min)(ϕ(e⃗ℓ)− ϕ(x⃗0)) ≥ 0.

The last inequality is a application of Lemma 8. Let ϕ(e⃗ℓ)
and ϕ(x⃗0) be the throughput of system Y1 and Y2. Then we
can apply Lemma 8 to have the last inequality. This ends the
proof of equation (16).

This result is intuitive because, for every link ℓ,
P{S⃗(5)(t) = e⃗ℓ} ≥ P{S⃗(6)(t) = e⃗ℓ}. Thus, the throughput
of system S⃗(5)(·) should be no smaller than the throughput of
system S⃗(6)(·). The throughput of system S⃗(6)(·) has a closed-
form solution as follows. Note that the MC for system S⃗(6)(·)
is similar to that of a closed tandem network of M/M/1
queues with identical service rates [30, page 186].

Lemma 6: T (S⃗(6)(·)) = cmaxµ
′′
minw/(w +H − 1).

Proof: Recall that W = cmaxw, i.e., the window size is a
multiple of cmax. Further, each link has capacity cmax. Hence,
blocks of cmax packets must move from queues to queues.
Consider the Markov Chain of system S⃗(6)(·) and a particular
state n⃗ = (n1, · · · , nH), where ni is the number of blocks at
queue i (a block consists of cmax packets). Since each possible
schedule e⃗ℓ for system S⃗(6)(·) schedules only one link, there
are the same number of incoming transitions and outgoing
transitions for an arbitrary state n⃗. If we assume that P (n⃗) = x
for any state n⃗, then it will satisfy the global balance equation.
Therefore, to obtain the solution of this stationary Markov
Chain, we only need to normalize

∑
P (n⃗) = 1. Hence,

x =
1

number of possible states
=

1(
w+H−1

w

) .
We can then show that

P (QH = 0) = x(
∑
n⃗

1{nH=0}) =

(
w+H−2

w

)(
w+H−1

w

) =
H − 1

w +H − 1
,

and

T (S⃗(6)(·)) = cmaxµ
′′
min[1− P (QH = 0)] =

wcmaxµ
′′
min

w +H − 1
.

Using equations (14), equation (15), Lemma 5 and Lemma 6,
we get a lower bound of T (S⃗(1)(·)).

D. Throughput Lower Bound and Delay Upper Bound

Until this point, we have assumed that system S⃗(1)(·)
satisfies property (10). We now discuss how to treat the case
when the original system S⃗(·) does not satisfy property (10).

Suppose that the distribution of S⃗(t) is P{S⃗(t) = x⃗i} =
pi, i = 0, · · · , I . Define system S⃗(1)(·) as follows. For i ̸= 0,
let p′i = pi/(

∑H
ℓ=1 µℓ), and p′0 = 1−

∑
i ̸=0 p

′
i. The distribution

of S⃗(1)(t) is P{S⃗(1)(t) = x⃗i} = p′i, i = 0, · · · , I . Recall that
Aℓ = {i|xiℓ = 1}. We can then show that∑H

ℓ=1 µ
′
ℓ =

∑H
ℓ=1

∑
i∈Aℓ

p′i =
∑H

ℓ=1

∑
i∈Aℓ

pi/(
∑H

j=1 µj)

=
∑H

ℓ=1 µℓ/(
∑H

j=1 µj) ≤ 1.

We also have from (8) that µ′
ℓcℓ = µℓcℓ/

∑H
i=1 µi ≥

µ/
∑H

i=1 µi , µ′. Thus, system S⃗(1)(·) has property (10).
The relationship between T (S⃗(·)) and T (S⃗(1)(·)) is given by
the following lemma.

Lemma 7: T (S⃗(·)) = (
∑H

ℓ=1 µℓ)T (S⃗
(1)(·)).

Proof: By (9), T (S⃗(·)) =
∑∞

i=1 min(i, cH)µHPS⃗{QH =

i}, and T (S⃗(1)(·)) =
∑∞

i=1 min(i, cH)µ′
HPS⃗(1){QH = i}.

If we can show that system S⃗(·) and system S⃗(1)(·) have
the same stationary probability for all the states, this lemma
can be proved by noting that µH = µ′

H(
∑H

ℓ=1 µℓ). To show
that system S⃗(·) and system S⃗(1)(·) have the same stationary
probability for all the states, notice that, by changing system
S⃗(·) to system S⃗(1)(·), for each state we divide each incoming
or outgoing transition probability by

∑H
ℓ=1 µℓ. Since the

global balance equation will not change after the transition
probability is divided by a constant, system S⃗(·) and S⃗(1)(·)
will have the same steady state distribution.

It then follows from this lemma, T (S⃗(1)(·)) ≥ T (S⃗(6)(·)) =
cmaxµ

′′
minw/(w +H − 1), and cmaxµ

′′
min ≥ µ′ that

T (S⃗(·)) = (

H∑
ℓ=1

µℓ)T (S⃗
(1)(·)) ≥ µw

w +H − 1
.

By Little’s law, W = T (S⃗(·))D(S⃗(·)). Thus,

D(S⃗(·)) ≤ cmax(w +H − 1)/µ.

This completes the proof of Proposition 1.

V. IMPLEMENTATION ISSUES

Fig. 3. Upper (resp. Lower) tandem queues store packets (resp. ACKs).

