

Efficient Real-Time Architectures and FPGA Implementations of

Histogram-Based Median Filters for High Definition Videos

Anish Goel

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Electrical and Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

October 2019

© Anish Goel, 2019

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Anish Goel

Entitled: Efficient Real-Time Architectures and FPGA Implementations of Histogram-Based

Median Filters for High Definition Videos

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

_____________________________________ Chair and Examiner

Dr. A. J. Al-Khalili

_____________________________________ Examiner, External to the

Dr. C-Y. Su (MIAE) Program

 _____________________________________ Thesis Supervisor

 Dr. M. O. Ahmad

 _____________________________________ Thesis Supervisor

 Dr. M. N. S. Swamy

Approved by ___

 Dr. Y. R. Shayan Chair of the Department

 Dr. Amir Asif, Dean

 Faculty of Engineering and Computer Science

_______________ 2019

iii

Abstract

Efficient Real-Time Architectures and FPGA Implementations of Histogram-Based Median

Filters for High Definition Videos

Anish Goel

 Digital filtering plays an important role in many signal processing applications.

Filtering is performed to recover the original signal from its corrupted version. Median filter is

a non-linear digital filter that replaces a sample in a given window by the median value of the

samples in the window. For images corrupted with impulse noise, median filter provides a very

high quality of filtered images. Several modifications of median filters have been proposed and

implemented to achieve high image quality compared to that provided by conventional median

filters. When these filters are implemented on hardware platforms such as FPGAs, the

performance parameters, namely, the area, power and operating frequency should be taken into

consideration in addition to the quality of the filtered image. Therefore, efficient

implementation of median filters on FPGAs for image and video processing algorithms has

been a topic of much interest.

 The existing hardware-based median filters for high definition video formats do not

always satisfy the real-time throughput requirements or are inefficient with respect to hardware

performance parameters, such as the area and frequency. This is due to the fact that most of the

existing techniques use sorting-based median calculation, which results in a low hardware

performance. In this thesis, architectures that use histogram-based median computation, which

is a non-sorting-based operation, are designed with a view of efficient hardware

implementation. This is carried out in two parts. We design and implement efficient

architectures that satisfy the real-time throughput requirements of full high definition (FHD)

videos in the first part and that of ultra high definition (UHD) videos in the second part.

iv

In the first part, an efficient real-time histogram-based median filter that uses the

concept of bit-plane-slicing and adaptive switching median filter (ASMF) is designed and

implemented on FPGAs. We term this architecture as hybrid architecture for median filtering

(HAMF). The proposed HAMF computes an approximate median, since it uses only the most

significant B-bits of the pixel values for median calculation. As a result, the algorithmic level

implementation of the proposed HAMF results in a slight degradation in the filtered image

quality compared to that provided by ASMF. The proposed HAMF provides a significant

improvement over ASMF in terms of the area and operating frequency, when implemented on

different generation FPGAs. Analysis of the different parameters, such as the number of bit-

planes used in the computation of the median and the number of pipelining stages, is carried

out to study the trade-off between the quality of the filtered image and hardware performance.

 Although the FPGA implementation of the proposed HAMF provides a very high

operating frequency, the quality of the images filtered by its algorithmic level implementation

decreases with increasing window size and noise density. This filter may be suitable for

applications that require FHD filtering with cost constraints, but not for applications where the

output image quality is as important as the hardware performance. Hence, in the second part,

we design an efficient and real-time architecture of the hierarchical histogram-based median

filter (HHMF). The proposed architecture is designed using a full synchronous pipeline, a

synchronous accumulate-and-compare unit, and is scalable. The FPGA implementation of the

proposed architecture of HHMF can perform real-time filtering of 4K and 8K UHD videos.

The quality of the image filtered by HHMF is not compromised as in the case of HAMF, since

HHMF uses all the bit-planes and computes the actual median. Although the FPGA

implementation of HHMF results in more area utilization, the proposed implementation is more

economical than a GPU-based HHMF implementation and provides a better throughput.

v

Acknowledgements

First, I would like to thank my supervisors Dr. M. O. Ahmad and Dr. M. N. S. Swamy

for providing me with constant guidance and support during my studies. It was a pleasure to

know them and their enthusiasm towards the widespread domains of electrical and computer

engineering. It would not have been possible to purse my master’s degree without the financial

support provided by them for which I am very thankful to them.

I am also thankful to professors under whom I completed the courses required towards

my degree. Specifically, Dr. W. P. Zhu for courses on signal and image processing, and Dr. A.

J. Al-Khalili & Dr. O. A. Mohamed for courses on digital design and hardware verification.

My thesis is a combination of “Digital Design” and “Image Processing” which would have not

been possible without the in-depth knowledge of these courses. A special thanks to Mr.

Tadeusz Obuchowicz for providing access to the VLSI CAD tools on university server.

I am thankful to my lab-mates Abdallah, Alireza, Omid, Abdel Rehman and Mohamed

Reza who always maintained a friendly and peaceful environment in the lab. I would like to

thank the administration of the university for providing such a wonderful and well-equipped

laboratory for the purpose of study and research.

Finally, I am deeply indebted to my son Samar and my wife Priyanka who sacrificed

their family time and allowed me to work upon my thesis. Not only this thesis, but every

successful step of my life was possible due to the blessings of my Father and my Late Mother.

vi

To my loving

Late Mother

vii

Table of Contents

List of Figures…………………………………………………….……………………………x

List of Tables……………………………………………………….………………………..xiii

List of Acronyms…………………………………………………………………………….xiv

List of Symbols…………………………………………………………….………………...xvi

Chapter 1 Introduction…………………………………………………………………..1

1.1 Median Filtering……………………………………………………………….1

1.2 Literature Review…...…………………………………………………………5

1.2.1 Computationally Complex Schemes….………………………………….5

1.2.2 ASIC Implementations…………………………………………………..6

1.2.3 Technique with Approximate Median Computation…...………………...6

1.2.4 Sorting-Based Techniques……………………………………………….6

1.2.5 Histogram-Based Techniques……………………………………………7

 1.3 Real-Time Implementation Requirements of FHD and UHD Videos…….……8

 1.4 Motivation and Objectives of the Thesis…..……………………………….…10

 1.5 Organization of the Thesis…………………………………………………....11

Chapter 2 Background Material……………………………………………………….13

 2.1 Median Filtering Techniques………………………………………….……...13

2.1.1. Sorting-based Median Filter…………………………………….……...13

2.1.2. Non-sorting-based Median Filter……………………………….……...15

 2.2 Impulse Noise Removal……………………………………...……….………17

2.2.1 Effect of Window Size and Noise Density………………………...……17

2.2.2 Switching Median Filter………………………………………….….….20

 2.3 Bit Plane Processing in Images………………………………………….……22

 2.4 Performance Improvement of a Hardware-based Architecture………....…….24

2.4.1 Reducing Circuit Delay by Parallel Processing ………………………..24

2.4.2 Increasing Operating Frequency using Pipelining………………………25

viii

 2.5 Performance Parameters used for Evaluation…………………………......….26

2.5.1. Filtered Image Quality………………………………………….……...26

2.5.2. Hardware Implementation Parameters………………………….……...27

 2.6. Summary……………………………………………………………………..29

Chapter 3 Design and Implementation of a Hybrid Architecture for Median

Filtering……………………………………………………………………...30

 3.1 Introduction…………………………………………………………………..30

 3.2 Approximate Median Calculation…………………………………………….31

 3.3 Block Diagram of the Proposed Hybrid Architecture for Median Filtering…...38

3.3.1 Architecture of Histogram-based Median Calculation Block…………...39

3.3.2 Decision Based Median Filtering……………………………………….41

 3.4 Results and Analysis………………………………………………………….42

3.4.1 Filtered Image quality…………………………………………………..42

3.4.2 Simulation Results……………………………………………………...49

 3.4.3 FPGA Implementation of the Proposed HAMF……………………………....54

 3.5 Summary………………………………………………………………...…...59

Chapter 4 Design and Implementation of the Hierarchical Histogram-based Median

Filter…………………………………………………………………………61

 4.1 Introduction…………………………………………………………………..61

 4.2 Hierarchical Histogram Median Filter ……………………………………….64

 4. 3 Proposed Hardware Architecture……………………………………………..65

4.3.1 Architecture Overview………………………………………………….66

4.3.2 Architecture for HMH and MHL Blocks………………………….…….67

4.3.3 Architecture Analysis…………………………………………………..71

 4.4 FPGA Implementation of Proposed Hardware Architecture………….………75

4.4.1. Implementation on Zynq-7 UltraScale+ MPSoC………………………75

4.4.2 Implementation on Artix-7 FPGA………………………………………76

ix

 4.5 Hardware Implementation Results……………………………………………77

4.5.1 Results of the implementation on Zynq-7 UltraScale+ MPSoC .……….78

4.5.2 Results of the implementation on Artix-7 FPGA……………….……….79

 4.6 Summary……………………………………………………………………..83

Chapter 5 Conclusion………………...…………………………………………………84

 5.1 Concluding Remarks…………………………………………………………84

 5.2 Scope for future work………………………………………………………...87

References………………………………………...…………………………………………88

x

List of Figures

Figure 1.1: Median filtering steps …………………………………………………………4

Figure 2.1: An example of sorting-based median calculation.………………………...…..14

Figure 2.2: (a) Network of sorting ten input values (b) A compare-and-swap...……..……15

Figure 2.3: An example of histogram-based median calculation..…………………..….…16

Figure 2.4: Histogram generation and median calculation……………………………..…16

Figure 2.5: (a) Original Image (b) Image with 5% noise density (c-f) Images filtered using

CMF with Ws = 3, 5, 7 and 9, respectively…………………………...….…….18

Figure 2.6: (a) Original Image (b) Image with 50% noise density. (c-f) Images filtered using

