
Loop-Free Backpressure Routing
Using Link-Reversal Algorithms

ABSTRACT
The backpressure routing policy is known to be a throughput
optimal policy that supports any feasible traffic demand in
data networks, but may have poor delay performance when
packets traverse loops in the network. In this paper, we
study loop-free backpressure routing policies that forward
packets along directed acyclic graphs (DAGs) to avoid the
looping problem. These policies use link reversal algorithms
to improve the DAGs in order to support any achievable
traffic demand.

For a network with a single commodity, we show that a
DAG that supports a given traffic demand can be found after
a finite number of iterations of the link-reversal process. We
use this to develop a joint link-reversal and backpressure
routing policy, called the loop free backpressure (LFBP)
algorithm. This algorithm forwards packets on the DAG,
while the DAG is dynamically updated based on the growth
of the queue backlogs. We show by simulations that such
a DAG-based policy improves the delay over the classical
backpressure routing policy. We also propose a multicom-
modity version of the LFBP algorithm, and via simulation
we show that its delay performance is better than that of
backpressure.

1. INTRODUCTION
Throughput and delay are the two major metrics used to

evaluate the performance of communication networks. For
networks that exhibit high variability, such as mobile ad hoc
networks, the dynamic backpressure routing policy [1] is a
highly desirable solution, known to maximize throughput in
a wide range of settings. However, the delay performance
of backpressure is poor [2]. The high delay is attributed to
a property of backpressure that allows the packets to loop
within the network instead of moving towards the destina-
tion. In this paper we improve the delay performance of
backpressure routing by constraining the data routing along
loop free paths.

To eliminate loops in the network, we assign directions to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

the links such that the network becomes a directed acyclic
graph (DAG). Initially, we generate an arbitrary DAG and
use backparessure routing over it. If the initial DAG has
max-flow smaller than the traffic demand, parts of the net-
work become overloaded. By reversing the direction of the
links that point from non-overloaded to overloaded nodes a
new DAG with a lower overload is obtained. Iterating over
this process, our distributed algorithm gradually converges
to a DAG that supports any traffic demand feasible in the
network. Hence the loop-free property is achieved without
the loss of throughput.

Prior work identifies looping as a main cause for high de-
lays in backpressure routing and proposes delay-aware back-
pressure techniques. Backpressure enhanced with hop count
bias is first proposed in [3] to drive packets through paths
with smallest hop counts when the load is low. An alter-
native backpressure modification that utilizes shortest path
information is proposed in [8]. A different line of works pro-
poses to learn the network topology using backpressure and
then use this information to enhance routing decisions. In
[7] backpressure is constrained to a subgraph which is dis-
covered by running unconstrained backpressure for a time
period and computing the average number of packets routed
over each link. Learning is effectively used in scheduling [9]
and utility optimization [13] for wireless networks. In our
work we aim to eliminate loops by restricting backpressure
to a DAG, while we dynamically improve the DAG by re-
versing links.

The link-reversal algorithms were introduced in [4] as a
means to maintain connectivity in networks with volatile
links. These distributed algorithms react to topological changes
to obtain a DAG such that each node has a loop-free path
to the destination. In [5], one of the link-reversal algorithms
was used to design a routing protocol (called TORA) for
multihop wireless networks. Although these algorithms pro-
vide loop free paths and guarantee connectivity from the
nodes to the destination, they do not maximize through-
put. Thus, the main goal of this paper is to create a new
link-reversal algorithm and combine it with the backpressure
algorithm to construct a distributed throughput optimal al-
gorithm with improved delay performance.

The main contributions of this paper are as follows:

• For a network with single commodity, we study the lex-
icographic optimization of the queue growth rate. We
show that the lexicographically optimal queue growth
rates can be used to distributedly detect links whose
change of direction reduces overload.

• We develop a novel link-reversal algorithm that re-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/78062777?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

verses link direction based on overload conditions to
form a new DAG with lexicographically smaller queue
growth rates.

• We show that a combination of backpressure and link
reversal can be used to find an optimal DAG. We de-
velop loop free backpressure (LFBP) algorithm, a dis-
tributed routing scheme that eliminates loops and re-
tains the throughput optimality property.

• Our simulation results of LFBP show a significant de-
lay improvement over backpressure in static and dy-
namic networks.

• We extend the LFBP algorithm to networks with mul-
tiple commodities, and provide a simulation result to
show its delay improvement over backpressure.

2. SYSTEM MODEL AND DEFINITIONS

2.1 Network model
We consider the problem of routing single-commodity data

packets in a network. The network is represented by a graph
G = (N,E), where N is the set of nodes and E is the set of
undirected links {i, j} with capacity cij . Packets arrive at
the source node s at rate λ and are destined for a receiver
node d. Let fmax denote the maximum flow from node s
to d in the network G. The quantity fmax is the maximally
achievable throughput at the destination node d.

To avoid unnecessary routing loops, we restrict forwarding
along a directed acyclic graph (DAG) embedded in the graph
G. An optimal DAG exists to support the max-flow fmax

and can be found by: (i) computing a feasible flow allocation
(fij) that yields the max-flow fmax in G (e.g. using [11]); (ii)
trimming any positive flow on directed cycles; (iii) defining
an embedded DAG by assigning a direction for each link
{i, j} according to the direction of the flow fij on that link.
Since backpressure achieves the max-flow of a constrained
graph [14], performing backpressure routing over the optimal
DAG supports λ.

This centralized approach is unsuitable for mobile ad-
hoc networks, which are based on wireless links with time-
varying capacities and may undergo frequent topology changes.
In such situations, the optimal embedded DAG also changes
with time, which requires constantly repeating the above
offline process. Instead, it is possible to use a distributed
adaptive mechanism that reverses the direction of links un-
til a DAG that supports the current traffic demand is found.
In this paper we propose an algorithm that reacts to the traf-
fic conditions by changing the directions of some links. To
understand the properties of the link-reversing operations,
we first study the fluid level behavior of a network under
overload conditions.

2.2 Flow equations
Consider an embedded DAG Dk = (Nk, Ek) in the net-

work graph G, where Nk = N is the set of network nodes
and Ek is the set of directed links.1 For each link {i, j} ∈ E,
either (i, j) or (j, i) belongs to Ek (but not both). Each
directed link (i, j) has the capacity of the undirected coun-
terpart {i, j}, which is cij . Let fmax

k be the maximum flow

1The notation Dk of an embedded DAG is useful in the
paper; it will denote the DAG that is formed after the kth
iteration of the link-reversal algorithm.

of the DAG Dk from the source node s to the destination
node d. Any embedded DAG has smaller or equal max-flow
with respect to G, fmax

k ≤ fmax.
For two disjoint subsets A and B of nodes in Dk, we define

capk(A,B) as the total capacity of the directed links going
from A to B, i.e.,

capk(A,B) =
∑

(i,j)∈Ek:i∈A, j∈B

cij . (1)

A cut is a partition of nodes (A,Ac) such that s ∈ A
and d ∈ Ac. A cut (Ak, A

c
k) is a min-cut if it minimizes

the expression capk(Ak, A
c
k) over all cuts. By the max-flow

min-cut theorem fmax
k = capk(Ak, A

c
k), where (Ak, A

c
k) is

the min-cut of the DAG Dk. We remark that a cut in a
DAG is also a cut in G or another DAG. However, the value
of capk(., .) depends on the graph considered (see summation
in (1)).