In this section, we discuss some practical issues for imple-
menting our algorithm. We will address three components of
our scheme: window-based flow control, virtual-rate compu-
tation, and scheduling. First, the window-based flow control
requires a backward channel for communicating the ACKs.
This backward channel can be easily implemented as follows.
Immediately after a link transmits a flow m packet, the
receiving node will respond with an acknowledgement, which
piggy-backs an ACK for flow m that it has received from
the destination in the past. With this mechanism, each link
can be modeled as an upper queue for the forward direction
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and a lower queue for the backward direction. The window-
based flow control for a given flow m can then be modeled
as a 2Hm-hop closed queueing network in Fig. 3. Note that
both the upper queue and the lower queue will be served with
probability lower bounded by Lemma 2. It is then easy to see
that we can again use the technique of Section IV to derive
the throughput and delay bounds. The main difference is that
the number of hops is changed from Hm to 2Hm. To maintain
the throughput, we can increase the window size from Wm to
2Wm. Then, by Proposition 1 the throughput is lower bounded
by r∗m(1−ϵ)2w

2w+2H−1 , which is greater than or equal to r∗m(1−ϵ)w
w+H−1 .

Hence, the throughput performance is comparable to the case
with instantaneous feedback. As for the delay, the round-trip
delay bound is increased to cmax(2w+2H−1)

r∗m(1−ϵ) , which is roughly
2cmax(w+H−1)

r∗m(1−ϵ) . Hence, the order-optimality of the delay bound
is not affected.

Second, in the virtual-rate computation algorithm, each link
ℓ needs to collect the total normalized virtual-rate from links in
the interference set Eℓ, and each source node needs to collect
the sum of the dual variables from all the links that interfere
with at least one link along its route. In practice, such infor-
mation exchange can be easily achieved by first piggy-backing
the most recent virtual-rate information on each packet sent by
the source node. Then each link can check the packet from all
the flows that pass through it and update the total virtual-rate.
When a link is scheduled to transmit, we can further piggy-
back the value of the most recent total normalized virtual
rate in the packet. Hence, all the links that interfere with the
scheduled link can overhear this information. Similarly, when a
link is scheduled to transmit, we can also piggy-back the most
recent value of the dual variable. All the links that interfere
with the scheduled link can also overhear this information.
Each link along the route of flow m can piggy-back the most
recent sum of the normalized dual-variables on each ACK
sent by the destination node. Consequently, the source node
of flow m can obtain the required information through the
received ACK. Note that although the virtual rates and dual
variables are updated asynchronously, our window-based flow
control algorithm ensures that the delay of such information
exchange will not be large. Hence, we expect that the virtual-
rate computation algorithm will still converge with suitable
choices of the step sizes [25], [31].

Finally, in the scheduling algorithm, each link i must first
collect the total normalized virtual-rate from the link in its
interference set, i.e.,

∑
k∈Ei

ak(t). As we described above, this
information is already available when we perform the virtual-
rate computation. Then each link can again piggy-back this
value in the transmitting data packet, and every link that inter-
feres with the transmitting link can overhear this information.
As a result, each link ℓ can obtain maxi∈Eℓ

(∑
k∈Ei

ak(t)
)
.

We note that each link may now attempt with outdated infor-
mation, but it will not affect our delay bound. This is because,
after the virtual-rate computation algorithm converges, the
virtual-rate will not change significantly.

Readers can see that under our proposed algorithm, each
node only needs to perform a constant number of operations
with a constant time of F mini-slots. Note that larger F will

lead to smaller ϵ as described in Lemma 2, but at the cost of
larger overhead. In our simulations in Section VI, we choose
the size of F to be 32. Assume that the length of a mini-
slot is 20µs, the overhead is then 640µs. This amount of
overhead is comparable to standard 802.11 protocols. When
F = 32, by Lemma 2, the value ϵ of our lower bound will
be roughly 0.14, which is already small. When we run the
simulations in Section VI, we use the improved algorithm
as discussed in Section III-B, which will lead to further
performance improvement. As the reader will see in Section
VI, our simulation shows that F = 32 is sufficient to make
the actual throughput under our algorithm be larger than
the calculated virtual-rate. The impact of this overhead also
depends on the packet length and the length of a time slot. If
the length of a time slot is T0, and the length of each mini-slot
is T1, then the backoff mini-slots will lead to another reduction
factor of T0−FT1

T0
on the throughput. Note that for a fixed F ,

the complexity of our algorithm is O(1), which is significantly
lower than the O(N) per-node operations required by the
algorithm in [20].

VI. SIMULATION RESULTS

We start from simulating our proposed algorithm using
the linear topology in Fig. 1 with H links under the one-
hop interference constraint. The capacities of the left-most
four links are 5, 2, 3, and 4, respectively. Then, every four
links repeat this pattern. We use the improved version of our
scheduling algorithm as discussed in Section III-B, and we let
the source node (resp. each link) collect the sum of the dual
variables along the path (resp. virtual rate) asynchronously as
described in the second paragraph of Section V. We set the
number of backoff mini-slots F = 32. The window sizes of
each short flow is 2ci, if the short flow passes link i. The
window size of the long flow is (cmin + cmax)H . The utility
function is H log(·) for the long flow and 5 log(·) for each
short flow. Hence, when we increase the number of hops,
the optimal rate assignment for the flows will be roughly the
same. This will help us to observe how the average delay
changes as the number of hops increases while the throughput
is relatively fixed. We also use BP-α to represent the back-
pressure algorithm with step size α and SBP-α to represent
the shadow back-pressure algorithm with step size α [9].