CMF with Ws = 3, 5, 7 and 9, repectively………….…………….………...….19

Figure 2.7: (a) Original Image. (b) Image with 25% noise density. (c-f) Images filtered

using ASMF with Ws = 3,5,7 and 9, respectively………………………..…….21

Figure 2.8: Bit-planes in a gray-scale image…………………………….……….……….22

Figure 2.9: Bit planes of a sample gray scale image……………………………..………..23

Figure 2.10: (a) Original image (b) Image generated using only most significant

4 bit-planes………………………………………………………….……….. 23

Figure 2.11: (a) Cascaded blocks (b) Cascaded blocks in parallel arrangement……..……..25

Figure 2.12: (a) Combinational circuit as a single unit (b) Combinational circuit split into

two stages…………………………….………………………….…….……..25

Figure 3.1: Figure 3.1 Weight of bits in value of a pixel…………………………....……….33

Figure 3.2: Median calculation using only higher nibbles. (a) Input window (b) Window

with lower nibbles masked (c) Window sorted using only the higher nibbles (d)

Output window ……………..….……………………………….………..…..34

Figure 3.3: Figure 3.3 (a) Goldhill image from the database given in [58]. (b) Actual median

and approximate medians with B = 4, 3 and 2 for various pixels ……………...35

Figure 3.4: Goldhill image filtered with (a) actual median, approximate median with

(b) B =4, (c) B = 3 and (d) B = 2…………………………………….…………......36

xi

Figure 3.5: (a) A frame of four people video from the database given in [59]. (b) Actual median

and approximate median with B = 4, 3 and 2 for various pixels ……………..….37

Figure 3.6: A frame of four people video filtered with (a) actual median, approximate median

with (b) B = 4, (c) B = 3 and (d) B = 2……………………………………………..38

Figure 3.7: Proposed hybrid architecture for median filtering..…………….……………..39

Figure 3.8: Pipelined histogram-based median calculation block ………………………..40

Figure 3.9: Noise adaptive switching median filter……………….…………….………...41

Figure 3.10: PSNR as a function of noise density for the baboon image for different

values for Ws, using (a) ASMF and the proposed technique with

(b) B = 4 and with (c) B = 3 and (d) B = 2……………..……….………....43 - 44

Figure 3.11: PSNR as a function of noise density for a single frame of four people

 video for different values of Ws, using (a) ASMF and the proposed

technique with (b) B = 4 and with (c) B = 3 and (d) B = 2….……..……...45 - 46

Figure 3.12: Results on baboon image (a) Original Image (b) corrupted image

with 30% salt-and-pepper noise (c) filtered image using ASMF, and filtered

images using the proposed technique with (d) B = 4, and with (e) B = 3 and

(f) B = 2………………….…...…………………………………………..48 - 49

Figure 3.13: Simulation results of the proposed HAMF with B = 2, Ws = 5…………...……51

Figure 3.14: Simulation results of proposed HAMF with B = 3, Ws = 5………………....….52

Figure 3.15: Simulation results of proposed HAMF with B = 4, Ws = 5…………….…...….53

Figure 3.16: Slice LUT utilization for different values of B and L……………..…..……….55

Figure 3.17: Slice Register/FF utilization for different values of B and L…….………...…..56

Figure 3.18: Operating frequency calculated from maximum combinational delay for

different values of B and L……………………………………………….…...57

Figure 3.19: Power estimated by the Xpower analyzer with different values of B and L…...57

Figure 3.20: Throughput for FHD videos for different values of L…………….…………...58

Figure 4.1: An example of the HHMF Algorithm …………………………….………….66

xii

Figure 4.2: Proposed hardware architecture for HHMF…………………………….…….67

Figure 4.3: Architecture of the HMH/HML block…………………………….…………..68

Figure 4.4: A Comparator Unit…………………………….……………………………..69

Figure 4.5: Adder Unit…………………………….……………………………….……..70

Figure 4.6: Accumulator and compare module…………………………….……………..71

Figure 4.7: Number of adders and comparators as function of Ws……………………..….72

Figure 4.8: Number of registers as a function of Ws …………………………………..…..73

Figure 4.9: Pipeline latency as a function of Ws …………………………….………..…...74

Figure 4.10: Device view of the implementation on Zynq-7 UltraScale+ MPSoC……..…..76

Figure 4.11: Device utilization of (a) 1 core (b) 2 core (c) 4 core architecture of the proposed

HHMF hardware for Ws = 15 on Artix-7 FPGA……………………………....77

Figure 4.12: Resource utilization of the proposed HHMF hardware on Artix-7 FPGA…….79

Figure 4.13: Throughput as a function of the window size …………………………….….80

Figure 4.14: Total on-chip power of the proposed HHMF hardware on Artix – 7 FPGA......82

Figure 4.15: Number of cores required for filtering 8K UHD videos as a function of

Ws ≤ 9.………………………………………………………………………..83

xiii

List of Tables

Table 1.1 Number of pixels to be processed by real-time FHD and UHD video

systems………………………………………………………………………...9

Table 3.1 PSNR and SSIM for images and video frames from the databases in [58] and

 [59]…………………………………………………………………………...47

Table 3.2 Hardware implementation results of proposed HAMF implemented without

 pipelining……………………………………………………………………..54

Table 3.3 Hardware implementation results of the proposed HAMF and

ASMF………………………………………………………………..……….59

Table 4.1 Results of Implementation on Zynq-7 UltraScale+

MPSoC………………………………………………………………….……78

xiv

List of Acronyms

 1D One Dimensional

 2D Two Dimensional

AC Accumulate-and-compare

ASIC Application Specific Integrated Circuit

ASMF Adaptive Switching Median Filter

BRAM Block Random Access Memory

CAD Computer-Aided Design

CB Combinational Block

CIPMF Contextual Image Processing Median Filter

CMF Conventional Median Filter

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CS Compare-and-swap

FF Flip-Flop

FHD Full High Definition

FPGA Field Programmable Gate Array

fps frames per second

GPU Graphical Processing Unit

HAMF Hybrid Architecture for Median Filtering

HHMF Hierarchical Histogram-based Median Filter

HMH Histogram of Median High

HML Histogram of Median Low

ICs Integrated Circuits

LSB Least Significant Bit

xv

LUT Look-Up Table

MPSoC Multi-Processor System on Chip

MSB Most Significant Bit

MSE Mean Square Error

ppc Pixels per clock

PSNR Peak Signal to Noise Ratio

RMSE Root Mean Square Error

ROM Read-only Memory

RTL Register Transfer Level

SoC System on Chip

SSIM Structural Similarity Index

UHD Ultra High Definition

VHDL Very high speed integrate circuit Hardware Description Language

VLSI Very Large-Scale Integration

xvi

List of Symbols

a Minimum intensity of a pixel

b Maximum intensity of a pixel

B Number of the most significant bits

BMH Count of bin MH

Ci Constant to avoid instability

Cl Compare value for ML

Ch Compare value for MH

δ Delay of a combinational block

fmax Maximum operating frequency

f(xij) Intensity of pixel xij

Fs Frame size

I Original Image

I’ Filtered Image

K Number of values equal to MH

L Pipeline latency

m Number of Rows

n Number of columns

M Median value

ML Lower nibble of median

MH Higher nibble of median

ν Number of cores

N Number of elements in a window

Np Number of padded pixels

p Noise density

xvii

pa Probability of a

pb Probability of b

P Position of an adder

Pn Number of pixels to be processed

Q Number of cascaded blocks

r Position of a bit

R Dynamic range of pixel values

σi Standard deviation

T Throughput

µi Mean intensity

W Number of bits

Ws Window size

x[i, j] Set of surrounding pixels

yij Intensity of pixel at location ij in original image

y[i,j] Median of pixel at location at (i,j)

xij Pixel at location i,j of a noisy image

1

Chapter 1

Introduction

1.1 Median Filtering

Filtering is one of the most important topics in signal processing applications and is used in

recovering the original signal from a corrupted signal. Median filter is a non-linear filter used

for smoothing 1D and 2D signals and is based on the median operation. Median filter replaces

a noisy value in a set of given values by the median of all the values within this set. In digital

images, noise is a random variation of the brightness or color information. Median filter is used

to remove such random variations and it is very effective in removing impulse noise in images.

When a median filter is applied to a window of a noisy image, it replaces the center pixel of

the window by the median of the pixels within. For filtering images affected by salt and pepper

noise, a type of impulsive noise, median filter has proved to be very effective in providing high

quality filtered images, even for a high density of salt and pepper noise. Since median filter is

based on a windowing operation, its window size Ws is an important parameter, which dictates

the number of input values to be used, and hence, the number of operations required for the

computation of a median value. In image processing, the window size Ws of a median filter is

always chosen as odd so that the pixel to be filtered is surrounded by equal number of pixels

on all sides. As a result, each window is a square window and its total size in terms of the

number of pixels is Ws
2. Median filter with higher window sizes may provide a higher quality

filtered image. However, the median operation is costly, and its complexity increases with

increasing window size.

The most common method of filtering an image using a median filter is to consider

successive overlapping windows of the image and apply the median operation on each of the

2

windows to generate the output image. As a result, each pixel of the input image is replaced by

the median of the pixel values of the elements of the window corresponding to that pixel. Such

a type of median filter is called conventional median filter (CMF). Although CMF is effective

in removing noise from an image, it also filters the edges in the image, resulting in a smooth

output image. In a case where all pixels of the input image are not affected by noise, such a

smoothing effect results in a low quality output image. Hence, for images affected by salt and

pepper noise, an adaptive switching median filter (ASMF) is used. This type of filter replaces

the center pixel of the input window by the median of the window, only if an impulse noise is

detected in the center pixel. If an impulse noise is not detected, the input pixel value is passed

on to the output. As a result, the non-noisy pixels remain unaltered and the edges in the input

image are not smoothened.

Median filters have been implemented on various platforms to provide high quality filtered

images and high performance with respect to the speed. However, due to increase in the

demand of real-time image and video processing, many hardware-based architectures, such as

those in [1] and [2], have recently been proposed and implemented for achieving high

processing speeds. Recent trends in increasing frame resolutions from full high definition

(FHD) to ultra high definition (UHD) require high speed architectures for image and video

processing algorithms such as for filtering, edge detection, segmentation and morphological

operations. Among these, filtering is not only an important image pre-processing step, but a

stand-alone operation for images corrupted by noise [3].

