10,669 research outputs found

    Low energy video processing and compression hardware designs

    Get PDF
    Digital video processing and compression algorithms are used in many commercial products such as mobile devices, unmanned aerial vehicles, and autonomous cars. Increasing resolution of videos used in these commercial products increased computational complexities of digital video processing and compression algorithms. Therefore, it is necessary to reduce computational complexities of digital video processing and compression algorithms, and energy consumptions of digital video processing and compression hardware without reducing visual quality. In this thesis, we propose a novel adaptive 2D digital image processing algorithm for 2D median filter, Gaussian blur and image sharpening. We designed low energy 2D median filter, Gaussian blur and image sharpening hardware using the proposed algorithm. We propose approximate HEVC intra prediction and HEVC fractional interpolation algorithms. We designed low energy approximate HEVC intra prediction and HEVC fractional interpolation hardware. We also propose several HEVC fractional interpolation hardware architectures. We propose novel computational complexity and energy reduction techniques for HEVC DCT and inverse DCT/DST. We designed high performance and low energy hardware for HEVC DCT and inverse DCT/DST including the proposed techniques. VII We quantified computation reductions achieved and video quality loss caused by the proposed algorithms and techniques. We implemented the proposed hardware architectures in Verilog HDL. We mapped the Verilog RTL codes to Xilinx Virtex 6 and Xilinx ZYNQ FPGAs, and estimated their power consumptions using Xilinx XPower Analyzer tool. The proposed algorithms and techniques significantly reduced the power and energy consumptions of these FPGA implementations in some cases with no PSNR loss and in some cases with very small PSNR loss

    Efficient Real-Time Architectures and FPGA Implementations of Histogram-Based Median Filters for High Definition Videos

    Get PDF
    Digital filtering plays an important role in many signal processing applications. Filtering is performed to recover the original signal from its corrupted version. Median filter is a non-linear digital filter that replaces a sample in a given window by the median value of the samples in the window. For images corrupted with impulse noise, median filter provides a very high quality of filtered images. Several modifications of median filters have been proposed and implemented to achieve high image quality compared to that provided by conventional median filters. When these filters are implemented on hardware platforms such as FPGAs, the performance parameters, namely, the area, power and operating frequency should be taken into consideration in addition to the quality of the filtered image. Therefore, efficient implementation of median filters on FPGAs for image and video processing algorithms has been a topic of much interest. The existing hardware-based median filters for high definition video formats do not always satisfy the real-time throughput requirements or are inefficient with respect to hardware performance parameters, such as the area and frequency. This is due to the fact that most of the existing techniques use sorting-based median calculation, which results in a low hardware performance. In this thesis, architectures that use histogram-based median computation, which is a non-sorting-based operation, are designed with a view of efficient hardware implementation. This is carried out in two parts. We design and implement efficient architectures that satisfy the real-time throughput requirements of full high definition (FHD) videos in the first part and that of ultra high definition (UHD) videos in the second part. In the first part, an efficient real-time histogram-based median filter that uses the concept of bit-plane-slicing and adaptive switching median filter (ASMF) is designed and implemented on FPGAs. We term this architecture as hybrid architecture for median filtering (HAMF). The proposed HAMF computes an approximate median, since it uses only the most significant B-bits of the pixel values for median calculation. As a result, the algorithmic level implementation of the proposed HAMF results in a slight degradation in the filtered image quality compared to that provided by ASMF. The proposed HAMF provides a significant improvement over ASMF in terms of the area and operating frequency, when implemented on different generation FPGAs. Analysis of the different parameters, such as the number of bit-planes used in the computation of the median and the number of pipelining stages, is carried out to study the trade-off between the quality of the filtered image and hardware performance. Although the FPGA implementation of the proposed HAMF provides a very high operating frequency, the quality of the images filtered by its algorithmic level implementation decreases with increasing window size and noise density. This filter may be suitable for applications that require FHD filtering with cost constraints, but not for applications where the output image quality is as important as the hardware performance. Hence, in the second part, we design an efficient and real-time architecture of the hierarchical histogram-based median filter (HHMF). The proposed architecture is designed using a full synchronous pipeline, a synchronous accumulate-and-compare unit, and is scalable. The FPGA implementation of the proposed architecture of HHMF can perform real-time filtering of 4K and 8K UHD videos. The quality of the image filtered by HHMF is not compromised as in the case of HAMF, since HHMF uses all the bit-planes and computes the actual median. Although the FPGA implementation of HHMF results in more area utilization, the proposed implementation is more economical than a GPU-based HHMF implementation and provides a better throughput