We first compare the performance of our proposed algorithm
with the standard back-pressure (BP) algorithm (for different
step sizes). Fig. 4(a) shows that the average delay of our
algorithm increases linearly with the number of hops. On the
other hand, at all step sizes, the average delay of the BP
algorithm increases quadratically with the number of hops,
which is much larger than that of our algorithm. Note that
our algorithm outperforms the BP algorithm in the delay
performance even though the BP algorithm utilizes centralized
computation. Moreover, our average delay curve is below the
delay upper bound derived in Section IV. This verifies our
delay analysis result. In Fig. 4(b), we plot the corresponding
long-flow throughput of our algorithm versus BP algorithm.
We can see that the throughput of our distributed algorithm is
indeed more than half of the centralized and high-complexity
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(a) (b) (c)

Fig. 4. The simulation results of the linear topology.

(a) (b) (c)

Fig. 5. The simulation results during the transient phase for the linear topology when H = 7

BP algorithm. Another interesting observation is that when the
step size is large (BP-1), the throughput differs significantly
from those with smaller step sizes. 6This indicates that the
delay reduction (in Fig. 4(a)) of the BP algorithm at such
a large step size is at the cost of losing its optimal control
capability. In contrast, the step size in our proposed algorithm
does not directly affect the delay.

Second, we compare the performance of our proposed
algorithm with the shadow back-pressure (SBP) algorithm
proposed in [9]. Note that the average delay curve of the
SBP algorithm also shows linear-scaling as shown in Fig. 4(a)
(although this has not been formally proved in [9]). Further,
the corresponding long-flow throughput is roughly the same
as the BP algorithm, which is optimal. However, like the BP
algorithm, the SBP algorithm requires centralized computation
to achieve maximum capacity region. Further, we observe that
SBP requires roughly 7000 time slots for the whole algorithm
to converge, and the total queue length inside the network will
first rise to a very large value as shown in Fig. 4(c). In contrast,
the control variables under our algorithm will converge after
around 200 time slots as shown in Fig. 5(a) and Fig. 5(b).
Further, because of window-based flow control, the total queue
backlog of our algorithm is consistently the lowest at all time,
even during the transient period. Finally, we plot the delay
evolution of the departing packets when H = 7 as shown

6Note that the delay order of the BP algorithm is always quadratic
for different step sizes. This implies that simply operating away from the
boundary of the capacity region can not change the order of the delay
performance.

in Fig. 5(c). Specifically, we plot the average delay over the
previous 200 departing packets right before each departing
packet. The simulation result shows that the average delay
of SBP will be significantly larger in the transient phase. In
contrast, the average delay of our algorithm does not deviate
significantly from the theoretical value even in the transient
period.7

In Fig. 6, we demonstrate the per-flow controllability of
our scheme by plotting the throughput-delay curve for the
long flow. We first fix the window size of each short flow
to be 2ci, if the short flow passes link i. We then vary the
window size of the long flow. As the window size increases,
the average throughput of the long flow will approach to
a limit, and the delay will increase linearly with window
size. This curve shows that when the window size is equal
to (cmin + cmax)H = 49, we can achieve a good balance
between throughput and delay. Next, we fix the window size
of the long flow to be (cmin + cmax)H and vary the window
size of the short flows. As shown in Fig. 6, all points are
concentrated around a small region, which demonstrates that
the performance of the long flow does not change when the
window size of the short flows changes.

Next, we simulate our proposed algorithm using a much
larger topology, i.e., the n × n grid topology in Figure 8(a).

7Readers may note that even though the virtual rate of the long flow at the
initial phase is higher, it has not led to more congestion either. The reason is
that the source node does not directly use the virtual rate to inject packets.
Instead, our algorithm uses window-based flow-control, which controls the
congestion level in the network all the time.
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Fig. 6. Long flow delay versus throughput when H = 7 for the linear
topology. Numbers along the curve are the window size of the long flow.

For each k = 1, · · · , n − 1, there is one k-hop flow in each
row (resp. column) from left to right (resp. top to bottom).
Moreover, there is a (2n−2)-hop long flow from the northwest
corner node to the southeast corner node. The capacity of
each link that belongs to the ith row is 5, if i is an odd
number, and 3, if i is an even number. The capacity of each
link that belongs to the ith column is 4, if i is an odd number,
and 2, if i is an even number. An example for the 3× 3 grid
topology is shown in Fig. 8(a). For the long flow, the utility
function is h log(·), where the value of h is chosen as follows.

Grid Size n 3 4 5 6 7 8 9 10
h 2 2.3 3.2 4.3 6 7.5 9.7 11.5

For all the other flows, the utility function is log(·) for all
grid sizes. As a result, when we increase the grid size, the
rate assignment for the long flow will be roughly the same.
For all flows except the long flow, the window size is two
times the capacity of the first-hop link times the number of
hops. The window size of the long flow is (cmax + cmin)
times the number of hops. The delay of the long flow is
presented in Fig. 8(b). When we increase the grid size from
3 to 10, the average delay of our algorithm still increases
roughly linearly with the number of hops, and, at all step
sizes, the average delay of the back-pressure algorithm
increases quadratically with the number of hops. In Fig.
8(c), we plot the corresponding long-flow throughput of our
algorithm versus the back-pressure algorithm. We can see
that the throughput of our distributed algorithm is still more
than half of the back-pressure algorithm. Finally, we plot the
delay evolution of the departing packets for the 5 × 5 grid
topology as shown in Fig. 7. Similar to Fig. 5(c), we plot the
average delay over the previous 200 departing packets right
before each departing packet. Again, we observe that the
average delay of our algorithm does not deviate significantly
from the theoretical value even in the transient period.