We consider the network as a time-slotted system, where
slot t refers to the time interval [t, t + 1), t ∈ {0, 1, 2, . . .}.
Each network node n maintains a queue Qn(t), where Qn(t)
also denotes the queue backlog at time t. We have Qd(t) = 0
for all t since the destination node d does not buffer packets.
Let A(t) be the number of exogenous packets arriving at
the source node s in slot t. Under a routing policy that
forwards packets over the directed links defined by the DAG
Dk, let Fij(t) be the number of packets that are transmitted
over the directed link (i, j) ∈ Ek in slot t; the link capacity
constraint states that Fij(t) ≤ cij for all t. The queues
Qn(t) are updated over slots according to

Qn(t) = Qn(t− 1) + 1[n=s]A(t)

+
∑

i:(i,n)∈Ek

Fin(t)−
∑

j:(n,j)∈Ek

Fnj(t), (2)

where 1[·] is an indicator function.
To study the overload behavior of the system we define

the queue overload (i.e., growth) rate at node n as

qn = lim
t→∞

Qn(t)

t
. (3)

Additionally, define the exogenous packet arrival rate λ and
the flow fij over a directed link (i, j) as

λ = lim
t→∞

1

t

t−1∑
τ=0

A(τ), fij = lim
t→∞

1

t

t−1∑
τ=0

Fij(τ),

where the above limits are assumed to exist almost surely.
Taking the time average of (2) and letting t→∞, we have
the fluid-level equation:

qn = 1[n=s]λ+
∑

i:(i,n)∈Ek

fin −
∑

j:(n,j)∈Ek

fnj , ∀n ∈ N (4)

0 ≤ fij ≤ cij , ∀(i, j) ∈ Ek. (5)

Equations (4) and (5) are the flow conservation and link ca-
pacity constraints, respectively. A network node n is said to
be overloaded if its queue growth rate qn is positive, which
implies that Qn(t)→∞ as t→∞ (see (3) and [10]). Sum-
ming (4) over n ∈ N yields∑

n∈N

qn = λ−
∑

i:(i,d)∈Ek

fid, (6)

where
∑
i:(i,d)∈Ek

fid denotes the throughput received at the

destination d. Therefore, equation (6) states that the re-
ceived throughput is equal to the exogenous arrival rate λ
less the sum of queue growth rates

∑
n∈N qn in the network.

2.3 Properties of queue overload vector
If the traffic arrival rate λ is strictly larger than the max-

imum flow fmax
k of the DAG Dk, then some network nodes

will be overloaded. It is because, from (6), we have∑
n∈N

qn = λ−
∑

i:(i,d)∈Ek

fid ≥ λ− fmax
k > 0, (7)

which implies that qn > 0 for some node n ∈ N . Let
q = (qn)n∈N be the queue overload vector. A queue overload
vector q is feasible in the DAG Dk if there exist overload
rates (qn)n∈N and flow variables (fij)(i,j)∈Ek

that satisfy (4)
and (5). Let Qk be the set of all feasible queue overload vec-
tors in Dk. We are interested in the lexicographically small-
est queue overflow vector in set Qk. Formally, given a vector
u = (u1, . . . , uN), let ui be the ith maximal component of
u. We say that a vector u is lexicographically smaller than
a vector v, denoted by u <lex v, if u1 < v1 or ui = vi for
all i = 1, ..., (j − 1) and uj < vj for some j = 2, . . . , N . If
ui = vi for all i, then the two vectors are lexicographically
equal, represented by u =lex v.2 The above-defined vector
comparison induces a total order on the set Qk, and hence
the existence of a lexicographically smallest vector is always
guaranteed [12].

Lemma 1 ([6]). Let qmin
k be the lexicographically small-

est vector in the queue overload region Qk of the DAG Dk.
We have the following properties:

1. The vector qmin
k exists and is unique in the set Qk

(Lemma 5 in [6]).

2. The vector qmin
k minimizes the sum of queue overload

rates, i.e., it is the solution to the optimization prob-
lem:

minimize
∑
n∈N

qn, subject to q ∈ Qk

(direct consequence of Theorem 1 in [6]). Due to (6),
the corresponding throughput at the destination node d
is maximized.

3. A feasible flow allocation vector (fij)(i,j)∈Ek
induces

qmin
k if and only if over each link (i, j) ∈ Ek the fol-

lowing holds:

if qi < qj , then fij = 0, (8)

if qi > qj , then fij = cij (9)

(Lemma 5 in [6]).

In general, there are many flow allocations that yield the
maximum throughput. Focusing on those that additionally
induce qmin

k has two advantages. First, as shown next, these
allocations lead to link-reversal operations that improve the
max-flow of the DAG Dk. Second, the backpressure algo-
rithm can be used to preform the same reversals and improve
the max-flow; we will use this observation in Section 4 to
combine link-reversal algorithms with backpressure routing.
2As an example, the two vectors u = (3, 2, 1, 2, 1) and v =
(1, 2, 3, 2, 2) satisfy u <lex v because u1 = v1 = 3, u2 =
v2 = u3 = v3 = 2, and u4 = 1 < v4 = 2.

3. LINK-REVERSAL ALGORITHMS
The link-reversal algorithms given in [4] were designed to

maintain a path from each node in the network to the des-
tination. One algorithm relevant to this paper is the full re-
versal method. This algorithm is triggered when some nodes
n 6= d lose all of their outgoing links. At every iteration of
the algorithm, nodes n, that have no outgoing link, reverse
the direction of all their incoming links. This process is re-
peated until all the nodes other than the destination have at
least one outgoing link. When the process stops these nodes
are guaranteed to have a path to the destination. The ex-
ample in Figure 1, taken from [4], illustrates this algorithm
at work.

d

(a)

d

(b)

d

(c)

d

(d)

d

(e)

Figure 1: Illustration of the full reversal method of
[4] when the dashed link in Figure 1(a) is lost. At
every iteration, the algorithm reverses all the links
incident to the nodes with no outgoing link (the blue
nodes).

Although the full reversal algorithm guarantees connectiv-
ity, the resulting throughput may be significantly lower than
the maximum possible. Hence, in this paper we shift the
focus from connectivity to maximum throughput. Specifi-
cally, we propose a novel link-reversal algorithm that pro-
duces a DAG which supports the traffic demand λ, assum-
ing λ ≤ fmax. We do this by quickly constructing an initial
DAG and improving upon it in multiple iterations.

3.1 Initial DAG
We assume that each node in the network has a unique

ID. These IDs give a topological ordering to the nodes. So,
the initial DAG can be created simply by directing each link
to go from the node with the lower ID to the node with the
higher ID. If the unique IDs are not available, the initial
DAG can be created by using a strategy such as the one
given in [5].

3.2 Overload detection
Given a DAG Dk, k = 0, 1, 2, . . ., we suppose that there is

a routing policy π that yields the lexicographically minimal
queue overload vector qmin

k . 3 Then we use the vector qmin
k

to detect node overload and decide whether a link should be
reversed.

If the data arrival rate λ is less than or equal to the max-
imum flow fmax

k of the DAG Dk, then there exists a flow
allocation (fij) that supports the traffic demand and yields
zero queue overload rates qn = 0 at all nodes n ∈ N . By the
second property of Lemma 1 and nonnegativity of the over-
load vector, the queue overload vector qmin

k is zero. Thus,
the throughput under policy π is λ according to (6), and the
current DAG Dk supports λ; no link-reversal operations are
needed.

On the other hand, if the arrival rate λ is strictly larger
than the maximum flow fmax

k , by the second property in
Lemma 1 the maximum throughput is fmax

k and the queue
overload vector qmin

k = (qmin
k,n)n∈N is nonzero because we

have from (7) that∑
n∈N

qmin
k,n > λ− fmax

k > 0.

We may therefore detect the event “DAG Dk supports λ” by
testing whether the overload vector qmin

k is zero or non-zero.
The next lemma shows that if DAG Dk does not support

λ then it contains at least one under-utilized link (our link-
reversal algorithm will reverse the direction of such links to
improve network throughput).

Lemma 2. Suppose that the traffic demand λ satisfies

fmax
k < λ ≤ fmax.

where fmax
k is the max-flow of the DAG Dk and fmax is the

max-flow of the undirected network G. Then there exists a
link (i, j) ∈ Ek such that qmin

k,i = 0 and qmin
k,j > 0.