An image may be affected by different types of noises such as Gaussian, Poisson, speckle

noise or impulsive noise. The possible sources of impulsive noise in images are defects in the

sensing or capturing device, memory corruptions and shot noise [4]. These sources of noise

affect an image in such a way that some of the pixel values are set to a minimum value whereas

3

some others to maximum value, a phenomenon that characterizes salt and pepper noise [5]. To

recover the original image from an image corrupted by salt and pepper noise, spatial-domain

filtering is typically used, in which the best match for each corrupted pixel is calculated.

Finding a pixel from the neighborhood or a close approximation based on the neighborhood

pixels to replace the corrupted pixel is a typical approach in spatial-domain image filtering. In

this approach a 2D window surrounding the noisy pixel is used for processing. Although

algorithms and techniques have tried to solve the problem of retrieving the original pixels from

the corrupted pixels, it may be interesting to note that the actual value of the corrupted pixels

may never be known. This is supported by the fact that none of the existing algorithms of

median filtering provides infinite peak signal-to-noise ratio (PSNR) between the original image

and the image filtered from its noisy version, even in the presence of low density noise.

Median filter provides better results compared to that provided by many other filters for

images corrupted with impulsive noise [6]. Median filter is based on the median operation,

where a value M is selected from a set of N values such that there are (N-1)/2 values greater

than M and (N-1)/2 values less than M, assuming that N is odd. A simple way to calculate M is

to sort the N input values in ascending order and select the element at position

[(N-1)/2] + 1 as the median, which is the basic sorting-based median filtering algorithm [7]. A

sorting-based median filter is typically implemented using the classical sorting network [8],

which has multiple compare-and-swap (CS) units, as the ones used in [9]. This type of

implementation using sorting network is very costly in terms of the hardware resources, since

the number of cascaded stages of CS unit increase with increasing window size [10]. These

cascaded stages also reduce the speed of the filtering operation, resulting in a low throughput.

Fig. 1.1 shows the typical steps of median filtering of an image of size m × n. As mentioned

earlier, the most important parameter of a median filter is its window size Ws. In Fig.1.1 Ws is

4

considered to be 5. To start the filtering operation, the input image is padded on all sides with

border pixels. The width of the border Np resulting from the pixels padded to the input image

is given by

𝑁𝑝 = (𝑊𝑠 − 1)/2 (1.1)

assuming that Ws is odd.

Figure 1.1. Median filtering steps.

Starting from the top left corner of the padded image, overlapping windows are

successively processed in a raster pattern. Processing involves calculating the median y[i,j] of

the pixel values in the window considered using

𝑦[𝑖, 𝑗] = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑥[𝑖, 𝑗] ∈ 𝑊𝑠} (1.2)

where x [i, j] is the set of pixels surrounding the pixel under consideration. The output image

is generated by replacing each image pixel by the median calculated using Eq. (1.2). Since the

window size Ws is odd, a pixel to be processed is surrounded by equal number of pixels on each

side. Hence, the minimum value of Ws is 3, which forms a 3 × 3 window with the center pixel

surrounded by a single pixel in each of the horizontal, vertical and diagonal directions.

5

1.2 Literature Review

Several algorithms and implementations have been proposed and implemented on different

platforms such as CPUs, GPUs, ASIC and FPGAs. In this section, we discuss many relevant

algorithms, techniques and implementations by categorizing them into one of the five following

categories. These categories are stated listed along with their main attributes.

1. Computationally complex schemes: Require a special platform such as a GPU or a

parallel processing architecture for implementation.

2. ASIC implementations: Implemented as a dedicated IC using VLSI ASIC design

flow.

3. Technique with approximate median computation: Implemented to provide

approximate median values for optimizing hardware performance.

4. Sorting-based techniques: Use the conventional sorting-based median calculation.

5. Histogram-based techniques: Use histogram-based median calculation.

1.2.1 Computationally Complex Schemes

Computationally intensive median filtering techniques such, as in [11] and [12], have been

proposed and implemented to provide high performance with respect to the quality of the

filtered images. It is to be noted that a computationally complex technique imposes processing

time restrictions on the platform on which the algorithm is implemented, and hence, the

throughput of such filters in terms of the number of filtered frames per second (fps) is low. As

a result, these algorithms are implemented on GPUs to improve the performance. For achieving

high performance of the complex algorithms, hardware platforms such as FPGAs, or parallel

processing architectures [13] - [15], are used for their implementations. Such implementations

yield performance equivalent to that provided by the GPU implementations.

6

1.2.2 ASIC Implementations

Although architectural improvements focus on the performance of filters with respect to area,

delay and power, the lowest level of abstraction of a digital system lies in the underlying VLSI

technology. An ASIC implementation of an area efficient 1D median filter is presented in [16].

Another ASIC implementation, which is energy efficient and yields a high-throughput is

implemented using 90-nm technology in [17] and can operate in GHz range. A modular design

of the filter in [17] is presented in [18], which provides the highest ever reported operating

frequency of over 2 GHz for median filters. These techniques use a basic building block of

partial median computing unit to implement 1D median filter, which is based on the concept

of bit-plane-slicing and is responsible for area and delay optimization. Although the ASIC

implementations provide the best hardware performance, they are still limited with regard to

issues like time-to-market, cost, flexibility and yield.

1.2.3 Technique with Approximate Median Computation

When the subjective quality of an image is of concern, there is no significant loss of visual

information even if some of the pixels are not retrieved to their near-original values. As a result,

a technique based on approximate arithmetic in [19], is implemented to optimize hardware

performance parameters such as the area and power at minimal cost of image quality.

Approximate arithmetic is typically used at the circuit level to calculate an approximate output

[20]. Depending on the application, a drop in the image quality is acceptable in return to the

hardware performance parameters.

1.2.4 Sorting-Based Techniques

Many modifications of the classical sorting network have been proposed and implemented to

improve the hardware performance of median filters. Techniques presented in [21], [22] and

7

[23] use row-wise, column-wise and diagonal-wise sorting, whereas the technique presented in

[24] uses a batcher’s bitonic sort [8] to speed up the process. The latency of a median filtering

architecture directly depends on the number of sorting stages that are cascaded in the

architecture to calculate the median values. Although most of these architectures use

pipelining, however, all the stages in a sorting network have the same latencies, and hence, a

longer pipeline in the architecture will not increase the throughput [25].

1.2.5 Histogram-Based Techniques

To overcome the disadvantages of sorting-based algorithms, non-sorting histogram-based

algorithms, such as [26], [27] and [28], have been developed for faster computation of median

values. However, these algorithms are suitable for CPU or GPU implementations. As for an

implementation on an FPGA, the work in [29] provides the first hardware implementation of a

non-sorting-based median filtering using histogram-based operation. Another implementation

of the architecture of [29], is proposed in [30] for larger window sizes. However, these

implementations use read-only-memory (ROM) and process all bit-planes of an image,

resulting in a low operating frequency.

Algorithms implemented on GPU for high performance, such as the ones in [31] and [32]

are based on histogram calculation. Thus, histogram-based techniques are capable of providing

architectures for real-time filtering of FHD and UHD videos. Hardware implementations of

histogram-based median filter provides a low throughput as in [29], in view of the memory

bins used for storing histogram values. On the other hand, hardware implementation of the

conventional histogram-based technique is not feasible without the use of memory bins, since

for a high window size, the resource requirement will exceed that available in FPGAs.

An alternate to the histogram-based median filtering is the hierarchical histogram median

filter (HHMF) [33], which processes the upper half most-significant bits (MSB) of the input

8

data first followed by processing the lower half least-significant bits (LSB), to obtain the

complete median value in two steps. The hierarchical histogram-based median filtering

algorithm presented in [33] is designed for GPUs and provides a performance in terms of speed

which is superior to that of several other algorithms on the same platform. The hierarchical

histogram-based median filtering is based on the same memory bin approach that is used in

histogram-based median filter, the difference being that the number of bins is reduced in view

of the reduction in the range of input values. This is a consequence of splitting the pixel values

into two parts.

1.3 Real-Time Implementation Requirements of FHD and UHD Videos

The two most important parameters of a video are its frame resolution and the frame rate. The

former specifies the size of each frame, whereas the latter is related to the smoothness of the

video playback. In general, a higher resolution and a higher frame rate provide a superior

quality video. A high definition video is a high-quality video with frame resolutions higher

than that of its predecessor, the standard definition video. Any video having more than 480

vertical lines in a frame is considered to be a high definition video. At present, FHD and UHD

are the most commonly used standardized video formats. The typical frame rates of FHD

videos as well as that of UHD videos are 30 fps and 60 fps. The typical frame resolutions of

FHD and UHD videos are as follows:

a. FHD, 2K = 2048 × 1080

b. UHD, 4K = 3840 × 2160

c. UHD, 8K = 7680 × 4320

The pixels in a frame are placed in the same way as the elements are placed in a rectangular

matrix. The frame resolution is the number of pixels present horizontally in the frame

multiplied by the number of pixels present vertically in the frame, which gives the total size of

9

the frame in terms of the number of pixels. A higher number of pixels results in more resolution,

providing a better quality image. The frame resolutions of FHD and UHD videos are also

referred by numbers 2K, 4K and 8K, since these numbers approximately equal to the number

of pixels in the horizontal direction of a frame. (Note: 1K binary is equivalent to 1024 in

decimal)

In order to satisfy the real-time processing requirements of the FHD and UHD videos, a

system shall process PN number of pixels each second. Table 1.1 shows the values of PN for the

two high definition formats considered. It is seen from this table that around 2 billion pixels

need to be processed each second for the real-time processing of the highest resolution of 8K

at the rate of 60 fps, making it a challenging task to design a real-time architecture to

accomplish it. As a result, only ASIC implementations such as the ones provided in [18] can

satisfy the real-time requirements of such a system. Although there exists an implementation

of contextual image processing architecture of median filter (CIPMF) presented in [34] that

can satisfy the real-time requirements of 4K UHD video at rate of 60 fps, it is limited to window

size Ws = 3 and only 4K resolution. As the CIPMF architecture uses sorting-based method, its

throughput will decrease with increasing window size, making it unsuitable for UHD

applications.