VII. CONCLUSION

In this paper, we propose a low-complexity and distributed
algorithm for joint congestion control and scheduling in mul-
tihop wireless networks under a general interference model.
The main ideas of the proposed algorithm are to control the
congestion with window-based flow control and to use both
virtual-rate information and queue information (rather than

Fig. 7. The delay evolution figure for a 5× 5 grid.

just queue information) to perform scheduling. Our scheduling
algorithm is fully distributed and only requires a constant time
(independent of network size) to compute a schedule [8]. We
prove that our congestion control and scheduling algorithm can
utilize nearly 1

K of the capacity region and provide a per-flow
delay bound that increases linearly with the number of hops.
Our analysis uses a novel stochastic dominance approach to
derive the per-flow throughput and delay bounds. In our future
work, we will study how to extend this novel technique to the
case with dynamic routing.

APPENDIX A
PROOF OF THEOREM 1

Because the marginal probability of scheduling link ℓ in
S⃗(1)(·) and S⃗(2)(·) are the same for each ℓ, it is easy to see
that S⃗(2)(·) still has property (10).

To show that T (S⃗(1)(·)) ≥ T (S⃗(2)(·)), fix a packet
placement at time 0. Under window-based flow control
with window size W , let f be a function that maps
a given sequence of schedule vectors to the total num-
ber of packets leaving queue H at the end of time t.
We know that lim

t→∞
E[f(S⃗(1)(1, t))]/t = T (S⃗(1)(·)), and

lim
t→∞

E[f(S⃗(2)(1, t))]/t = T (S⃗(2)(·)). Therefore, we only

need to show that E[f(S⃗(1)(1, t))] ≥ E[f(S⃗(2)(1, t))], ∀t. By
Lemma 4, we can reduce the problem to proving that for
system S⃗(1)(·) and S⃗(2)(·), if the number of packets in each
queue is the same at time 0, then E[f(S⃗(1)(1, t))|S⃗(1)(2, t)] ≥
E[f(S⃗(2)(1))|S⃗(1)(2, t)]. It then comes from Definition 2 and
Lemma 3 that we only need to prove that f is a supermodular
function at time 1. In other words, consider the following four
deterministic systems Yi, i = 1, · · · , 4. They have the same
initial packet placement, i.e., the initial number of packets in
each queue is the same for all four systems. For system Yi,
from time 1 to some time t, it uses a sequence of deterministic
schedules, z⃗i, y⃗(2), · · · , y⃗(t). It is easy to see that the only
difference for these four deterministic systems is the schedule
at the first time slot. Let z⃗i, 1 ≤ i ≤ 4 be schedules satisfying

z⃗2 = z⃗3 ∧ z⃗4, z⃗1 = z⃗3 ∨ z⃗4. (17)

Notice that z⃗2 4 z⃗3 4 z⃗1, and z⃗2 4 z⃗4 4 z⃗1, where 4 means
componentwise smaller. Let Ti(t) be the throughput of system
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Fig. 8. The simulation results of the grid topology.

Yi at time t, i.e., Ti(t) = f(z⃗i, y⃗(2), y⃗(3), · · · , y⃗(t)). To prove
Theorem 1, we only need to show that

T1(t) + T2(t) ≥ T3(t) + T4(t), ∀t. (18)

We first prove two lemmas required for proving equation
(18). Since we only care about the total number of departing
packets for each system, without loss of generality, we can
assume that each queue uses FIFO discipline. Let Dk(i, j) be
the departing time of the ith departing packet from queue j
for system Yk, and let Ak(i, j) be the arriving time of the ith

arriving packet at queue j for system Yk. Note that Ak(i, j +
1) = Dk(i, j), 1 ≤ j ≤ H − 1 and Ak(i, 1) = Dk(i,H).

Lemma 8: Consider systems Yk and Yw. If z⃗k ≽ z⃗w, then
Dk(i, j) ≤ Dw(i, j) and Ak(i, j) ≤ Aw(i, j).
The intuition of Lemma 8 is that system Yk has more services
than Yw at time 1. Therefore, packets in system Yk move faster
to the next hop than those in system Yw. Since the schedules
for system Yk and Yw are the same after time 1, this trend
will preserve after time 1. The rigorous proof is as follows.

Proof of Lemma 8: We prove this lemma by induction on
time t. We will show the following induction hypothesis for
any time t = 1, 2, · · · .
Induction hypothesis (for time t): for all i ≥ 1, j =
1, 2, · · · ,H , if Dw(i, j) ≤ t, then Dk(i, j) ≤ Dw(i, j).

If this holds for all t, it will imply that Dk(i, j) ≤ Dw(i, j)
and Ak(i, j) ≤ Aw(i, j). Notice that we only need to prove
the inequality for the departing time because for any system
Ys, we have that As(i, j + 1) = Ds(i, j), 1 ≤ j ≤ H − 1 and
As(i, 1) = Ds(i,H).

First, consider t = 1 and fix a queue j = 1, 2, · · · ,H . We
have the following two cases.

Case 1: queue j is not scheduled by z⃗w. In this case, for any
index i, Dw(i, j) > 1, and the induction hypothesis trivially
holds for time 1.