Proof of Lemma 2. Let Ak be the set of overloaded
nodes under a flow allocation that induces the lexicograph-
ically minimal overload vector qmin

k in the DAG Dk; the set
Ak is nonempty due to λ > fmax

k and (7). It follows that the
partition (Ak, A

c
k) is a min-cut of Dk (see Lemma 7 in the

Appendix).4 By the max-flow min-cut theorem, the capac-
ity of the min-cut (Ak, A

c
k) in Dk satisfies capk(Ak, A

c
k) =

fmax
k < fmax.
The proof is by contradiction. Let us assume that there is

no directed link that goes from the set Ack to Ak in the DAG
Dk. It follows that capk(Ak, A

c
k) is the sum of capacities of

all undirected links between the sets Ak and Ack, i.e.,

capk(Ak, A
c
k) =

∑
i∈Ak, j /∈Ak

cij ,

which is equal to the value of the cut (Ak, A
c
k) in graph G.

Since the value of any cut is larger or equal to the min-cut,
applying the max-flow min-cut theorem on G we have

fmax ≤
∑

i∈Ak, j /∈Ak

cij = capk(Ak, A
c
k) = fmax

k ,

which contradicts the assumption that fmax
k < λ ≤ fmax.

3In Section 4, we will develop an algorithm using backpres-
sure that does not require the computation of the lexico-
graphically optimal overload vector. We use this vector only
to prove the properties of our link-reversal algorithm.
4The set Ack contains the destination node d and is
nonempty.

3.3 Link reversal
Lemma 2 shows that if the DAG Dk has insufficient capac-

ity to support the traffic demand λ ≤ fmax, then there exists
a directed link from an underloaded node i to an overloaded
one j under the lexicographically minimum overflow vector
qmin
k . Because of property (8), we may infer that this link

is not utilized. Next we show that reversing the direction of
this link provides a strictly improved DAG.

We consider the link-reversal algorithm (Algorithm 1) that
reverses all such links that satisfy the property in Lemma 2.
This reversal yields a new directed graph Dk+1 = (N,Ek+1).

Algorithm 1 Link-Reversal Algorithm

1: for all (i, j) ∈ Ek do
2: if qmin

k,i = 0 and qmin
k,j > 0 then

3: (j, i) ∈ Ek+1

4: else
5: (i, j) ∈ Ek+1

6: end if
7: end for

Lemma 3. The directed graph Dk+1 is acyclic.

Proof of Lemma 3. Recall that Ak is the set of over-
loaded nodes in the DAG Dk under the lexicographically
minimum queue overload vector qmin

k . Let Lk ⊆ E be the
set of undirected links between Ak and Ack. Algorithm 1
changes the link direction in a subset of Lk. More precisely,
it enforces the direction of all links in Lk to go from Ak to
Ack.

We complete the proof by construction in two steps. First,
we remove all links in Lk from the DAG Dk, resulting in two
disconnected subgraphs that are DAGs themselves. Second,
consider that we add a link in Lk back to the network with
the direction going from Ak to Ack. This link addition does
not create a cycle because there is no path from Ack to Ak,
and the resulting graph remains to be a DAG. We can add
the other links in Lk one-by-one back to the graph with the
direction from Ak to Ack; similarly, these link additions do
not create cycles. The final directed graph is Dk+1, and it
is a DAG. See Fig. 2 for an illustration.

The next lemma shows that the new DAG Dk+1 sup-
ports a lexicographically smaller optimal overload vector
(and therefore potentially better throughput) than the DAG
Dk.

Lemma 4. Let Dk be a DAG with the maximum flow
fmax
k < λ ≤ fmax. The DAG Dk+1, obtained by perform-

ing Algorithm 1 over Dk, has the lexicographically minimum
queue overload vector satisfying qmin

k+1 <lex qmin
k .

Proof of Lemma 4. Consider a link (a, b) ∈ Ek such
that qmin

k,a = 0 and qmin
k,b > 0; this link exists by Lemma 2.

From the property (8), any feasible flow allocation (fij) that
yields the lexicographically minimum overload vector qmin

k

must have fab = 0 over link (a, b). The link-reversal algo-
rithm reverses the link (a, b) so that (b, a) ∈ Ek+1 in the
DAG Dk+1. Consider the following feasible flow allocation
(f ′ij) on the DAG Dk+1:

f ′ij =

ε if (i, j) = (b, a)

0 = fji if (i, j) 6= (b, a) but (j, i) is reversed

fij if (i, j) is not reversed

s

2 3

5

1 d

λ = 3

2

1

1

1
1 1

2

1

(a) The DAG Dk with
Ak = {s, 2, 3, 5}.

s

2 3

5

1 d

(b) Two disconnected
DAGs formed by remov-
ing all links between Ak
and Ack.

s

2 3

5

1 d

λ = 3

2

1

1

1
1 1

2

1

(c) The DAG Dk+1

formed by adding all
links in Lk back to the
graph with the direction
going from Ak to Ack.

Figure 2: Illustration for the proof of Lemma 3.

a b

qmin
a = 0 qmin

b > 0
fab = 0

(a) Link (a, b) before the
link reversal.

a b

q̂a = ε q̂b = qmin
b − ε

f ′ba = ε

(b) Link (b, a) after the
link reversal.

Figure 3: A link {a, b} in the network in Fig. 2 before
and after link reversal. Before the reversal, the flow
fab is zero on (a, b). After the reversal, an ε flow can
be sent over (b, a) so that (q̂a, q̂b) <lex (qmin

k,a , q
min
k,b), while

the rest of the flow allocation remains the same.

where ε < qmin
k,b is a sufficiently small value. In other words,

the flow allocation (f ′ij) is formed by reversing links and
keeping the previous flow allocation (fij) except that we
forward an ε-amount of overload traffic from node b to a.
Let q̂ = (q̂n)n∈N be the resulting queue overload vector.
We have

q̂b = qmin
k,b − ε < qmin

k,b , q̂a = ε > qmin
k,a = 0, and

q̂n = qmin
k,n , n /∈ {a, b}.

Therefore, q̂ <lex qmin
k (see Fig. 3 for an illustration). Let

qmin
k+1 be the lexicographically minimal overload vector in

Dk+1. It follows that qmin
k+1 ≤lex q̂ <lex qmin

k , completing
the proof.

Theorem 1. Suppose the traffic demand is feasible in G,
i.e., λ ≤ fmax, and the routing policy induces the overload
vector qmin

k at every iteration k. Then, the link-reversal al-
gorithm will find a DAG whose maximum flow supports λ in
a finite number of iterations.

Proof of Theorem 1. The link-reversal algorithm cre-
ates a sequence of DAGs {D0, D1, D2, . . .} in which a strict
improvement in the lexicographically minimal overload vec-

tor is made after each iteration, i.e.,

qmin
0 >lex qmin

1 >lex qmin
2 >lex · · · .

The lexicographically minimal overload vector is unique in
a DAG by Lemma 1, the DAGs {D0, D1, D2, . . .} must all
be distinct. Since there are a finite number of unique DAGs
in the network, the link-reversal algorithm will find a DAG
Dk∗ that has the lexicographically minimal overload vector
qmin
k∗ = 0 and the maximum flow fmax

k∗ ≥ λ in a finite number
of iterations; this DAG Dk∗ exists because the undirected
graph G has the maximum flow fmax ≥ λ.

3.4 Arrivals outside stability region
We show that even when λ > fmax, the link reversal al-

gorithm will stop reversing the links in a finite number of
iterations, and it will obtain the DAG that supports the
maximum throughput fmax. We begin by examining the
termination condition of our algorithm and show that if the
algorithm stops at iteration k (which pappens when there is
no link to reverse), then the DAG Dk supports the max-flow
of the network.

Lemma 5. Consider the situation when λ > fmax
k . If

there is no link (i, j) such that qmin
k,i = 0 and qmin

k,j > 0, then
fmax = fmax

k and λ > fmax. That is, if there are no links to
reverse at iteration k, and qmin

k > 0, then the throughput of
Dk is equal to fmax.