Table 1.1. Number of pixels to be processed for real-time processing of FHD and UHD videos

Standard Resolution PN @ 30 fps PN @ 60 fps

FHD, 2K 1920 × 1080 62,208,000 124,416,000

UHD, 4K 3840 × 2160 248,832,000 497,664,000

UHD, 8K 7680 × 4320 995,328,000 1,990,656,000

10

1.4 Motivation and Objectives of the Thesis

Most of the existing techniques for the design of hardware architecture for median filtering

focus on enhancing the hardware performance by modifying an existing algorithm or by adding

another layer of complexity to optimize some of the hardware performance parameters. This

optimization is achieved at the expense of some of the other performance parameters. Our

objective in this thesis is to investigate the problem focusing primarily on bit-plane-slicing and

architecture design and implementation of the histogram-based median filtering operations.

Since the sorting-based techniques do not always satisfy requirements of the real-time

filtering of high definition video formats or are inefficient, we consider the histogram-based

median filtering techniques as the basis for achieving real-time performance for the high

definition video formats considered. While providing high throughput using histogram-based

techniques, we also analyze the effect of the implementations of the proposed hardware

architectures on other performance parameters.

We present two different architectures for high-speed median filtering along with their

FPGA implementations. The proposed median filter designs are based on the histogram

technique and implemented with a pipelined architecture to increase their maximum operating

frequencies. In the first design, the speed of the median filter is enhanced by designing a

hardware that processes a limited number of bits rather than all the bits of the pixels for

calculating approximate median values. This design provides real-time median filtering of

FHD videos at the cost of minimal image quality degradation. Since the proposed technique

does not utilize all bit-planes of an image or video frame, the resulting hardware is simplified

resulting in a reduced area utilization as an added advantage.

In the second part of this thesis, we design an efficient architecture for the hierarchical

histogram-based median filter, which satisfies the real-time pixel clock requirement of the

11

UHD videos when implemented on Xilinx UltraSclae+ MPSoC. The proposed architecture

ensures that there is no degradation in the output image quality by calculating the exact median

values. This is the first hardware implementation of the hierarchical histogram-based median

filter and provides a performance superior to that provided by two of the NVIDIA GPUs in

terms of the throughput.

The main contributions of the work presented in this thesis can be summarized as follows:

1. Design of histogram-based median filters and FPGA implementations with

throughput as the primary criteria of optimization.

2. Combination of multiple techniques to formulate a hybrid architecture for median

filtering to provide a high throughput with minimal effect to the image quality.

3. Analysis of the effect of pipeline latency on the hardware performance and that of

the number of bit-planes on the quality of filtered images.

4. Design of an efficient hardware architecture for the hierarchical histogram-based

median filter to provide a high throughput implementation on FPGAs and MPSoCs.

5. Analysis of the implementation of the proposed hierarchical histogram-based

median filter architecture on parameters such as area and power with different

window sizes.

6. Analysis of throughput of the implementations of the proposed median filter

architectures with respect to real-time requirements of FHD and UHD videos and

their comparison with existing implementations.

1.5 Organization of the Thesis

In Chapter 2, a brief review of the concepts that characterize the various architectures of sorting

and non-sorting based median filters is carried out. The concept of bit-plane-slicing and the

12

decision-based median filtering are also explained in this chapter and relevant examples are

given. The performance parameters used in this work to evaluate the results are presented in

detail. Chapter 3 presents the design and implementation of the proposed histogram-based

hybrid architecture for median filtering (HAMF). The quality of the images filtered with the

algorithmic level implementation of the proposed HAMF, using the PSNR and SSIM metrics

is analyzed. An analysis to examine the effect of the number of bit-planes on the quality of

filtered image and to determine the effect of the number of pipeline stages on the area is also

carried out in this chapter. In Chapter 4, a hierarchical histogram-based median filtering

(HHMF) algorithm is first introduced, and then a hardware architecture and its FPGA

implementations are presented. Results of implementation for different window sizes are

presented and compared with that of HHMF implemented on a GPU platform. Finally, some

concluding remarks on the investigation carried out in this thesis are made in Chapter 5.

13

Chapter 2

Background Material

This chapter presents the details of the sorting-based and non-sorting-based median filtering

techniques in order to understand their underlying complexities. The concept of impulse noise

in images and its removal is presented with some experimental results. An analysis of the effect

of noise adaptive switching median filter on the quality of a filtered image is also presented in

this chapter. The concept of bit-plane-slicing is discussed with an appropriate example. This

chapter also presents the underlying concepts used for improving the performance of a

hardware-based architecture using pipelined processing and reducing the combinational delay.

The various parameters considered for the performance evaluation of the proposed filter

architectures are also discussed.

2.1 Median Filtering Techniques

The median filtering algorithms used in image and signal processing are broadly classified into

two categories, namely, sorting-based and non-sorting-based. The sorting-based median filters

perform a sorting operation on the input elements in order to find the median value, whereas

the non-sorting-based median filters are typically based on histogram operation for median

calculation. Each of these techniques is discussed in detail in the following sub-sections.

2.1.1. Sorting-based Median Filter

A sorting based median filter is based on the bubble sort technique [35]. This type of filter

compares every two consecutive elements in the input vector and swaps them, if value of the

first element is greater than the value of the second. This type of filter consists of 2 phases –

the odd phase and the even phase. In the odd phase, every odd indexed element is compared

14

with the next even indexed element. In the even phase, every even indexed element is compared

with the next odd indexed element. The filter structure is formed by deploying N cascaded

stages of the odd and even phases placed alternately, where N (an odd value) is the number of

elements in the input array. After the input vector is sorted, the element from the output vector

at position (N + 1)/2, is selected as the median.

Fig. 2.1. shows an example of the median calculation for an input vector consisting of

nine values, using the sorting-based median filter. The number of stages of compare and swap

operation required in this example is 9 and the last stage generates the sorted vector. The value,

6, at position 5 of the output vector is the median of the input vector.

Figure 2.1 An example of sorting-based median calculation.

A hardware architecture of the sorting-based median filter can be designed using the

sorting network as in [8], which uses multiple units of a processing element, called as the

compare-and-swap (CS) unit. Each CS unit consists of a comparator and a multiplexer. The

network sorts the input values and the median value is stored in the appropriate output register.

Fig. 2.2 (a) shows an architecture of the sorting network used for sorting ten input elements.

Each block in this sorting network is the CS unit, which is similar to the one used in [9]. The

architecture of a CS unit is shown in Fig. 2.2 (b). The CS unit compares two input numbers,

namely, A and B, and generates the lower value on output L and the higher value on output H.

15

A register is implemented inside the CS unit that serves as the pipeline register for the sorting

network.

(a) (b)

Figure 2.2 (a) Network for sorting 10 input values (b) A compare and swap unit.

Although this is one of the simplest hardware architectures for sorting-based median

calculation, the number of stages in a sorting network increases linearly with number of input

elements [8]. As a result, the pipeline latency of a sorting network for N input elements is N.

The number of CS units required in a network to sort N input elements is

N [(N – 1)/2], which increases rapidly with the value of N. The high latency and the high area

contribute to the low efficiency of a sorting-based median filter.

2.1.2. Non-sorting-based Median Filter

To overcome the disadvantages of a sorting-based median filter architecture, non-sorting-based

techniques, which are mainly histogram-based, are used for median calculation. The median of

the input vector using histogram-based technique is calculated from the histogram of the input

data. The histogram values H0 to Hi of the input data in the range 0 to i is calculated by counting

the number of occurrences of each value of the input data in this range. Next, the values H0 to

Hi are successively added until the result of the addition is greater than or equal to ⌈N/2⌉

(assuming N is odd). The index i of the last added Hi is the median.

16

 Fig. 2.3 shows an example of the median calculation using the histogram-based

operation for the same values that were considered in the example of the sorting-based median

calculation. The count of occurrences of the values of the input data in the range (0 to 7) is

calculated as the histogram values represented by Hi. These values are added successively in

an accumulator. On the sixth iteration of the addition operation, the result in the accumulator

is ≥ ⌈N/2⌉, which in this case is equal to 5. This results in a median value of 6.

Figure 2.3 An example of histogram-based median calculation.

The steps to generate Hi and calculate the median are elaborated in Fig. 2.4. It is

observed from this figure that the first step is to compare all the input elements with all the

possible values that an element can take (0 to 7 in this case).

Figure 2.4 Histogram generation and median calculation.

17

Hence, for nine input values there are seventy-two comparators, since each of the nine input

values are compared with the range values 0 to 7. This comparison produces an output of 9 sets

of binary values with 8 bits in each set. Next, the respective bits (0 to 7) of each set are added

together and the output of the addition generates the histogram of the input data. These

histogram values are added successively and after each step, the result is compared with ⌈N/2⌉,

which is equal to 5 in this case.

2.2 Impulse Noise Removal

This section presents experimental results of filtering images corrupted by salt and pepper

noise. Images with different density of salt-and-pepper noise are filtered using a median filter

with different window sizes to analyze the quality of the output image with respect to the noise

density and window size. The smoothing effect, that occurs due to the filtering of the edge

pixels in the image, is analyzed for different window sizes. Experimental results of images

filtered using an adaptive switching median filter are presented to analyses its effectiveness in

preserving edges.

2.2.1 Effect of Window Size and Noise Density

The value of a noisy pixel in an image is quite far from the range of values of the other pixels

in a given window. Median filter is very effective in removing impulse noise in images [36]

and replaces the noisy pixels by the median of the respective window as the best match for the

noisy pixels. This best match depends on the size of the window and the density of noise. We

first examine the effect of filtering an image with low noise density using a median filter. Fig.