Case 2: queue j is scheduled by z⃗w. If queue j is scheduled
by z⃗w, then queue j will also be scheduled by z⃗k because
z⃗k ≽ z⃗w. Suppose that the number of initial packets at
queue j is qj . Since system Yk and Yw have the same initial
packet placement, if min(cj , qj) packets are served by queue
j for system Yw, then min(cj , qj) packets are also served
by queue j for system Yk. Hence, for all i ≤ min(cj , qj),
we have that Dk(i, j) = Dw(i, j) = 1. Further, for all
i > min(cj , qj), Dw(i, j) > 1. Thus, the induction hypothesis
holds for time 1.

Next, assume that the induction hypothesis holds for time
t. We next show that the induction hypothesis must also hold
for time t+1. Note that the schedules for all systems are the
same after time 1. Fix a queue j = 1, 2, · · · ,H . We have the
following two cases.

Case 1: queue j is not scheduled at time t + 1 or queue
j is scheduled at time t + 1, but, for system Yw, no packets
are served at queue j at time t + 1. In this case, there is
no index h such that Dw(h, j) = t + 1. Hence, the set of
indices i satisfying Dw(i, j) ≤ t is equal to the set of indices
i satisfying Dw(i, j) ≤ t + 1, and the induction hypothesis
trivially holds for time t+ 1.

Case 2: queue j is scheduled at time t+1, and, for system
Yw, at least one packet is served at queue j at time t + 1.
We prove by contradiction that the induction hypothesis will
hold for time t+ 1. In this case, for system Yw, queue j will
serve packets at time t + 1, and suppose the first one is the
pth departing packet. From the induction hypothesis, we know
that for all h < p,

Dk(h, j) ≤ Dw(h, j) ≤ t. (19)

Assume that one of the departing packets (say the ith departing
packets) does not satisfy the induction hypothesis, i.e.,

Dk(i, j) > Dw(i, j) = t+ 1. (20)

Since Dw(i, j) = t+1, for system Yw, queue j must serve at
least i− p+ 1 packets, i.e.,

cj ≥ i− p+ 1. (21)

We have the following two subcases.
Subcase 2.1: i ≤ qj . This implies that the ith departing

packet is stored at queue j at time 0. By equation (19), we
have that, for system Yk, there are at most i − p packets in
front of the ith departing packets at queue j at time t+ 1. It
then follows from equation (21) that Dk(i, j) = t + 1. This
contradicts with equation (20).

Subcase 2.2: i > qj . Let i′ = i − qj . This implies that
the ith departing packet is the i′th arriving packet of queue j.
From the induction hypothesis, for system Yk, we can deduce
that Ak(i

′, j) ≤ Aw(i
′, j) ≤ t. This implies that for system

Yk, the ith departing packet is stored at queue j at time t+1.
By equation (19), we have that for system Yk, there are at
most i − p packets in front of the ith departing packets at
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queue j at time t+ 1. It then follows from equation (21) that
Dk(i, j) = t+ 1. This contradicts with equation (20).

This lemma implies that if z⃗k ≽ z⃗w, then Tk(t) ≥ Tw(t).
We now prove another lemma. Recall that z⃗2 = z⃗3 ∧ z⃗4.

Lemma 9: D2(i, j) ≤ max(D3(i, j), D4(i, j)) and
A2(i, j) ≤ max(A3(i, j), A4(i, j)).
The intuition behind this lemma is that the packets in system
Y2 will move slower to the next hop than system Y3 or Y4 at
time 1, but never both. Since the schedules for system Y2, Y3,
and Y4 are the same after time 1, this trend will preserve after
time 1. The rigorous proof is as follows.

Proof of Lemma 9: We prove this lemma by induction
on time t. We will show the following induction hypothesis
for any time t = 1, 2, · · · .
Induction hypothesis (for time t): for all i ≥ 1, j =
1, 2, · · · ,H , if D3(i, j) ≤ t and D4(i, j) ≤ t then D2(i, j) ≤
max(D3(i, j), D4(i, j)).

If this holds for all t, it implies that
D2(i, j) ≤ max(D3(i, j), D4(i, j)) and A2(i, j) ≤
max(A3(i, j), A4(i, j)). Notice that we only need to prove
the inequality for the departing time because for any system
Ys, we have that As(i, j + 1) = Ds(i, j), 1 ≤ j ≤ H − 1 and
As(i, 1) = Ds(i,H).

First, consider t = 1 and fix a queue j = 1, 2, · · · ,H .
Recall that z⃗2 = z⃗3 ∧ z⃗4. We have the following two cases.

Case 1: queue j is not scheduled by z⃗2. If queue j
is not scheduled by z⃗2 at time 1, then it will also not
be scheduled by either z⃗3 or z⃗4. Hence, for any index i,
max(D3(i, j), D4(i, j)) > 1, and the induction hypothesis
trivially holds for time 1.

Case 2: queue j is scheduled by z⃗2. If queue j is scheduled
by z⃗2, it will also be scheduled by z⃗3 and z⃗4. Suppose that
the number of initial packets at queue j is qj . Hence, if
min(qj , cj) packets are served by queue j for system Y3

and Y4, min(qj , cj) packets are also served by queue j for
system Y2. Hence, for all i ≤ min(cj , qj), we have that
D2(i, j) = max(D3(i, j), D4(i, j)) = 1. Further, for all
i > min(cj , qj), D3(i, j) > 1 and D4(i, j) > 1. Thus, the
induction hypothesis holds for time 1.