Proof. Let Ak be the set of overloaded nodes under
a flow allocation that induces the lexicographically mini-
mal overload vector qmin

k in the DAG Dk. We know that
(Ak, A

c
k) is a min-cut of the network from Lemma 7 (in the

appendix), so

capk(Ak, A
c
k) = fmax

k .

Suppose the link reversal algorithm stops after iteration
k, i.e. at iteration k there are no links to reverse. In this
situation, there is no link (i, j) such that qmin

k,i = 0 and qmin
k,j >

0, so by property (9), all the links between Ak and Ack go
from Ak to Ack. The capacity of the cut (Ak, A

c
k) is given by

capk(Ak, A
c
k) =

∑
i∈Ak,j∈Ac

k

cij .

This is equal to the capacity of the cut (Ak, A
c
k) in the undi-

rected network G. So fmax ≤ capk(Ak, A
c
k) = fmax

k . Be-
cause fkmax cannot be greater than fmax, fkmax = fmax. By
assumption λ > fmax

k , so λ > fmax.

When λ > fmax, this lemma shows that the link reversal
algorithm stops only when the DAG achieves the maximum
throughput of the network. Hence, if the DAG doesn’t sup-
port the maximum throughput, then there exists a link that
can be reversed. After each reversal, Lemma 3 holds, so
the directed graph obtained after the reversal is acyclic. We
can modify Lemma 4 to show that every reversal produces
a DAG that supports an improved lexicographically optimal
overload vector. We can combine these results to prove the
following theorem.

Theorem 2. Suppose the traffic demand is not feasible
in G, i.e., λ > fmax, and the routing policy induces the
overload vector qmin

k at every iteration k. Then, the link-
reversal algorithm will find a DAG whose maximum flow
supports fmax in a finite number of iterations.

4. DISTRIBUTED DYNAMIC ALGORITHM
In the previous sections we developed a link reversal algo-

rithm based on the assumption that we had a routing policy
that lexicographically minimized the overload vector qmin

k .
The algorithm reversed all the links that went from the set
of all the non-overloaded nodes Ack to the set of overloaded
nodes Ak. We showed that repeating this process for some
iterations results in a DAG that supports the arrival rate λ.

The goal of this paper is to develop a link reversal al-
gorithm based on backpressure. To achieve this goal, we
develop a threshold based algorithm that identifies the cut
(Ak, A

c
k) using the queue backlog information of backpres-

sure. We can use this cut to perform the link reversals with-
out computing the lexicographically minimum overload vec-
tor. Because this algorithm generates the same sequence of
DAGs as the link reversal algorithm described in Section 3,
all the previous theorems hold, and it will obtain the DAG
that supports the arrival rate λ (when possible). We will call
this algorithm the loop free backpressure (LFBP) algorithm.

We begin by creating an initial DAG D0 using the method
presented in Section 3.1. Then, we use the backpressure al-
gorithm to route the packets from the source to the desti-
nation over D0. Let Qn(t) be the queue length at node n
in slot t. The backpressure algorithm can be written as in
Algorithm 2. It simply sends packets on a link (i, j) if node
i has more packets than j.

Algorithm 2 Backpressure algorithm (BP)

1: for all (i, j) ∈ Ek do
2: if Qi(t) > Qj(t) then
3: Transmit min{cij , Qi(t)} packets from i to j
4: end if
5: end for

Since backpressure is throughput optimal [1], if the arrival
rate is less than fmax

0 , then all queues are stable. If the
arrival rate is larger than fmax

0 , the system is unstable and
the queue length grows at some nodes. In this case, the
next lemma shows that if we were using a routing policy
that produced the optimal overload vector qmin

k , the set of
all the overloaded nodes Ak and the non-overloaded nodes
Ack form the smallest min-cut of the DAG Dk.

Definition 1. We define the smallest min-cut (X∗, X∗c)
in the DAG Dk as the min-cut with the smallest number of
nodes in the source side of the cut, i.e., (X∗, X∗c) solves

minimize: |X|
subject to: (X,Xc) is a min-cut of Dk.

Lemma 6. Let Ak the set of overloaded nodes under a
flow allocation (fij) that induces the lexicographically min-
imum overload vector in the DAG Dk. If |Ak| > 0, then
(Ak, A

c
k) is the unique smallest min-cut in Dk.

Proof of Lemma 6. The proof is in Appendix B.

Essentially, at every iteration, the link reversal algorithm
of Section 3 discovers the smallest min-cut (Ak, A

c
k) of the

DAG Dk and reverses the links that go from Ack to Ak.
Now the following theorem shows that the backpressure al-
gorithm can be augmented with some thresholds to identify
the smallest min-cut.

Theorem 3. Assume that (Ak, A
c
k) is the smallest min-

cut for DAG Dk with a cut capacity of fmax
k = cap(Ak, A

c
k) <

λ. If packets are routed using the backpressure routing algo-
rithm, then there exist finite constants T and R such that
the following happens:

1. For some t < T , Qn(t) > R for all n ∈ Ak, and

2. For all t, Qn(t) < R for n ∈ Ack.

Proof. We will prove the two claims separately. To
prove the first claim we will use the fact that the network
is overloaded and bottlenecked at the cut (Ak, A

c
k). We

will prove the second claim using the fact that the num-
ber of packets that arrive into Ack in each time-slot is upper-
bounded by fmax

k , and any cut in the network has a capacity
larger than or equal to fmaxk . The detailed proofs for both
claims are given in the Appendix C.

In LFBP, each node n implements a threshold-based small-
est min-cut detection mechanism. When we start using a
particular DAG Dk, in each time-slot, we check whether the
queue crosses a prespecified threshold Rk. Any queue that
crosses the threshold gets marked as overloaded. After using
the DAG Dk for Tk timeslots, all the nodes that have their
queue marked overloaded form the set Ak. When the time
Tk and threshold Rk are large enough, the cut (Ak, A

c
k) is

the smallest min-cut as proven in Theorem 3.
After determining the smallest min-cut, an individual node

can perform a link reversal by comparing its queue’s over-
load status with its neighbor’s. All the links that go from a
non-overloaded node to an overloaded node are reversed to
obtain D1. By Lemma 3 we know that D1 is also a DAG,
and by Lemma 4 D1 lexicographically improves the over-
load vector. By iterating over the above steps, Theorem
1 guarantees that this algorithm will eventually result in a
DAG that supports λ. The complete loop free backpressure
algorithm iterations are given by Algorithm 3. This algo-
rithm requires only local coordination between neighbors,
and hence LFBP is distributed.

Algorithm 3 LFBP (Executed by node n)

1: Input: sequences {Tk}, {Rk}, unique ID n
2: Generate initial DAG D0 by directing each link {n, j}

to (n, j) if n < j, to (j, n) if j > n.
3: Mark the queue Qn as not overloaded
4: Initialize t← 0, k ← 0
5: while true do
6: Use BP to send/recive packets on all links of node n
7: if (Qn(t) > Rk) then
8: Mark Qn as overloaded.
9: end if

10: t← t+ 1
11:
12: Tk ← Tk − 1
13: if Tk = 0 then
14: Reverse all links (j, n) such that Qj is not over-

loaded and Qn is overloaded.
15: k ← k + 1
16: Mark Qn as not overloaded
17: end if
18: end while

Because this algorithm is based on thresholds, in practice,
there is a possibility that the identified cut might not be the

smallest-min cut. However, Lemma 3 can be generalized to
show that for any partitioning of a DAG (A,Ac), reversing
the links from Ac to A keeps the graph acyclic. That is,
any graph resulting from a reversal based on a false smallest
min-cut is also a DAG. So, if the subsequent iterations use
the correct smallest min-cuts, the algorithm will eventually
obtain a DAG that supports the arrival rate λ.

4.1 Algorithm modification for topology changes
In this section we consider networks with time-varying

topologies, where several links of graph G may appear or
disappear over time. Although the DAG that supports λ
depends on the topology of G, our proposed policy LFBP
can adapt to the topology changes and efficiently track the
optimal solution.Additionally, the loop free structure of a
DAG is preserved under link removals. Thus, if some of the
links in the network disappear, we may continue using LFBP
on the new network.