2.5 (a) shows an original image and its corresponding noisy version having 5% salt and pepper

noise density in Fig. 2.5 (b). Applying a median filter to the noisy image with window sizes 3,

5, 7 and 9 results in the filtered image shown in Figs. 2.5 (c), (d), (e) and (f), respectively.

18

It is observed from Fig. 2.5 (c - f) that the noisy pixels in Fig. 2.5 (b) are not visible in the

filtered images. However, there is a difference between the filtered images in (c), (d), (e) and

(f) that can be clearly seen as a result of the smoothing effect, which increases with increasing

window size. The smoothing effect is observed due to the pixels of the edges in the image being

replaced by the median value of the corresponding window. By subjective evaluation of these

figures, we can say that amongst all the filtered image, the image in (c) is the closest

approximation to the original image in (a).

(a) (b)

 (c) (d)

 (e) (f)

Figure 2.5 (a) Original Image (b) Image with 5% noise density (c-f) Images filtered using CMF

with Ws = 3, 5, 7 and 9, repectively.

19

We now examine the effect of a more significant noise density (50%) on the filtered images

with the same image and the same window sizes as in the previous experiment. Fig. 2.6 (a)

shows an original image, its corrupted salt and pepper noisy version having 50% noise density

in Fig. 2.6 (b) and the filtered images with Ws = 3, 5, 7 and 9 in Figs. (c), (d), (e) and (f),

respectively.

(a) (b)

 (c) (d)

 (e) (f)

Figure 2.6 (a) Original Image (b) Image with 50% noise density. (c-f) Images filtered using

CMF with Ws = 3, 5, 7 and 9, repectively.

20

It is seen from Fig. 2.6 that the noisy pixels are not completely filtered out using lower

window sizes (3, 5 and 7). However, the image in Fig. 2.6 (f) filtered with Ws = 9 does not

seem to have any noisy pixel when examined subjectively. As a result, we can say that the

image in (f) is the best approximation to the original image in (a) amongst all the filtered images

(c), (d), (e) and (f). From these experiments, we can conclude that higher window sizes are

better suited images corrupted with high density noise. For an image corrupted with low density

noise, a filter with low window size provides a better-quality filtered image. Median filters

such as the ones in [37] and [38] are adaptive with respect to window size, which changes

depending on the noise density in the corrupted image and provides improved results.

2.2.2 Switching Median Filter

For a noisy image, the intensity of the pixel xij at the location (i,j) is described by the probability

density function f(xij) given by following equation.

𝑓(𝑥𝑖𝑗) = {

𝑝𝑎

1 − 𝑝
𝑝𝑏

𝑓𝑜𝑟 𝑥𝑖𝑗 = 𝑎

 𝑓𝑜𝑟 𝑥𝑖𝑗 = 𝑦𝑖𝑗

𝑓𝑜𝑟 𝑥𝑖𝑗 = 𝑏

} (2.1)

where a is the minimum intensity, b is the maximum intensity, pa is probability of generation

of intensity a, pb is the probability of generation of intensity b, noise density

p = pa + pb, and yij is the intensity of pixel at location (i,j) in the corresponding uncorrupted

image. For an efficient removal of the salt and pepper noise, the image pixels are filtered only

if they are found to be equal to values a (minimum intensity) or b (maximum intensity) [39].

This type of a filter is commonly referred to as adaptive switching median filter (ASMF) or

decision-based median filter. To eliminate the smoothing effect, a noise adaptive switching

median filter performs filtering only if an impulse noise if detected in the pixel; otherwise, the

input pixel is left un-filtered.

21

We analyze the effect of ASMF on an image corrupted by moderate density (25%) salt-

and-pepper noise. Fig. 2.7 (a) shows an original image, its corresponding noisy version with

25% salt and pepper noise density in Fig. 2.7 (b) and images filtered using ASMF with Ws = 3,

5, 7 and 9 in Figs. 2.7 (c), (d), (e) and (f), respectively.

(a) (b)

 (c) (d)

 (e) (f)

Figure 2.7 (a) Original Image. (b) Image with 25% noise density. (c-f) Images filtered using

ASMF with Ws = 3, 5, 7 and 9, respectively.

22

It is observed from this figure that some of the noisy pixels are not filtered with Ws = 3;

however, with Ws = 5, 7 and 9, the output images do not seem to have retained any noisy pixel

and also retain the sharp edges of the original image. By adaptivly changing the window size

and performing decision-based filtering, algorithms such as in [40] provide very high quality

filtered images.

2.3 Bit Plane Processing in Images

Pixels in a digital image are represented by numbers in the binary format using a set of bits.

For example, in a gray-scale image, pixels have an intensity that ranges from 0 to 255. The

numbers in this range can be represented using an 8-bit binary number. Fig. 2.8 shows the 8

bit-planes of an image, each plane consisting of a single bit of all the pixels of the image.

Representation of an image with one or more bits of the byte is called as bit-plane-slicing.

Figure 2.8 Bit-planes in a gray-scale image.

 To understand the contribution of each bit plane in the overall visualization of an image,

Fig. 2.9 shows a sample image along with 8 separate bit-planes that are shown as separate

binary images. It is observed from this figure that the higher bit-planes contribute more to the

visual data in an image that the lower bit-planes do. The lower bit-planes add small details to

an image, which may not be visible during a subjective examination.

23

Figure 2.9 Bit planes of a sample gray scale image.

To visualize the effect of bit-plane-slicing, we consider the image shown in Fig. 2.10

(a). Fig. 2.10 (b) shows the image generated using the most significant 4 bit-planes and

ignoring the lower 4 bit-planes of the original image shown in Fig. 2.10 (a).

(a) (b)

Figure 2.10 (a) Original image (b) Image generated using the most significant 4 bit-planes.

24

It can be observed from this figure that the image in Fig. 2.10 (b), generated using the

most significant 4 bit-planes, conveys all the visual information of the original image.

However, the size of the image in (b) in terms of the computer memory is half to that of the

image in (a). It is noted that using an image with fewer bit-planes instead of the full image will

result in a simplification of the processing system.

2.4 Performance Improvement of a Hardware-based Architecture

The performance of a hardware-based architecture in terms of the delay can be improved by

reducing the delay of the underlying circuits that are used in the architecture [41]. This section

discusses the basic techniques that are used to reduce the delay in the hardware design for

achieving higher operating frequencies.

2.4.1 Reducing Circuit Delay by Parallel Processing

In digital systems, the delay of a circuit is determined by the number of cascaded stages of

combinational logic blocks from the input to the output. This delay can either be reduced by

reducing the number of stages, or by reducing the delay of each stage. Fig. 2.11 (a) shows Q

number of cascaded combinational blocks (CB), each with a delay of δ. As a result, the total

latency of this circuit is Q∙δ. Fig. 2.11 (b) shows a rearrangement of the Q blocks in a different

format, where the number of cascaded blocks from the input to the output is reduced by 50%.

As a result, the delay of the circuit is reduced to (Q∙δ/2). Such a parallel arrangement of the

blocks is possible only if there is no dependency between the upper and lower blocks in Fig.

2.11 (b). For a digital system having multiple paths from the input to the output, each having a

different delay, the delay of the longest path is considered as the maximum combinational

delay. This path is known as the critical path delay [42], and the maximum operating frequency

of the circuit is calculated using the critical path delay.

25

(a) (b)

Figure 2.11. (a) Cascaded blocks (b) Cascaded blocks in a parallel arrangement.

2.4.2 Increasing Operating Frequency using Pipelining

The maximum frequency at which a circuit can operate is the inverse of its critical path delay.

If the delay of the critical path is reduced, the operating frequency of the circuit will increase.

The method used for reducing the critical path delay is shown in Fig. 2.12. Fig. 12 (a) shows

two D flip-flops (FF) with a combinational circuit between them. The delay of this

combinational circuit is δ. In Fig.2.12 (b), the same combinational circuit is split into two stages

(CC I and CC II), each having a delay of δ/2 and a pipeline register is inserted between the two

stages. As a result, the operating frequency of the circuit in (b) is twice that of the circuit in (a).

This type of approach is possible only if the circuit can be split into two or more stages.

Figure 2.12. (a) Combinational circuit as a single unit (b) Combinational circuit split into

two stages.

26

 Super-scaler and super-pipelined architectures are commonly used in designing CPUs

and GPUs for increasing their throughput [43]. While the super-scaler architecture aims at

replicating the hardware for parallel processing, the super-pipelining aims at making the stages

of a processing unit as shallow as possible by splitting them and adding pipelining registers

[44]. Architecture such as [45] takes advantage of pipelining as well as parallel processing for

designing a median filter, which can provide a very high throughput.

2.5 Performance Parameters used for Evaluation

In this section, we discuss the various performance parameters used for the evaluation of the

implementations of the proposed median filter architectures. The proposed hybrid architecture

for median filtering provides a high throughput at the cost of the output image quality. To

evaluate the quality of the images filtered using the proposed hybrid architecture for median

filtering, we calculate the peak-signal-to-noise-ration (PSNR) and the structural similarity

index (SSIM) between the original and the filtered images. Since the median filter architectures

presented in this thesis are implemented on FPGAs, parameters such as the area (in terms of

slice-LUTs and slice-registers), frequency and power are used to evaluate the hardware

performance. To analyze if an implementation can satisfy the real-time requirements of the

video format considered, we calculate the throughput of the implementation in terms of the

number of frames it can filter per second.