Next, assume that the induction hypothesis holds for time t.
We next show that the induction hypothesis must also hold for
time t+1. Note that the schedules for all systems are the same
after time 1. Fix a queue j = 1, 2, · · · ,H , and assume that
the total number of departing packets at queue j of system Y3

and Y4 between time 1 and time t is p3 and p4, respectively.
Without loss of generality, assume that p3 ≤ p4.

We have the following two cases.
Case 1: queue j is not scheduled at time t+ 1 or queue j

is scheduled at time t+ 1, but, for system Y3, no packets are
served at queue j at time t+1. In this case, there is no index
h with D3(h, j) = t+1. Hence, the set of indices i satisfying
D3(i, j) ≤ t and D4(i, j) ≤ t is equal to the set of indices
i satisfying D3(i, j) ≤ t + 1 and D4(i, j) ≤ t + 1, and the
induction hypothesis trivially holds for time t+ 1.

Case 2: queue j is scheduled at time t+1, and, for system
Y3, at least one packet is served at queue j at time t + 1.
We prove by contradiction that the induction hypothesis will
hold for time t+1. Since we have assumed that the induction

hypothesis holds for time t, we know that for all h ≤ p3,

D2(h, j) ≤ max(D3(h, j), D4(h, j)) ≤ t. (22)

Suppose that the induction hypothesis does not hold at queue
j for time t+ 1. Then there must exist an index i such that

D3(i, j) ≤ t+ 1, D4(i, j) ≤ t+ 1,

and D2(i, j) > max(D3(i, j), D4(i, j)).
(23)

Note that in this case we must have that D3(i, j) = t + 1.
To see this, note that if D3(i, j) ≤ t, then i ≤ p3. Thus, (23)
contradicts with (22). Hence, we must have that D3(i, j) =
t+1, which means that for system Y3 the departing time of the
ith departing packet from queue j is t+1. Further, combined
with (23), it implies that

D2(i, j) > t+ 1, (24)

i.e., for system Y2 the departing time of the ith departing
packet from queue j is larger than t+1. However, this leads to
a contradiction as we show below. Without loss of generality,
let i be the first such index (i.e., that satisfies D3(i, j) = t+1,
(23), and (24)). Since D3(i, j) = t+ 1, for system Y3, queue
j must serve at least i− p3 packets, i.e.,

cj ≥ i− p3. (25)

We have the following two subcases.
Subcase 2.1: i ≤ qj . This implies that the ith departing

packet is stored at queue j at time 0. By equation (22), we
know that, for system Y2, there are at most i− p3− 1 packets
in front of the ith departing packets at queue j at time t+ 1.
It then follows from equation (25) that D2(i, j) = t+1. This
contradicts with equation (24).

Subcase 2.2: i > qj . Let i′ = i − qj . This implies that
the ith departing packet is the i′th arriving packet of queue j.
Since D3(i, j) = t+1 and D4(i, j) ≤ t+1, we conclude that
A3(i

′, j) ≤ t and A4(i
′, j) ≤ t, i.e., the arrival time can only

be smaller than or equal to t. From the induction hypothesis,
we can deduce that A2(i

′, j) ≤ max(A3(i
′, j), A4(i

′, j)) ≤ t.
This implies that for system Y2, the ith departing packet is
stored at queue j at time t + 1. By equation (22), we have
that, for system Y2, there are at most i − p3 − 1 packets in
front of the ith departing packets at queue j at time t+ 1. It
then follows from equation (25) that D2(i, j) = t + 1. This
contradicts with equation (24).

Now, we prove equation (18).
Proof of equation (18): At time t, without loss of

generality, assume that T3(t) ≤ T4(t). This implies that
D3(T3(t),H) ≤ t and D4(T3(t), H) ≤ t. From Lemma 9,
we have that D2(T3(t),H) ≤ t. Hence, T2(t) ≥ T3(t). Since
z⃗2 ≼ z⃗3, it follows from Lemma 8 that T2(t) ≤ T3(t), and we
conclude that T2(t) = T3(t). Also, z⃗1 ≽ z⃗4, and it follows
from Lemma 8 that T1(t) ≥ T4(t). Finally, we have that
T1(t) + T2(t) ≥ T3(t) + T4(t), ∀t.

This ends the proof of Theorem 1.

APPENDIX B
PROOF OF PROPOSITION 2

In system S⃗(3)(·) and S⃗(4)(·), the capacity of link 1 is
different. To highlight the difference and ease the presentation
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of the proof, we redefine the service distribution of S⃗(3)(t) to
be P{S⃗(3)(t) = cℓe⃗ℓ} = µ′

ℓ, P{S⃗(3)(t) = x⃗0} = 1−
∑H

ℓ=1 µ
′
ℓ

and the service distribution of S⃗(4)(t) to be P{S⃗(4)(t) =
cmaxe⃗1} = µ′′

1 , P{S⃗(4)(t) = cℓe⃗ℓ} = µ′
ℓ, ℓ ≥ 2, P{S⃗(4)(t) =

x⃗0} = 1− µ′′
1 −

∑H
ℓ=2 µ

′
ℓ, where c1µ

′
1 = cmaxµ

′′
1 .

To prove that T (S⃗(3)(·)) ≥ T (S⃗(4)(·)), we will use similar
techniques as in Theorem 1. We first introduce the concave
ordering.

Definition 3: (Concave Function) A function ϕ(x⃗) :
{{0} ∪ Z+}n → R is said to be concave if, for any n-
dimensional vectors x⃗, y⃗ ∈ {{0}∪Z+}n, and α ∈ (0, 1) such
that αx⃗+ (1− α)y⃗ ∈ {{0} ∪ Z+}n, the following holds

ϕ(αx⃗+ (1− α)y⃗) ≥ αϕ(x⃗) + (1− α)ϕ(y⃗).