To handle the appearance of new links in the network
smoothly, we will slightly extend LFBP to guarantee the
loop free structure. For a DAG Dk, every node n stores a
unique state xn(k) representing its position in the topolog-
ical ordering of the DAG Dk. The states are maintained
such that they are unique and all the links go from a node
with the lower state to a node with the higher state. When
a new link {i, j} appears we can set its direction to go from
i to j if xi(k) < xj(k) and from j to i otherwise. Since
this assignment of direction to the new link is in alignment
with the existing links in the DAG, the loop-free property is
preserved.

The state for each node n can be initialized using the
unique node ID during the initial DAG creation, i.e. xn(0) =
n. Then whenever a reversal is performed the state of node
n can be updated as follows:

xn(k) =

{
xn(k − 1)− 2k∆, if n is overloaded,
xn(k − 1), otherwise.

Here, ∆ is some constant chosen such that ∆ > maxi,j∈N xi(0)−
xj(0). Note that this assignment of state is consistent with
the way the link directions are assigned by the link rever-
sal algorithm. The states for the non-overloaded nodes are
unchanged, so the links between these nodes are unaffected.
Also, the states for all the overloaded nodes are decreased
by the same amount 2k∆, so the direction of the links be-
tween the overloaded nodes is also preserved. Furthermore,
the quantity −2k∆ is less than the lowest possible state be-
fore the kth iteration, so the overloaded nodes have a lower
state than the non-overloaded nodes. Hence, the links be-
tween the overloaded and non-overloaded nodes go from the
overloaded nodes to the non-overloaded nodes.

In this scheme, the states xn decrease unboundedly as
more reversals are preformed. In order to prevent this, after
a certain number of reversals, we can rescale the states by
dividing them by a large positive number. This decreases the
value of the state while maintaining the topological ordering
of the DAG. The number of reversals k can be reset to 0,
and a new ∆ can be chosen such that it is greater than the
largest difference between the rescaled states.

5. COMPLEXITY ANALYSIS
To understand the number of iteration the link-reversal

algorithm takes to obtain the optimal DAG, we analyze the
time complexity of the algorithm.

Theorem 4. Let C be a vector of the capacities of all
the links in E, and let I be the set of indices 1, 2, ..., |E|.
Define δ > 0 to be the smallest positive difference between
the capacity of any two cuts. Specifically, δ is the solution
of the following optimization problem

min
A,B⊆I

∑
a∈A

ca −
∑
b∈B

cb

subject to:
∑
a∈A

ca >
∑
b∈B

cb.

The number of iterations taken by the link reversal algorithm
before it stops is upper bounded by d|N | f

max

δ
e , where fmax

is the max-flow of the undirected network.

Proof. From Lemma 8, after each iteration either the
max-flow of the DAG increases, or the max-flow stays the
same and the number of nodes in the source side of the
smallest min-cut increases. We can bound the number of
consecutive iterations such that there is no improvement in
the max-flow. In particular, every such iteration will add
at least one node to the source set. So, it is impossible to
have more than |N | − 2 such iteration. Hence, every |N |
iterations we are guaranteed to have at least one increase in
the max-flow.

Max-flow is equal to the min-cut capacity, and min-cut
capacity is defined as the sum of link capacities. Say, the
max-flow of DAG Dk+1 is greater than that of Dk. Let A be
the set of indices (in the capacity vector C) of the links in
the min-cut of Dk+1 , and B be the set of indices of the links
in the min-cut of Dk. This choice of A and B forms a feasible
solution to the optimization problem given in the theorem
statement. Since the optimal solution δ lower bounds all the
feasible solutions in the minimization problem, the increase
in the max-flow must be greater than or equal to δ.

Every |N | iteration the max-flow increases at least by δ.
Hence, the DAG supporting the max-flow fmax is formed
within d|N |fmax/δe iterations.

Corollary 1. In a network where all the link capacities
are rational with the least common denominator D ∈ N, the
number of iterations is upper bounded by (|N |Dfmax).

Proof. Since the capacities are rational we can write the
capacity of the ith link as ci = Ni

D , where Ni is a natural
number. From the definition of δ in Theorem 4, we get δ to
be the value of the following optimization problem:

min
A,B⊆I

1

D

(∑
a∈A

Na −
∑
b∈B

Nb

)
subject to:

∑
a∈A

Na >
∑
b∈B

Nb.

All the N(.) are integers, so to satisfy the constraint we must
have the difference

∑
a∈ANa−

∑
b∈B Nb ≥ 1. Hence δ ≥ 1

D .
Using this value of δ in Theorem 4, we can see that the
number of iterations is upper bounded by (|N |Dfmax).

Corollary 2. In a network with unit capacity links, the
number of iterations the link-reversal algorithm takes to ob-
tain the optimal DAG is upper bounded by |N ||E|.

Proof. Using the definition of δ in Theorem 4, we get
δ = 1. The max-flow fmax ≤ |E|. So, by Theorem 4, the
number of iterations is upper bounded by |N ||E|.

We conjecture that these upper bounds are not tight, and
finding a tighter bound will be pursued in the future re-
search. We simulated the link reversal algorithm in 50,000
different Erdos-Renyi networks (p = 0.5) of sizes 10 to 50
with randomly assigned link capacities. The link reversal al-
gorithm started with a random initial DAG. We found that
it took less than 2 iterations on average to find the optimal
DAG.

A worst case lower bound for the number of iteration is
|N |. This lower bound can be achieved in a line network
where the initial DAG has all of its links in the wrong direc-
tion.

6. SIMULATION RESULTS
We compare the delay performance of the LFBP algorithm

and the BP algorithm via simulations. We will see that the
network with the LFBP routing has a smaller backlog on
average under the same load. This shows that the LFBP
algorithm has a better delay performance. We consider two
types of networks for the simulations: a simple network with
fixed topology, and a network with grid topology where the
links appear and disappear randomly.

6.1 Fixed topology
We consider a network with the topology shown in Fig-

ure 4(a). The edge labels represent the link capacities.
The undirected network has the maximum throughput of
15 packets per time slot. Figure 4(b) shows the initial DAG
D0. Instead of running the initial DAG algorithm of Sec-
tion 3.1, here we choose a zero throughput DAG to test
the worst-case performance of LFBP. The arrivals to the
network are Poisson with rate λ = 15ρ , where we vary
ρ = .5, .55, ..., .95. For the LFBP algorithm, we set the over-
load detection threshold to Rk = 60 for all n, k. To choose
this parameter, we observed that the backlog buildup in nor-
mal operation rarely raises above 60. We also choose the
detection period T1 = 150 and Tk = 50 for all k > 1. This
provides enough time for buildup, which improve the accu-
racy of the overload detection mechanism.

We simulate both algorithms for one million slots, using
the same arrival process sample path. Figures 4(c) - 4(e)
show the various DAGs that are formed by the LFBP algo-
rithm at iterations k = 1, 2, 3. We can see that the nodes in
the smallest min-cut get overloaded and the link reversals
gradually improve the DAG until the throughput optimal
DAG is reached.

Figure 5 compares the total average backlog in the net-
work for BP and LFBP, which is indicative of the average
delay. A significant delay improvement is achieved by LFBP,
for example at load 0.5 the average delay is reduced by 66%
We observe that the gain in the delay performance is more
pronounced when the load is low. In low load situations, the
network doesn’t have enough “pressure” to drive the packets
to the destination and so under BP the packets go in loops.

6.2 Randomly changing topology
To understand the delay performance of the LFBP al-

gorithm on networks with randomly changing topology, we
consider a network where 16 nodes are arranged in a 4 × 4
grid. All the links are taken to be of capacity six. For the
LFBP algorithm, we choose a random initial DAG with zero
throughput shown in Figure 6. The source is on the upper
left corner (node 1) and the destination is on the bottom

s

2 3

d

1 4

15

5

15

5
5 5

5

10

(a) Network topology.

s

2 3

d

1 4

(b) The initial DAG
chosen so that LFBP re-
quires several iteration
to reach the optimal.

s

2 3

d

1 4

(c) After the first rever-
sal.

s

2 3

d

1 4

(d) After the second re-
versal.

s

2 3

d

1 4

(e) The throughput op-
timal DAG.