2.5.1. Filtered Image Quality

The quality of a filtered image can be judged qualitatively by visualizing the image and

quantitatively by calculating the parameters, such as PSNR and SSIM.

a) Peak signal-to-noise ratio

The peak signal-to-noise ratio (PSNR) is the ratio between the maximum possible signal power

and the power of the noise distorting the signal [46]. The PSNR is given by

27

𝑃𝑆𝑁𝑅 = 20 log [
255

𝑅𝑀𝑆𝐸
] (2.2)

where RMSE is the root mean square error and is the equal to the square root of the mean

square error (MSE), which is calculated using

𝑀𝑆𝐸 =
1

𝑚 × 𝑛
∑ ∑[𝐼′(𝑖, 𝑗) − 𝐼(𝑖, 𝑗)]2

𝑛

𝑗=1

𝑚

𝑖=1

 (2.3)

where I is the original image and I’ is the filtered image, both of size m × n.

b) Structural Similarity Index

Structural similarity index (SSIM) is used to compare the luminance, contrast and structure of

two different images. It can be treated as a similarity measure of two different images. SSIM

of two images X and Y is defined as [47]

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
(2𝜇𝑥𝜇𝑦 + 𝐶1) × (2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥2+ 𝜇𝑦2 + 𝐶1) × (𝜎𝑥2 + 𝜎𝑦2 + 𝐶2)
 (2.4)

where 𝜇𝑖 (i = x or y) is the mean intensity, 𝜎𝑖 (i = x or y) is the standard deviation, and Ci (i =

1 or 2) is the constant to avoid instability when 𝜇𝑥2+ 𝜇𝑦2 is very close to zero and is defined

as 𝐶𝑖 = (𝐾𝑖𝑅)2, where Ki << 1 and R is the dynamic range of pixel values. For example, R =

255 for 8-bit gray scale image.

2.5.2. Hardware Implementation Parameters

The typical parameters used for the performance evaluation of an FPGA-based hardware

implementation are area, delay and power [48]. After implementation of the design on an

FPGA, the area is reported by the tool (Xilinx Vivado design suite) in terms of the slices. The

tool reports the number of slice-LUTs that are used to map logic, and the number of slice-

registers that are used as flip flops for storage. These numbers provide a clear idea of the area

of the design on a FPGA device. The implementation tool also reports the total delay

(net delay + logic delay) for the implemented design, after inserting the constraints in the timing

28

constraints editor. Using this delay, the maximum operating frequency of the design is

calculated. The throughput T of a video processing system in number of frames per second

(fps), of an implementation is given by

𝑇 = 𝜈 [
(𝑓𝑚𝑎𝑥 × 106) + 𝐿

𝐹𝑠

] (2.5)

where ν is the number of cores of the architecture, 𝑓𝑚𝑎𝑥 is maximum operating frequency in

MHz, L is pipeline latency and Fs is size of the frame in number of pixels. Since L is very small

compared to the operating frequency, it may be ignored. For all the implementations presented

in this thesis, each core processes 1 pixel per clock and the size of each input pixel is considered

as 8-bits. For filtering color images having pixel size of 24-bits, an approach presented in [49]

can be used to map the three-dimensional color vectors into one-dimensional space (8-bit data).

The mapped data can be filtered using the median filters presented in this work, providing the

same throughput T, as that given by Eq. (2.5). Another method of filtering a color image is to

filter only the luminance plane using CMF and then converting back to the original color space

[50].

 The Xilinx Xpower analyzer tool reports the static and dynamic powers of the

implemented design along with their sum, which is the total power of the design. Although in

this work, the primary hardware performance parameters are area and delay, we analyze the

power reported by the Xpower analyzer tool by vector-less analysis of the implemented netlist,

for various implementations in Chapter 3 and Chapter 4. The Xpower analyzer tool estimates

the total on-chip power by assigning the default signal rates and static probabilities to the design

nodes [51] [52]. Although the power estimated by this tool gives a rough estimate of the total

on-chip power of the design [53], we can analyze the total on-chip power as a function of the

pipeline latency, number of the most significant bits and window size. We specify the operating

29

frequency of the design in the Xpower analyzer tool, in order to obtain a better estimate of the

total on-chip power.

2.6. Summary

This chapter has presented details of the sorting and non-sorting-based median calculation

techniques that are primarily used in the implementation of median filters. The advantages and

disadvantages of the sorting and non-sorting-based median calculations have been discussed

with respect to hardware implementation. An analysis of the noise density and window size

has been provided with respect to the quality of the filtered image. Background techniques used

in our work, such as the decision-based median filtering and bit-plane-slicing have been

discussed with examples. Parameters used for the performance evaluation with respect to the

quality of filtered images and hardware implementation have been presented along with

relevant details.

30

Chapter 3

Design and Implementation of a Hybrid Architecture for

Median Filtering

3.1 Introduction

When median filters are implemented on a hardware platform such as FPGAs, the primary aim

is to optimize at least one of the three VLSI performance parameters, namely, area, frequency

and power. The VLSI technology used for fabrication of FPGAs is based on CMOS circuits

[54]. The performance parameters of CMOS circuits are interdependent [55] and hence, it may

not be possible to optimize more than one of these parameters at the same time. For instance,

increasing the operating frequency increases the power dissipation [56]. Most hardware-based

median filters concentrate on optimizing one of the three performance parameters such that the

other parameters are not adversely affected. This type of approach is adopted, since the

parameter selected for optimization is solely dependent on the target application. For example,

in applications that have real-time requirements, the operating frequency of the design is most

important and hence the power consumption and area are of secondary concern. This chapter

presents the design and FPGA implementation of a median filter architecture for real-time

filtering of FHD videos [57]. The implementation of the proposed architecture on different

generation FPGAs provides a high frequency of operation and optimizes the area at the same

time. The optimization in the proposed median filter architecture is achieved at a minimum

cost of filtered image quality.

The design of the proposed architecture for median filtering is based on three different

strategies. The first strategy used in the proposed architecture is the histogram-based operation,

31

which reduces the combinational delay of the circuit, resulting in a high frequency of operation.

The hardware implementation of the conventional histogram-based median calculation uses

memory bins for storing the histogram counts as in the case of [30] and hence, provides a low

throughput. Therefore, we design an architecture that does not use memory bins for storage,

but instead uses registers. Such an architecture will result in a very large area due to the wide

range of pixel values (0 to 255). It will also require a large number of registers (256) to store

the histogram counts, resulting in an increased area. In order to reduce the area, we use the

concept of bit-plane-slicing and process only B most significant bits (MSBs) for median

calculation. This is the second strategy used in the proposed architecture and this results in a

low area utilization. The effect of processing only the most significant B-bits of the pixel values

results in an approximate median calculation, due to which the quality of the filtered image is

compromised. Hence, to improve the quality, we use the strategy employed in the adaptive

switching median filter (ASMF) in the proposed architecture. This is the third strategy used in

the proposed architecture for median filtering.

 The underlying strategies used in the proposed architecture for median filtering were

discussed in the background material presented in Chapter 2. Although the underlying

strategies used in the proposed architecture have been implemented discretely on FPGAs, their

combined effect has never been implemented and analyzed. In view of using the above-

mentioned strategies in the design of the proposed architecture, we refer to the resulting

architecture as the hybrid architecture for median filtering (HAMF). We implement the

proposed HAMF on FPGAs with three different values of B and analyze its effect on the output

image quality, operating frequency, area and power.

3.2 Approximate Median Calculation

Many neighboring pixels in an image have values, which are similar or very close to one

another [3]. Also, the most significant bit-planes of an image consists of more significant

32

information. As a result, an approximate median of the values in a window of an image can be

calculated by processing only the most significant B-bits instead of processing all the bits. The

number of hardware components required to implement a median filter, which processes B-bits

is significantly less than that required to implement a median filter that processes W-bits,

provided B < W. Processing the most significant B-bits results in a hardware simplification and

is a commonly used technique in image processing algorithms. Median filters that use higher

nibble (4-bits) of pixel values have been implemented in [21] and [22], resulting in a lower

area and a higher operating frequency. Although it is common to segment a pixel value into

upper and lower nibbles, and process only the upper nibble, this concept is derived from the

bit-plane-slicing technique. Hence, we utilize and generalize this concept, and process the most

significant B-bits to calculate the approximate median value.

Fig. 3.1 shows the weight of each bit of a pixel towards its influence on the value of the pixel.

All weights are normalized to 256, which is the maximum value of each pixel of a gray scale

image. The weight of each bit is calculated as 2r-1/256, where r is the index of the bit, 1 being

the LSB and 8 being the MSB. It is seen from this figure that the MSB (bit 8) contributes to

50% of the data. If we consider bits 8 and 7, they will together contribute to 75% of the data.

Bits 8, 7 and 6 together contribute to 87.5% of the data value and similarly, bits 8 to 5 together

contribute 93.75% to the data. We consider B = 2, 3 and 4, which will calculate the median

using 75%, 87.5% and 93.75% of the pixel data. For B = 5, only 3.125% of additional

information will be used. However, its hardware requirement will increase significantly and

hence, we will consider only 2, 3 and 4 as the suitable values of B in our implementations.

By processing only the most significant B-bits of pixel values, a B-bit median will be

obtained. However, the word length W of the median should be the same as that of the word

length of the input data elements. Our method to process only the most significant B-bits and

calculate a W-bit approximate median is explained by the following example.

33

Figure 3.1 Weight of bits in value of a pixel.

Consider a window of size Ws = 3 with the values of its elements, as shown in Fig. 3.2 (a). An

approximate median of the values with W = 8 in this window is to be calculated with B = 4. As

a first step, the lower nibbles (4-bits) of all the values in the input window are masked and the

resulting 3 × 3 window is shown in Fig. 3.2 (b). In the next step, we sort this window using

only the higher nibbles and the resulting window is shown in Fig. 3.2 (c). The median as per

the sorted data is 0x4. Although its lower nibble has a value 0x1, it is not available since it is

masked. Hence, we need to find a lower nibble for the value 0x4 in order to find the complete

8-bit median. In our method, we pick the first element from the sorted window, which has its

corresponding higher nibble equal to 0x4, which for this example is 0x46. Although the actual

median of the values considered in this example is 0x42, our result is 0x46 and hence, we say

an approximate median is calculated. The maximum error resulting from this technique is 0xF,

which is possible in a case where the 4-bit median is calculated to be 0x4, the actual median is

0x40 and the median value selected is 0x4F.