Remark: The only difference between our definition and the
classical notion of a concave function is that the function is
defined only on integer values.

Definition 4: (Concave Ordering) Let F be the class of
all concave functions from {{0} ∪ Z+}n into R. For two n-
dimensional random vectors X⃗ and Y⃗ , X⃗ is said to be smaller
than Y⃗ in concave order (denoted by X⃗ ≤cv Y⃗ ) if E[ϕ(X⃗)] ≤
E[ϕ(Y⃗ )], for all ϕ ∈ F .

Lemma 10: S⃗(3)(t) ≥cv S⃗(4)(t),∀t.
Proof: For any concave function ϕ(x⃗) : {{0} ∪Z+}n →

R,

E[ϕ(S⃗(3)(1))]− E[ϕ(S⃗(4)(1))]

=

H∑
ℓ=1

ϕ(cℓe⃗ℓ)µ
′
ℓ + ϕ(x⃗0)

(
1−

H∑
ℓ=1

µ′
ℓ

)
− ϕ(cmaxe⃗1)µ

′′
1

−
H∑
ℓ=2

ϕ(cℓe⃗ℓ)µ
′
ℓ − ϕ(x⃗0)

(
1− µ′′

1 −
H∑
ℓ=2

µ′
ℓ

)
=µ′

1(ϕ(c1e⃗1)− ϕ(x⃗0))− µ′′
1(ϕ(cmaxe⃗1)− ϕ(x⃗0))

=
cmaxµ

′′
1

c1
[ϕ(c1e⃗1)−

c1
cmax

ϕ(cmaxe⃗1)−
cmax − c1

cmax
ϕ(x⃗0))] ≥ 0.

The last inequality follows from the definition of a concave
function. Note that α = c1

cmax
in this case.

Now, through similar steps as in Theorem 1, we can reduce
the problem to proving that the throughput function f is a
concave function of the schedule at time 1 under any initial
condition for packet placement. In other words, consider three
systems Y1, Y2, and Y3. At time 1, the capacity and schedule
vectors for systems Y1, Y2, Y3 are x⃗, y⃗, and z⃗, respectively.
Suppose that x⃗, y⃗, z⃗ ∈ {{0} ∪ Z+}n, α ∈ (0, 1), and y⃗ =
αx⃗+ (1 − α)z⃗. (This implies that yℓ = αxℓ + (1 − α)zℓ, ∀ℓ,
and α is a rational number. Therefore, in the following, we
assume that α = a

b , where a and b are positive integers, and
b > a.) Note that x⃗, y⃗, and z⃗ represent the configuration of
both capacity and schedule. For example, if xℓ = cℓ, then link
ℓ is scheduled with capacity cℓ. Otherwise, xℓ = 0 implies that
link ℓ is not scheduled. After time 1, the capacity and schedule
vectors for all three systems are the same and are represented
by h⃗2, · · · , h⃗t. Let f be a function that maps a given sequence
of capacity and schedule vectors from time 1 to time t to
the total number of packets leaving queue H at the end of
time t. For ease of expression, let Ti(t) be the throughput of

system Yi at time t, i.e., T1(t) = f(x⃗, h⃗2, · · · , h⃗t), T2(t) =
f(y⃗, h⃗2, · · · , h⃗t), and T3(t) = f(z⃗, h⃗2, · · · , h⃗t). To show that
f is a concave function, we only need to show that T2(t) ≥
a
bT1(t) +

b−a
b T3(t), which is equivalent to

b(T2(t)− T3(t)) ≥ a(T1(t)− T3(t)). (26)

To prove equation (26), we will first prove a lemma. Let Tij(t)
be the total number of departing packets from queue j for
system Yi at the end of time t, and let Aij(t) be the total
number of arriving packets at queue j for system Yi at the
end of time t. The key lemma is as follows.

Lemma 11: At any time t, for all queue j, the following
inequality holds. b(T2j(t)−T3j(t)) ≥ a(T1j(t)−T3j(t)), and
b(A2j(t)−A3j(t)) ≥ a(A1j(t)−A3j(t)).

Proof: We prove this lemma by induction on time t.
Notice that we only need to prove the inequality for Tij(t)
because for any system Yi, we have Aij+1(t) = Tij(t), 1 ≤
j ≤ H − 1 and Ai1(t) = TiH(t).

At time 0, Aij(0) = Tij(0) = 0, so the inequality will
hold trivially. At time 1, consider queue j. We know that
yj = a

bxj + b−a
b zj . If any two elements of xj , yj , and zj

are equal, then we know that yj = zj = xj . This implies
that all three systems will have the same service at queue j,
and the inequality will hold. Hence, we only consider the case
when xj , yj , and zj are different with each other. Since it is
impossible for xj and zj to be simultaneously strictly smaller
than or strictly larger than yj , without loss of generality, we
assume that zj < yj < xj . Assume that, for all systems, queue
j has n packets at time 0. We have three cases.

Case 1: n < zj . In this case, we know that T1j(1) =
T2j(1) = T3j(1) = n. Hence, the induction hypothesis holds
at time 1.

Case 2: zj ≤ n < yj . In this case, we know that T3j(1) =
zj , and T2j(1) = T1j(1) = n. Hence, b(T2j(1) − T3j(1)) ≥
a(T1j(1)− T3j(1)).