Figure 4: Figure (a) depicts the original network.
Figures (b)-(e) are the various stages of the DAG.
The red nodes represent the overloaded nodes, and
the dashed line shows the boundary of the over-
loaded and the non-overloaded nodes.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
20

40

60

80

100

120

140

Load

A
v
e
ra

g
e
 B

a
c
k
lo

g

BP

LFBP

Figure 5: Average backlog in the network (Fig. 4(a))
with fixed topology for the Loop Free Backpressure
(LFBP) and the Backpressure (BP) algorithms.

right (node 16).
In the beginning of the simulations all 24 network links

are activated. At each time slot an active link fails with
a probability 10−4 and an inactive link is activated with a
probability 10−3. The maximum throughput of the undi-
rected network without any link failures is 12. Clearly on
average, each link is “on” a fraction 10

11
of the time, and

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Figure 6: Initial DAG for the LFBP algorithm cho-
sen so that the LFBP needs several iterations to
reach the optimal DAG. All the links have capacity
six.

thus the average maximum throughput of the undirected
network with these link failure rates is 10

11
× 12 = 10.9. The

arrivals to the networks are Poisson with rate λ = 10.9ρ,
where ρ = .1, .2, ..., .6. For the LFBP algorithm, the detec-
tion threshold is set to Rk = 100 and the detection period is
Tk = 30 for all n, k. These parameters were chosen so that
there are several reversals before a topology change occurs
in the undirected network. The simulation was carried out
for a million slots.

Figure 7 compares the average backlog of LFBP and BP.
In the low load scenarios LFBP reduces delay significantly
(by 85% for load = 0.1) even though the topology changes
challenge the convergence of the link-reversal algorithm. As
the load increases, both the algorithms begin to obtain a
similar delay performance.

0.1 0.2 0.3 0.4 0.5 0.6
0

200

400

600

800

1000

1200

Load

A
v
e
ra

g
e

 B
a
c
k
lo

g

BP

LFBP

Figure 7: Average backlog in the network with ran-
dom link failures (Fig. 6) for the Loop Free Back-
pressure algorithm and the Backpressure algorithm.

7. MULTICOMMODITY SIMULATION
We extend of the link reversal algorithm to the networks

with multiple commodities. The multi-commodity algorithm
is identical to the single commodity algorithm, with the ex-
ception that we now use the multicommodity backpressure
of [1]. Each node n maintains a queue Qyn(t) for each com-
modity y. Each commodity is assigned its own initial DAG.
A pseudocode for the multicommodity LFBP that we used

is given in Algorithm 4.

Algorithm 4 Multicommodity LFBP (Executed by node
n)

1: Input: sequences {Tk}, {Rk}, unique ID n
2: For each commodity y, generate initial DAG Dy

0 by di-
recting {n, j} to (n, j) if n < j, to (j, n) if j > n.

3: Mark all queues Qyn as not overloaded
4: Initialize t← 0, k ← 0
5: while true do
6: Use Multicommodity BP to send/recive packets on

all links of node n
7: for all y do
8: if (Qyn(t) > Rk) then
9: Mark this Qyn as overloaded.

10: end if
11: end for
12: t← t+ 1
13:
14: Tk ← Tk − 1
15: if Tk = 0 then
16: for all y do
17: Reverse links (j, n) ifQyj is not overloaded and

Qyn is overloaded.
18: end for
19: k ← k + 1
20: Mark all queues as not overloaded
21: end if
22: end while

For the simulation, we consider a network arranged in a
4 × 4 grid as shown in Figure 6. Each link has a capacity
of 6 packets per time-slot. There are three commodities in
the network defined by the source destination pairs (1,16),
(4,13) and (5,8). For the LFBP algorithm, each commodity
starts with the same initial DAG given in Figure 6.

We use the arrival rate vector λmax = [7.18, 6.96, 9.86],
which is a max-flow vector for this network computed by
solving a linear program. We scale this vector by various
load factors ρ ranging from 0.1 to 0.9. The arrivals for each
commodity i is Poisson with rate ρλmax

i . In the beginning
of the LFBP simulation, b500/ρc dummy packets are added
to the source of each commodity. This is helpful in low load
cases because it forces the algorithm to find a DAG with
high throughput, and avoids stopping at a DAG that only
supports the given (low) load. Rk was chosen to be 50 and
Tk = 50 for all k > 0. The simulation was executed for
500,000 time-steps.

Figure 8 shows the average backlog in the network for dif-
ferent loads under backpressure and multicommodity LFBP.
We can see that the LFBP algorithm has a significantly im-
proved delay performance compared to backpressure.

8. CONCLUSION
Backpressure routing and link reversal algorithms have

been separately proposed for mobile wireless networks ap-
plications. In this paper we show that these two distributed
schemes can be successfully combined to yield good through-
put and delay performance.We develop the Loop-Free Back-
pressure Algorithm which jointly routes packets in a con-
strained DAG and reverses the links of the DAG to improve
its throughput. We show that the algorithm ultimately re-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

800

1000

Load

A
v
e
ra

g
e

 B
a

c
k
lo

g

BP

LFBP

Figure 8: Average backlog in a multicommodity net-
work with fixed topology for LFBP and BP algo-
rithms.

sults in a DAG that yields the maximum throughput. Addi-
tionally, by restricting the routing to this DAG we eliminate
loops, thus reducing the average delay. Future investiga-
tions involve optimization of the overload detection param-
eters and studying the performance of the scheme on the
networks with multiple commodities.

9. REFERENCES
[1] L. Tassiulas and A. Ephremides, “Stability properties

of constrained queueing systems and scheduling for
maximum throughput in multihop radio networks,”
IEEE Transactions on Automatic Control, vol. 37, no.
12, pp. 1936-1949, December 1992.

[2] L. X. Bui, R. Srikant and A. Stolyar, “A novel
architecture for reduction of delay and queueing
structure complexity in the back-pressure algorithm,”
IEEE/ACM Transactions on Networking, vol. 19,
no. 6, pp. 1597-1609, December 2011.

[3] M. J. Neely, E. Modiano and C. E. Rohrs, “Dynamic
power allocation and routing for time varying wireless
networks,” IEEE Journal on Selected Areas in
Communications, Special Issue on Wireless Ad-hoc
Networks, vol. 23, no. 1, pp. 89-103, January 2005.

[4] E. Gafni and D. Bertsekas, “Distributed algorithms for
generating loop-free routes in networks with
frequently changing topology,” IEEE Transactions on
Communications, vol. 29, no. 1, pp. 11-18, January
1981.

[5] V.D. Park and M.S. Corson, “A highly adaptive
distributed routing algorithm for mobile wireless
networks,” INFOCOM, 1997.

[6] L. Georgiadis and L. Tassiulas, “Optimal overload
response in sensor networks.” IEEE Transactions on
Information Theory, vol.52, no. 6, pp. 2684-2696, June
2006.

[7] H. Xiong, R. Li, A. Eryilmaz and E. Ekici,
“Delay-aware cross-layer design for network utility
maximization in multi-hop networks.” IEEE Journal
on Selected Areas in Communications, vol. 29, no. 5,
pp. 951-959, May 2011.

[8] L. Ying, S. Shakkottai, A. Reddy and S. Liu, “On
combining shortest-path and backpressure routing over

multihop wireless networks,” IEEE/ACM Transactions
on Networking, vol. 19, no. 3, pp. 841-854, June 2011.

[9] P.-K. Huang, X. Lin, and C.-C. Wang, “A
low-complexity congestion control and scheduling
algorithm for multihop wireless networks with
order-optimal per-flow delay,” IEEE/ACM Trans. on
Networking, vol. 21, no. 2, pp. 2588-2596, April 2013.