34

Figure 3.2 Median calculation using only higher nibbles. (a) Input window (b) Window with

lower nibbles masked (c) Window sorted using only the higher nibbles (d) Output window.

When this technique is applied for filtering images, it is experimentally observed that there

is no significant difference in the quality of the filtered image, irrespective of the value selected

as the lower nibble. For the example considered above, the possible values of the lower nibble

for 0x4 are 0x6, 0x1, and 0x2. We select the first value (in the sorted matrix), i.e., 0x6 to be

the value of the lower nibble of the median, since it does not add any overhead to the hardware.

Similarly, for image filtering operation, we choose the first lower nibble in all the windows.

Although the lowers nibbles are not used for processing or calculation, when the higher nibbles

are processed, the former are always attached to the respective higher nibbles. For many

windows in an image, the actual or the exact median is calculated by processing only the most

significant B-bits. For instance, in the example considered above, if we interchange the

positions of the pixels with values 0x46 and 0x42 in the input window, we observe that the

calculated median is 0x42, which is the actual median.

To demonstrate the effect of calculating the approximate median using the most significant

B-bits on the output image quality, images from the database [58] and a frame of videos from

the database [59] are processed to calculate the actual and approximate medians with B = 2, 3

and 4. Results of the approximate filtering on a sample image are shown in Fig 3.3. In this

figure, (a) shows the input image and (b) shows the graphs of actual and approximate medians

35

calculated using the proposed technique with different values of B for various pixels of the

input image. It is seen from Fig. 3.3 (b) that the difference between the actual median and the

median calculated using the most significant B-bits is negligible.

(a)

(b)

Figure 3.3 (a) Goldhill Image from the database given in [58]. (b) Actual median and

approximate medians with B = 4, 3 and 2 for various pixels.

36

Fig. 3.4 shows the filtered images. In this figure, (a) is the image filtered using the actual

median and (b), (c) and (d) are images filtered using the proposed technique with B = 4, 3 and

2, respectively. Although the images (b), (c) and (d) appear very similar to the image (a), there

is a substantial difference between them. This difference is due to the difference between the

approximate and actual median values, even though the later difference is not observable in

Fig. 3.3 (b). The difference in the image quality is calculated in terms of PSNR of images in

Fig. 3.4 (b), (c) and (d) with respect to the image in Fig. 3.3 (a) and is shown in the respective

Figures 3.3 (b), (c) and (d).

 (a) (b) (PSNR = 34.2)

(c) (PSNR = 30.1) (d) (PSNR = 27)

Figure 3.4 Goldhill image filtered with (a) actual median, approximate median with (b) B = 4,

(c) B = 3 and (d) B = 2.

37

Fig. 3.5 shows similar results on a sample frame taken from the four people video from the

database in [59] with the corresponding filtered images, shown in Fig. 3.6. From these figures,

the same conclusion can be drawn as in the case of the previous experiment, wherein the image

from the database in [58] was considered.

(a)

(b)

Figure 3.5 (a) A frame of four people video from the database given in [59]. (b) Actual median

and approximate median with B = 4, 3 and 2 for various pixels.

38

(a) (b) (PSNR = 37)

(c) (PSNR = 32.4) (d) (PSNR = 28.4)

Figure 3.6 A frame of four people video filtered with (a) actual median, approximate median

with (b) B = 4, (c) B = 3 and (d) B = 2.

From these experiments, it is observed that a better approximation to the actual median is

obtained when a higher value of B is employed.

3.3 Block Diagram of the Proposed Hybrid Architecture for Median

Filtering

Fig. 3.7 shows the block diagram of the proposed HAMF that can process N W-bit input values.

Out of the W-bits, B-bits are processed using the histogram-based technique to calculate a B-

bit median value. The calculated B-bit median is used to select a W-bit median from the input

window, as explained in the previous section. Based on the decision of the impulse noise

39

detector, the selected W-bit median or the value of the input pixel is passed on to the output.

The figure shows an input window consisting of N input values. Each pixel in this window is

represented by W-bits. All the pixel values are fed to the proposed HAMF, of which the most

significant B-bits of all the pixel values are read by the histogram calculation block. This block

calculates the histogram values H0 to H(2
B

-1), of the input data. The histogram values are then

added successively, starting with the value of H0, until the result of the addition exceeds (N –

1)/2. The index i of the last added Hi is the B-bit median of the data fed to the histogram

calculation block.

Figure 3.7 Proposed hybrid architecture for median filtering.

3.3.1 Architecture of the Histogram-based Median Calculation Block

Fig. 3.8 shows the architecture of the proposed histogram-based median calculation block for

B = 2 and N = 5, as an example. It is seen from this figure that there are 3 stages in the median

calculation block. Stage I is the comparator stage, where all the input values are compared with

all the values in the range 0 to 2B-1. The output of stage I consists of N sets, each set having 2B

binary values. The second stage (Stage II) adds all the binary values corresponding to each

value in the range 0 to 2B-1 to generate the histogram values H0 to H(2
B

-1) of the input data.

Stage III adds these values successively and after each addition, compares the result to the

value ⌈N/2⌉ which is equal to 3 for this example. As soon as the comparison becomes true, the

40

index i of the last added Hi is selected as the output. The various stages of the architecture have

pipeline registers between them, as shown in this figure.

Figure 3.8 Pipelined histogram-based median calculation block.

The structure of the histogram-based median calculation block is the same (3-stage)

irrespective of the values of B and N. However, the number of comparators in stage I increases

with increasing values of N and B. The number of comparators required in stage I is N∙2B. The

number of adders in stage II is dependent on B alone and is equal to 2B; however, each adder

is of N-bits. The number of adders in stage III is also dependent on B alone and is equal to

2B-1.

41

 The operating frequency of the proposed median calculation block is dependent on the

delay of its critical path. By analyzing the proposed architecture, we find that this delay is the

delay of stage II. Hence, we apply the concept of super-pipelining technique by introducing

registers inside stage II to increase the operating frequency of the design. Although increasing

the number of registers will increase the latency of the design, the corresponding throughput

will also increase. An analysis of the relationship between the latency, operating frequency and

area will be presented in the results section of this chapter. Since a super-pipelined architecture

results in a greater utilization of the registers, we implement the super-pipeline with different

latencies to analyze the relation between the throughput and the utilization of the registers.

3.3.2 Decision Based Median Filtering

Fig. 3.9 shows the modification carried out in a conventional median filter to convert it to a

noise adaptive switching median filter. It is seen from this figure that the output pixel is selected

as the median of the input window only if the input pixel is found noisy. Salt and pepper noise

in a gray scale image can be easily detected by comparing an input pixel value with a value of

255 for salt and with a value of 0 for the pepper. If one of these two comparisons hold true, the

input pixel is detected as noisy and is filtered. If neither of the comparison holds true, the pixel

is interpreted as a non-noisy pixel and its corresponding value is passed to the output. Filtering

only the noisy pixels results in a better image quality without an undesired smoothing effect.

Figure 3.9 Noise adaptive switching median filter.

42

This technique can be applied to any median filter, which does not use noise adaptive filtering

to convert it to a noise adaptive switching filter. This type of filtering is also called as the

decision based median filtering. In the proposed HAMF block diagram shown in Fig. 3.7, the

decision based median filtering is achieved using the impulse noise detector and output

selection blocks.

3.4 Results and Analysis

In this section, results on the quality of images filtered by an algorithmic level Matlab

implementation of the proposed HAMF, depicted in Fig. 3.7, are analyzed for different values

of the noise density, window size and B. Based on this analysis, an appropriate window size

that is suitable for hardware implementation is selected. The proposed HAMF is implemented

for the selected window size using RTL coding in VHDL. The design is simulated for

functional verification and mapped to different generation FPGAs to evaluate the hardware

performance. We implement the proposed HAMF on FPGAs with different values of B and

pipeline latency L, to study the effect on the operating frequency, power and area. The

throughput of the hardware implementation of the proposed HAMF in terms of FHD video

frames per second (fps) is calculated to see whether it satisfies the real-time requirements of

FHD videos.

3.4.1 Filtered Image Quality

To evaluate the performance in terms of the filtered image quality, images and frames of videos

from databases in [58] and [59], respectively, are considered. Salt and pepper noise of different

densities are added, and the noisy images and video frames are filtered using the algorithmic

level Matlab Implementation of the proposed HAMF with different values of B. For each

filtered image, PSNR and SSIM are calculated with respect to the original image. The PSNR

and SSIM values of the images filtered using adaptive switching median filter (ASMF) are also

43

calculated. Fig. 3.10 shows the results of PSNR with increasing noise density on the baboon

image from the database in [58]. Figures 3.10 (b), (c) and (d) show the results for B = 4, 3 and

2, respectively, for different window sizes. Fig. 3.10 (a) show the result for different window

sizes for the image filtered using ASMF.

(a)

(b)

44

(c)

(d)

Figure 3.10 PSNR as a function of noise density for the baboon image for different values for

Ws, using (a) ASMF and the proposed technique with (b) B = 4 and with (c) B = 3 and (d) B =

2.

45

Fig. 3.11 shows similar results on a single frame of the video four people from the database in

[59].

(a)

(b)

46

(c)

(d)

Figure 3.11 PSNR as a function of noise density for a single frame of four people video for

different values of Ws, using (a) ASMF and the proposed technique with (b) B = 4 and with (c)

B = 3 and (d) B = 2.

47

It is observed from Fig. 3.10 and Fig. 3.11 that PSNR decreases with increasing noise density.

The value of PSNR for Ws = 3 is the highest for lower noise densities; however, as the noise

density increases, PSNR decreases rapidly and goes below the value corresponding to the

window sizes 5, 7 and 9. We choose Ws = 5, since PSNR is the highest for this this value of

window size in the range of noise density considered. The PSNR is higher for higher values of

B and is the highest with ASMF, where the median filtering is performed using all bits of the

pixel values.

Table 3.1 shows the values of PSNR and SSIM for some of the images in the database [58]

and a single frame of each of the six videos selected from the database in [59]. These results

are obtained with Ws = 5, 30% noise density and different values of B.