    MilliSonic: Pushing the Limits of Acoustic Motion Tracking

    Full text link
    Recent years have seen interest in device tracking and localization using acoustic signals. State-of-the-art acoustic motion tracking systems however do not achieve millimeter accuracy and require large separation between microphones and speakers, and as a result, do not meet the requirements for many VR/AR applications. Further, tracking multiple concurrent acoustic transmissions from VR devices today requires sacrificing accuracy or frame rate. We present MilliSonic, a novel system that pushes the limits of acoustic based motion tracking. Our core contribution is a novel localization algorithm that can provably achieve sub-millimeter 1D tracking accuracy in the presence of multipath, while using only a single beacon with a small 4-microphone array.Further, MilliSonic enables concurrent tracking of up to four smartphones without reducing frame rate or accuracy. Our evaluation shows that MilliSonic achieves 0.7mm median 1D accuracy and a 2.6mm median 3D accuracy for smartphones, which is 5x more accurate than state-of-the-art systems. MilliSonic enables two previously infeasible interaction applications: a) 3D tracking of VR headsets using the smartphone as a beacon and b) fine-grained 3D tracking for the Google Cardboard VR system using a small microphone array

    Status and performance of the Gemini Planet Imager adaptive optics system

    Full text link
    The Gemini Planet Imager is a high-contrast near-infrared instrument specifically designed to image exoplanets and circumstellar disks over a narrow field of view. We use science data and AO telemetry taken during the first 1.5 yr of the GPI Exoplanet Survey to quantify the performance of the AO system. In a typical 60 sec H-band exposure, GPI achieves a 5σ\sigma raw contrast of 104^{-4} at 0.4"; typical final 5σ\sigma contrasts for full 1 hr sequences are more than 10 times better than raw contrasts. We find that contrast is limited by bandwidth wavefront error over much of the PSF. Preliminary exploratory factor analysis can explain 60-70% of the variance in raw contrasts with combinations of seeing and wavefront error metrics. We also examine the effect of higher loop gains on contrast by comparing wavefront error maps reconstructed from AO telemetry to concurrent IFS images. These results point to several ways that GPI performance could be improved in software or hardware.Comment: 15 pages, 11 figure

    Optimizing the usage of 2D and 3D transformations to improve the BM3D image denoising algorithm

    Get PDF
    Image denoising is one of the most important pre-processing steps prior to wide range of applications such as image restoration, visual tracking, image segmentation, etc. Numerous studies have been conducted to improve the denoising performance. Block Matching and 3D (BM3D) filtering is the current state-of-the-art algorithm in image denoising and can provide better denoising performance than other existing methods. However, still, there is scope to improve the performance of BM3D. In this thesis, we have pointed out some of the significant aspects of this algorithm which can be improved and also suggested some approaches to get better denoising performance. We have suggested using an adaptive window size rather than the fixed window size. In addition, we have also suggested using gradient image in the blockmatching step to better facilitate the similar patch searching. Experimental results show that our suggested approaches can produce better results than BM3D irrespective of the types of image

    Dynamically Reconfigurable Architectures and Systems for Time-varying Image Constraints (DRASTIC) for Image and Video Compression

    Get PDF
    In the current information booming era, image and video consumption is ubiquitous. The associated image and video coding operations require significant computing resources for both small-scale computing systems as well as over larger network systems. For different scenarios, power, bitrate and image quality can impose significant time-varying constraints. For example, mobile devices (e.g., phones, tablets, laptops, UAVs) come with significant constraints on energy and power. Similarly, computer networks provide time-varying bandwidth that can depend on signal strength (e.g., wireless networks) or network traffic conditions. Alternatively, the users can impose different constraints on image quality based on their interests. Traditional image and video coding systems have focused on rate-distortion optimization. More recently, distortion measures (e.g., PSNR) are being replaced by more sophisticated image quality metrics. However, these systems are based on fixed hardware configurations that provide limited options over power consumption. The use of dynamic partial reconfiguration with Field Programmable Gate Arrays (FPGAs) provides an opportunity to effectively control dynamic power consumption by jointly considering software-hardware configurations. This dissertation extends traditional rate-distortion optimization to rate-quality-power/energy optimization and demonstrates a wide variety of applications in both image and video compression. In each application, a family of Pareto-optimal configurations are developed that allow fine control in the rate-quality-power/energy optimization space. The term Dynamically Reconfiguration Architecture Systems for Time-varying Image Constraints (DRASTIC) is used to describe the derived systems. DRASTIC covers both software-only as well as software-hardware configurations to achieve fine optimization over a set of general modes that include: (i) maximum image quality, (ii) minimum dynamic power/energy, (iii) minimum bitrate, and (iv) typical mode over a set of opposing constraints to guarantee satisfactory performance. In joint software-hardware configurations, DRASTIC provides an effective approach for dynamic power optimization. For software configurations, DRASTIC provides an effective method for energy consumption optimization by controlling processing times. The dissertation provides several applications. First, stochastic methods are given for computing quantization tables that are optimal in the rate-quality space and demonstrated on standard JPEG compression. Second, a DRASTIC implementation of the DCT is used to demonstrate the effectiveness of the approach on motion JPEG. Third, a reconfigurable deblocking filter system is investigated for use in the current H.264/AVC systems. Fourth, the dissertation develops DRASTIC for all 35 intra-prediction modes as well as intra-encoding for the emerging High Efficiency Video Coding standard (HEVC)

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe
    corecore