[10] M. J. Neely, “Stochastic network optimization with
application to communication and queueing systems,”
Morgan & Claypool, 2010.

[11] L. R. Ford and D. R. Fulkerson, “Maximal flow
through a network,” Canadian Journal of
Mathematics, 8: 399, 1956.

[12] L. Georgiadis, P. Georgatsos, K. Floros, and
S. Sartzetakis, “Lexicographically optimal balanced
networks,” IEEE/ACM Transactions on Networking,
vol. 10, no. 6, pp. 818-829, December 2002.

[13] L. Huang and M. J. Neely, “Delay reduction via
Lagrange multipliers in stochastic network
optimization,” IEEE Transactions on Automatic
Control, vol. 56, no. 4, pp. 842-857, April 2011.

[14] L. Georgiadis, M. J. Neely and L. Tassiulas, “Resource
allocation and cross-layer control in wireless
networks,” Foundations and trends in networking,
Now Publishers Inc, 2006.

APPENDIX
A. LEMMA 7

Lemma 7. Consider a DAG Dk with source node s, des-
tination node d, and arrival rate λ. Let Ak be the set of
overloaded nodes under the flow allocation (fij) that yields
the lexicographically minimum overload vector. If |Ak| > 0,
then (Ak, A

c
k) is a min-cut of the DAG Dk.

Proof Proof of Lemma 7. First we show that (Ak, A
c
k)

is a cut, i.e., the source node s ∈ Ak and the destination
node d ∈ Ack. The destination node d has zero queue over-
load rate qd = 0 because it does not buffer packets; hence
d ∈ Ack. We show s ∈ Ak by contradiction. Assume s /∈ Ak.
The property (8) shows that there is no flow going from Ack
to Ak, i.e., ∑

(i,j)∈Ek: i∈Ac
k
, j∈Ak

fij = 0.

The flow conservation equation applied to the collection Ak
of nodes yields∑
n∈Ak

qn =
∑

(i,n)∈Ek: i∈Ac
k
, n∈Ak

fin −
∑

(n,j)∈Ek:n∈Ak, j∈Ac
k

fnj

= −
∑

(n,j)∈Ek:n∈Ak,j∈Ac
k

fnj ≤ 0,

which contradicts the assumption that the network is over-
loaded (i.e., |Ak| > 0). Note that in the above equation λ
does not appear because of the premise s /∈ Ak.

By the max-flow min-cut theorem, it remains to show that
the capacity of the cut (Ak, A

c
k) is equal to the maximum

flow fmax
k of the DAG Dk. Under the flow allocation (fij)

that induces the lexicographically minimal overload vector,
the throughput of the destination node d is the maximum

flow fmax
k (see Lemma 1). It follows that

fmax
k = λ−

∑
i∈N

qi = λ−
∑
i∈Ak

qi (10)

=
∑

(i,j)∈Ek: i∈Ak, j∈Ac
k

fij (11)

=
∑

(i,j)∈Ek: i∈Ak,j∈Ac
k

cij = capk(Ak, A
c
k). (12)

where (10) uses (7) and qi = 0 for all nodes i /∈ Ak, (11) fol-
lows the flow conservation law over the node set Ak, and (12)
uses the property (9) in Lemma 1.

B. PROOF OF LEMMA 6
Proof of Lemma 6. Lemma 7 shows that (Ak, A

c
k) is

a min cut of the DAG Dk. It suffices to prove that if
there exists another min-cut (B,Bc), i.e., Ak 6= B and
capk(Ak, A

c
k) = capk(B,Bc), then Ak ⊂ B. The proof is

by contradiction. Let us assume that there exists another
min-cut (B,Bc) such that Ak 6⊂ B. We have the source node
s ∈ Ak ∩B and the destination node d ∈ Ack ∩Bc. Consider
the partition {C,D,E, F} of the network nodes such that
C = Ak ∩ B, D = Ak\B, E = B\Ak and F = N\(Ak ∪ B)
(see Fig. 9). Since Ak 6⊂ B and Ak 6= B, we have |D| > 0.
Also, we have s ∈ C and d ∈ F . Let (fij) be a flow allo-

Ak B

D C E

F

Figure 9: A partition of the node set N where Ak =
C ∪D and B = C ∪ E.

cation that yields the lexicographically minimum overload
vector in Dk. Properties (8) and (9) show that

fij = cij , ∀ i ∈ Ak, j ∈ Ack, (13)

fij = 0, ∀ i ∈ Ack, j ∈ Ak. (14)

The capacity of the cut (B,Bc) in the DAG Dk, defined
in (1), satisfies

capk(B,Bc) = capk(B,D) + capk(B,F), (15)

where Bc = D∪F . Under the flow allocation (fij), we have

capk(B,D) =
∑

(i,j)∈Ek:i∈B,j∈D

cij ≥
∑

(i,j)∈Ek:i∈B,j∈D

fij .

(16)
Applying the flow conservation equation to the collection of
nodes in D yields∑

(i,j)∈Ek:i∈B,j∈D

fij ≥
∑
i∈D

qi +
∑

(i,j)∈Ek:i∈D,j∈F

fij . (17)

In (17), the first term is the sum of incoming flows into
the set D; notice that there is no incoming flow from F to
D because of the flow property (14). The second term is
the sum of queue overload rates in D. The last term is a
partial sum of outgoing flows leaving the set D, not counting
flows from D to B; hence the inequality (17). From the flow
property (13), the outgoing flows from the set D to F satisfy∑

(i,j)∈Ek:i∈D,j∈F

fij =
∑

(i,j)∈Ek:i∈D,j∈F

cij . (18)

Combining (15)-(18) yields

capk(B,Bc) = capk(B,D) + capk(B,F)

≥
∑
i∈D

qi +
∑

(i,j)∈Ek:i∈D,j∈F

cij + capk(B,F)

>
∑

(i,j)∈Ek:i∈D,j∈F

cij + capk(B,F)

= capk(Ak ∪B,F), (19)

where the second inequality follows that all nodes in D are
overloaded and qn > 0 for all n ∈ D. Inequality (19) shows
that there exists a cut (Ak ∪B,F) that has a smaller capac-
ity, contradicting that (B,Bc) is a min-cut in the DAG Dk.
Finally, we note that the partition (Ak, A

c
k) is unique be-

cause the lexicographically minimal overload vector is unique
by Lemma 1.

C. PROOF OF THEOREM 3
Proof of the first claim. First we will show that the

queue at the source Qs(t) crosses any arbitrary threshold
R1. We know that for some node n ∈ Ak, Qn(t) → ∞ as
t→∞ because the external arrival rate to the source s ∈ Ak
is larger than the rate of departure from set Ak, i.e. λ >
cap(Ak, A

c
k). The backpressure algorithm sends packets on

a link (i,j) only if Qi(t) > Qj(t). Hence, at any time-slot if a
node b 6= s has a large backlog, then one of its parents p must
also have a large backlog. Qp can be slightly smaller than Qb
because Qb might also receive packets from other nodes at
the same time-slot. Specifically, Qp(t) > Qb(t+ 1)−

∑
i cib.

Performing the induction on the parent of p we can see that
the source node must have a high backlog when any node in
Ak develops a high backlog. Note that the network is a DAG
and the node n received packets form the source to develop
its backlog, so the induction much reach the source node.
Hence, when Qb(T1)� R1, Qs(t) > R1 for some t < T1.

Now we will show that every node in Ak crosses the thresh-
oldR. LetB1 ⊆ Ak be the set of nodes such thatQn(t) > R1

for some time t < T1. We showed that s ∈ B1. We will show
that when B1 6= Ak, there exists some set B2, such that (i)
B1 ⊂ B2, and (ii) for every node n ∈ B2, Qn(t) > R2 for
some t < T2. Here, R2 and T2 are large thresholds.