Case 3: yj < n. In this case, we know that T3j(1) = zj ,
and T2j(1) = yj . Hence, b(T2j(1) − T3j(1)) = b(yj − zj) =
a(xj−zj) ≥ a(T1j(1)−T3j(1)), and the induction hypothesis
holds at time 1.

Next, assume that at time t,

b(T2j(t)− T3j(t)) ≥ a(T1j(t)− T3j(t)), ∀j. (27)

This implies that

b(A2j(t)−A3j(t)) ≥ a(A1j(t)−A3j(t)), ∀j. (28)

We will show that the induction hypothesis is true at time t+1.
Consider queue j, and we have the following two cases.

Case 1: queue j is not scheduled at time t+1. Since all the
systems have the same schedule after time 1, the total number
of departing packets at queue j will not change at time t+1,
and the induction hypothesis trivially holds at time t+ 1.

Case 2: queue j is scheduled at time t+ 1. Let q1, q2 and
q3 be the number of packets at queue j for system Y1, Y2 and
Y3, respectively, at the beginning of time t+ 1. Also, assume
that d1, d2, and d3 are the number of packets being served at
queue j for system Y1, Y2 and Y3, respectively, at time t+1.
Assume that the capacity of queue j for all three systems is
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cj after time 1, we have that di ≤ cj . Also, by the definition
of di, we have that Tij(t+1) = Tij(t)+di for all i. We have
the following two subcases.

Subcase 2.1: q2 ≥ cj . In this case, we have that d2 = cj ,
and we can show that

b(T2j(t+ 1)− T3j(t+ 1))

=b(T2j(t)− T3j(t)) + b(cj − d3)

≥a(T1j(t)− T3j(t)) + a(d1 − d3)

=a(T1j(t+ 1)− T3j(t+ 1)).

Note that the first inequality comes from inequality (27) and
b(cj − d3) ≥ a(cj − d3) ≥ a(d1 − d3).

Subcase 2.2: q2 < cj . Let q1 = q2 + h1 and q3 = q2 +
h3. Notice that h1 and h3 can be positive or negative, and
Aij(t) − Tij(t) = qi − n, where n is the number of packets
at queue j at time 0. We then have that

A1j(t)− T1j(t) = A2j(t)− T2j(t) + h1, (29)

and
A3j(t)− T3j(t) = A2j(t)− T2j(t) + h3. (30)

Multiply both sides of equations (29) and (30) by a and b−a,
respectively, and sum them together. We have:

bT2j(t) + a(A1j(t)−A3j(t))− b(A2j(t)−A3j(t))

=a(T1j(t) + h1) + (b− a)(T3j(t) + h3)

It then follows from inequality (28) that

bT2j(t) ≥ a(T1j(t) + h1) + (b− a)(T3j(t) + h3). (31)

Note that d1 ≤ q1 = q2+h1, d2 = q2, and d3 ≤ q3 = q2+h3.
Now, we can use equation (31) to show that

bT2j(t+ 1) = b(T2j(t) + q2)

≥a(T1j(t) + h1 + q2) + (b− a)(T3j(t) + h3 + q2)

≥aT1j(t+ 1) + (b− a)T3j(t+ 1),

which is equivalent to b(T2j(t+1)−T3j(t+1)) ≥ a(T1j(t+
1)− T3j(t+ 1)). This ends the proof of Lemma 11.

Now, we prove equation (26). Note that Ti(t) = TiH(t).
Therefore, Lemma 11 implies that equation (26) is true. This
ends the proof of Proposition 2.

APPENDIX C
COUNTER EXAMPLE

In this appendix, We will give a example to show that
f is not a supermodular function with respect to the whole
sequence of schedules. Consider a 3-hop tandem network with
2 packets. Let Ti(t), i = 1, · · · , 4, be the total number of
departing packets from queue H for system Yi at the end of
time t. Further, let x⃗i(t), i = 1, · · · , 4, be the schedule for
system Yi at time t. The four deterministic systems are given
as follows.

System Y1:
time 1 2 3 4 5
state (2, 0, 0) (1, 1, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0)
x⃗1(t) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
T1(t) 0 0 1 2 2

System Y3:
time 1 2 3 4 5
state (2, 0, 0) (1, 1, 0) (1, 0, 1) (1, 1, 0) (1, 0, 1)
x⃗3(t) (1, 0, 1) (0, 1, 0) (1, 0, 1) (0, 1, 0) (1, 0, 1)
T3(t) 0 0 1 1 2

System Y4:
time 1 2 3 4 5
state (2, 0, 0) (2, 0, 0) (1, 1, 0) (1, 0, 1) (1, 1, 0)
x⃗4(t) (0, 1, 0) (1, 0, 1) (0, 1, 0) (1, 0, 1) (0, 1, 0)
T4(t) 0 0 0 1 1

System Y2:
time 1 2 3 4 5
state (2, 0, 0) (2, 0, 0) (2, 0, 0) (2, 0, 0) (2, 0, 0)
x⃗2(t) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
T2(t) 0 0 0 0 0

From the above example, we know that T1(5) = 2,
T2(5) = 0, T3(5) = 2, and T4(5) = 1. Hence, T1(5)+T2(5) <
T3(5) + T4(5). Since at any time t x⃗1(t) = x⃗3(t) ∨ x⃗4(t),
and x⃗2(t) = x⃗3(t) ∧ x⃗4(t), we conclude that f is not a
supermodular function with respect to the whole sequece of
schedule vectors.
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