Assume B1 6= Ak. Let C1 = Ak\B1, i.e all nodes in C1

haven’t crossed the threshold R1 until time T1. Let cB1C1

be the total capacity of the links going from B1 to C1, and
cC1A

c
k

be the total capacity of the links going from C1 to Ack.
We have cB1C1 > cC1A

c
k

because (Ak, A
c
k) is the smallest

min-cut (see Figure 10). When the backlogs of the nodes
of B1 are much larger than the nodes of C1, the nodes in
C1 receive packets from B1 at the rate of cB1C1 packets per
time-slot, and no packets are sent in the reversed direction.
The rate of packets leaving the nodes in C is upper bounded

by cB1A
c
k

which is smaller than the incoming rate. Hence, at

least one node n′ ∈ C must collect a large backlog, say larger
than R2 < R1. So, each node in the set B2 = B1∪{n′} have
a backlog larger than R2 at some finite time T2.

Ak

B1 C1

N

Figure 10: Let (Ak, A
c
k) be the smallest min-cut. We

showed that s ∈ B1. Say, cC1Ac ≥ cB1C1 then the cut
(B1, B

c
1) has the capacity of cB1Ac+cB1C1 ≤ cap(Ak, Ack).

This contradicts the assumption that (Ak, A
c
k) is the

smallest min-cut. So, cC1A
c
k
< cB1C1 .

Now using induction we can see that for Bm where m <
|Ak|, Bm = Ak and all the nodes in Bm cross a threshold
R = min{R1, ..., Rm} by time T = max{T1, ..., Tm}.

Proof of the second claim. We will use the following
fact to prove this claim: for any subset of nodes S, if the
number of packets entering S is lower than or equal to the
number of packets leaving S on every time-slot, then the
total backlog in S doesn’t grow. So, the backlog in each
node of S is bounded.

Assume a node b develops a backlog Qb(t) > R1. Here R1

is a chosen such that

R1 = |Ack|
∑

i,j∈Ac
k

cij + max
n∈Ac

k

Qn(0).

Consider a subset B of Ack such that for every node i ∈ B
and j ∈ C = Ack\B, (Qi(t)−Qj(t)) > cij . The sets B and C
must be nonempty because Qb(t) is large and Qd(t) is zero,
that is b ∈ B and d ∈ C. Note that backpressure doesn’t
send any data from C to B.

Ak
B C

Figure 11: Let (Ak, A
c
k) be the smallest min-cut. We

showed that d ∈ C. Say, cAB > cBC then the cut (B ∪
Ak, (B ∪ Ak)c) has the capacity of cBC + cAkC < cAB +
cAkC = cap(Ak, A

c
k). This contradicts the assumption

that (Ak, A
c
k) is the smallest min-cut. So, cAB < cBC .

Let cAB be the capacity of the links going from A to B,
and let cBC be the capacity of the links going from B to C.
So, the number of packets entering B at timeslot t is upper
bounded by cAB . The number of packets leaving B is equal
to cBC . Since (A,Ac) is the smallest min-cut, cAB ≤ cBC
(see Figure 11). Hence, the number of packets entering B
is less than or equal to the number of packets leaving it at
time t.

Therefore as soon as one of the nodes crosses threshold
R1, the sum backlog becomes bounded. We can choose a
threshold R � R1 such that this threshold is never crossed
by any nodes in Ack.

D. LEMMA 8

Lemma 8. Consider the case when λ > fmax
k . The link

reversal algorithm is applied on DAG Dk to obtain Dk+1.
Let (Ak, A

c
k) and (Ak+1, A

c
k+1) be the smallest min-cuts of

Dk and Dk+1 respectively. Then, either capk(Ak, A
c
k) >

capk+1(Ak+1, A
c
k+1), or capk(Ak, A

c
k) = capk+1(Ak+1, A

c
k+1)

and |Ak+1| > |Ak|

Ak Ak+1

l1, l′1

l2, l′2

l3, l′3

l4, l′4

l5, l′5

l6, l′6

l7, l′7

l8, l′8

l9, l′9

l10, l′10

l11, l′11

l12, l′12

Figure 12: Here li represents the sum of the capaci-
ties of the links going from one partition to the next
in the DAG Dk, and l′i represents the sum of the
link capacities in the DAG Dk+1. For example, l9
and l9′ represent the links that go from (Ak ∪Ak+1)c

to (Ak ∩Ak+1) in DAGs Dk and Dk+1 respectively.

Proof. Consider the partitioning of the nodes as shown
in Figure 12. For i = 1, ..., 12, li represents the sum of the
capacities of the links going from one partition to the next in
the DAG Dk, and l′i represents the sum of the link capacities
in the DAG Dk+1. The capacities of the smallest min-cut,
before and after the reversal are given by

capk(Ak, A
c
k) = l2 + l5 + l10 + l12 and

capk+1(Ak+1, A
c
k+1) = l′4 + l′7 + l′10 + l′11

respectively. Note that only the links that are coming into
Ak are different in Dk and Dk+1. So

li = l′i for i = 3, 4, 7, 8, 10, 12. (20)

Because of the reversal there are no links coming into Ak in
the DAG Dk+1:

l′1, l
′
6, l
′
9, l
′
11 = 0. (21)

After the reversal, the incoming links to Ak become outgoing
from Ak,

l′10 = l10 + l9. (22)

(Corresponding equations for l′2, l
′
5 and l′12 are omitted be-

cause they are not necessary for the proof). Since (Ak, A
c
k)

is a min-cut,

l5 ≤ l7. (23)

This is true because otherwise the cut (Ak ∪ Ak+1, (Ak ∪
Ak+1)c) in the DAG Dk has a smaller capacity then the min
cut (Ak, Ak)c. Specifically, let us assume l5 > l7. Then, we
get the contradiction:

capk(Ak ∪Ak+1, (Ak ∪Ak+1)c) = l2 + l7 + l10

< l2 + l5 + l10 + l12

= capk(Ak, Ak)c

First we will show that if Ak\Ak+1 6= φ, then the capacity
of the DAG must have increased. The proof is by contradic-
tion.

Let us assume that the throughput didn’t increase. So,

capk(Ak, A
c
k) ≥ capk+1(Ak+1, A

c
k+1)

= l′4 + l′7 + l′10 + l′11

= l4 + l7 + l10 + 0 (24)

≥ l4 + l5 + l10 (25)

= capk(Ak ∩Ak+1, (Ak ∩Ak+1)c). (26)

(24) is follows from (20) and (21), and (25) follows from (23).
Since Ak\Ak+1 6= φ by assumption, |Ak| > |Ak ∩ Ak+1|.
This leads to a contradiction, because in DAG Dk the cut
(Ak ∩Ak+1, (Ak ∩Ak+1)c) is smaller than the smallest min-
cut (Ak, A

c
k). Hence, capk(Ak, A

c
k) < capk+1(Ak+1, A

c
k+1).

Next, we will consider the case Ak\Ak+1 = φ. Using (23),

capk(Ak, A
c
k) = l5 + l10 ≤ l7 + l10.

In this situation, we again have two cases. First, if Ak =
Ak+1 we know that l′10 > l10 and l7 = 0. Hence, capk(Ak, A

c
k) <

l′10 = capk+1(Ak+1, A
c
k+1).

Second, if Ak ⊂ Ak+1, then |Ak| > |Ak+1| and

l′10 ≥ l10. (27)

Using (20) and (27) capk(Ak, A
c
k) ≤ capk+1(Ak+1, A

c
k+1).

	Introduction
	System Model and Definitions
	Network model
	Flow equations
	Properties of queue overload vector

	Link-Reversal Algorithms
	Initial DAG
	Overload detection
	Link reversal
	Arrivals outside stability region

	Distributed Dynamic Algorithm
	Algorithm modification for topology changes

	Complexity analysis
	Simulation Results
	Fixed topology
	Randomly changing topology

	Multicommodity simulation
	Conclusion
	References
	Lemma 7
	Proof of Lemma 6
	Proof of Theorem 3
	Lemma 8