Table 3.1: PSNR and SSIM for images and video frames from the databases in [58] and [59]

The PSNR and SSIM values for the images and video frames filtered using ASMF are also

included in this table for the purpose of comparison. It is seen from this table that the quality

of the filtered images and video frames in terms of PSNR and SSIM increases with increasing

Image/Video PSNR SSIM

ASMF Proposed HAMF ASMF Proposed HAMF

B = 4 B = 3 B = 2 B = 4 B = 3 B = 2

Baboon 25.42 25.17 24.75 23.41 0.8650 0.8457 0.8233 0.7707

Barbara 27.33 27.15 26.58 25.02 0.9066 0.8878 0.8648 0.7825

Gold hill 32.48 31.62 30.36 27.46 0.9205 0.8930 0.8502 0.7526

Lena 33.71 31.88 30.88 28.12 0.9500 0.9268 0.9067 0.8049

Peppers 33.10 32.48 31.28 27.81 0.9453 0.9187 0.8945 0.7879

Four People 32.41 31.88 30.85 28.09 0.9667 0.9412 0.9143 0.8385

Kris and Sara 32.38 32.11 31.19 27.80 0.9765 0.9581 0.9096 0.7584

People 40.79 38.05 35.58 30.33 0.9861 0.9497 0.9081 0.7780

Tennis 26.49 26.29 25.85 24.94 0.8482 0.8349 0.8110 0.7669

Vidyo 1 35.65 34.77 33.26 29.06 0.9759 0.9538 0.9250 0.7929

Vidyo 4 35.50 34.78 33.22 28.70 0.9748 0.9538 0.9154 0.7591

48

value of B. The values of PSNR and SSIM for the images filtered using the algorithmic level

implementation of the proposed HAMF with B = 4 is very close to the corresponding PSNR

and SSIM values obtained using ASMF.

For qualitative analysis, we consider the original baboon image shown in Fig. 3.12 (a) and

its corrupted version with 30% salt-and-pepper noise in Fig. 3.12 (b). Fig. 3.12 (c) shows the

image filtered using ASMF with Ws = 5, whereas Figures 3.12 (d), (e) and (f) show the filtered

images using the proposed technique with Ws = 5 and B = 4, 3 and 2, respectively. The

corresponding values of PSNR and SSIM are also included below the figures.

 (a) (b) (PSNR = 10.79, SSIM = 0.1407)

(c) (PSNR = 25.42, SSIM = 0.865) (d) (PSNR = 25.17, SSIM = 0.8457)

49

(e) (PSNR = 24.75, SSIM = 0.8233) (f) (PSNR = 23.41, SSIM = 0.7707)

Figure 3.12 Results on baboon image (a) Original Image (b) corrupted image with 30% salt-

and-pepper noise (c) filtered image using ASMF, and filtered images using the proposed

technique with (d) B = 4, and with (e) B = 3 and (f) B = 2.

As mentioned before, the optimal window size for median calculation is Ws = 5. Hence, we

implement the proposed HAMF on hardware with Ws = 5 and different values of B. The

proposed HAMF can be implemented on hardware for higher values of Ws; however, it will

result in a degraded hardware performance due to a large area and low operating frequencies.

We synthesize the proposed HAMF on hardware with different values of B in order to find its

impact on the area and operating frequency. Using the implementation results, we can see if

there exists a trade-off between the output image quality and the hardware performance.

3.4.2 Simulation Results

To verify the functionality of the proposed HAMF that calculates an approximate median, we

carry out the behavioral simulation of the proposed HAMF implemented with B = 2, 3 and 4

by feeding random numbers as the input pixel values to calculate the output. As mentioned

earlier Ws is chosen to be 5. Fig. 3.13 shows the results of simulation for HAMF with B = 2

and Ws = 5, where the input values d1-d25 are 0x[72, 7e, 14, 23, 24, 25, 32, 36, 38, 37, 48, 41,

00, 5a, 58, 7a, 72, 7c, 83, 5d, 51, 74, 7a, 7c, a9]. The most significant 2-bits of the input values

50

are considered for median calculation which results in a 2-bit median equal to 0x1. Hence, the

first element in the input vector with the value of the upper 2-bits equal to 0x1, which is 0x72

in this case, is selected as the approximate median. This value is available at the output port

dout as shown in the Fig. 3.13. The result of the median appears at the output after 14 clock

cycles, which is the latency of the design implemented with 12 pipeline registers in the

histogram calculation module of Fig 3.7. Two additional clock cycles are required by the

median selection unit, resulting in a total of 14 clock cycle latency.

Fig. 3.14 shows the simulation results of the proposed HAMF implemented with B = 3

and Ws = 5. The input vector fed to this design is the same as in the previous simulation.

However, as this design processes upper 3-bits, the calculated value of the median is 0x2. As

a result, the first matching element from the input vector with the value of the upper 3 bits

equal to 0x2, which is 0x48 in this case, is selected as the median.

Fig. 3.15 shows the simulation results for proposed HAMF implemented with B = 4

and Ws = 5. The input vector fed to this design is the same as in the previous simulations.

However, as this design processes upper 4 bits, the value of the calculated median is 0x5. As a

result, the first matching element from the input vector with the value of the upper 4 bits equal

to 0x5, which is 0x5a in this case, is selected as the median.

The actual value of the median of the input vector considered in these simulations is

0x58. However, the calculated median values using B = 2, 3 and 4 are 0x72, 0x48, and 0x5a,

respectively. This shows that a closer approximation to the actual median value is obtained

using a higher value of B.

51

Figure 3.13 Simulation results of the proposed HAMF with B = 2, Ws = 5.

52

Figure 3.14 Simulation results of proposed HAMF with B = 3, Ws = 5.

53

Figure 3.15 Simulation results of proposed HAMF with B = 4, Ws = 5.

54

3.4.3 FPGA Implementation of the Proposed HAMF

The proposed HAMF is implemented on 3 different generation of Xilinx FPGAs, namely,

Virtex-II, Virtex-6 and Zynq-7, with Ws = 5 and different values of B (2, 3 and 4). Different

FPGAs are chosen to analyze the effect of implementation of the proposed architecture on older

(Virtex-II and Virtex-6) as well as the newer (Zynq-7) generation FPGAs, in terms of the

hardware performance. The results of the implementation of a non-pipelined version of the

proposed architecture with different values of B are presented in Table 3.2. In this table, the

area is reported in terms of the slice-LUTs and slice-registers. The operating frequency is

calculated from the maximum combinational delay as reported by the synthesis tool.

Table 3.2. Hardware implementation results of the proposed HAMF implemented without

pipelining.

FPGA

Device

Slice LUTs # Slice Registers Frequency (MHz)

B = 2 B = 3 B = 4 B = 2 B = 3 B = 4 B = 2 B = 3 B = 4

Virtex-2 301 499 1050 541 881 1838 25.8 20.2 16.9

Virtex-6 271 385 705 - - - 98.6 61.4 36.9

Zynq-7 271 385 705 - - - 110 68.5 41.5

It is observed from Table 3.2 that the area required for implementation in terms of slice-

LUTs increases with increasing value of B for the FPGAs considered. In the case of Virtex-II,

slice-registers are required in addition to slice LUTs, which is due to the underlying architecture

of Virtex-II. The operating frequency decreases with increasing value of B. This is a result of

cascaded configuration of LUTs during design implementation. The cascaded configuration is

required for the implementations that have a larger number of slices.

The operating frequency of the design on all the devices considered is low and cannot

satisfy the real-time throughput requirements of the FHD video filtering. This is a result of the

large combinational delay due to the absence of the pipeline registers. In order to increase the

55

operating frequency of the design, we implement pipelined versions of these by introducing

pipeline registers. Introduction of these pipeline registers increases the operating frequency of

the design, but also increases the slice-register utilization at the same time. Hence, we

implement the pipelined version of the proposed HAMF with different number of pipeline

registers inside the adder stage, namely, stage II (Fig. 3.8) of the histogram-based median

calculation block, to evaluate the effect on the register utilization and operating frequency. Fig.

3.16 shows the LUT utilization and Fig. 3.17 shows the registers/FF utilization for B = 2, 3 and

4 and L = 8, 10 and 14. It is seen from Fig. 3.16 that the LUT utilization increases only slightly

with increasing pipeline latency, irrespective of the device used. Since Virtex-II is an older

generation device, its LUT utilization is higher than that of Virtex-6 or Zynq-7, which have

nearly the same amount of utilization. The LUT utilization increases significantly with B, due

to the logic involved in processing more bits with higher values of B.

Figure 3.16 Slice-LUT utilization for different values of B and L

It is observed from Fig. 3.17 that the register/FF utilization increases with increasing

value of B or L. The register utilization in the case of Virtex-2 implementation is greater than

56

the utilization in the case of Virtex-6 and Zynq-7 implementation. The maximum register

utilization is in the case of L = 14 and B = 4, since a large number of registers are required as

a consequence of a greater number of pipeline stages and increased value of B.

Figure 3.17 Slice-Register/FF utilization for different values of B and L

Fig. 3.18 shows the operating frequency of the design synthesized on the three FPGAs

for different values of B and L. It is observed from this figure that the operating frequency

increases with L, since the cascaded combinational blocks are divided into smaller blocks (see

Fig. 2.12). With a higher pipeline latency, the delay of each combinational block is reduced,

resulting in a higher frequency of operation. The operating frequency is calculated from the

maximum combinational delay, as reported by the synthesis tool.

Fig. 3.19 shows the power as estimated by the Xilinx Xpower analyzer tool when the

three FPGAs are used for implementation with different values of B and L. The operating

frequency of the clock of the each of the designs is specified in the Xpower analyzer tool. It is

seen from this figure that the power dissipation increases with increasing pipeline latency, and

this is due to the higher operating frequency as seen from Fig. 3.18. There is a slight increase

57

in the power with increasing value of B, irrespective of the device used. Also, the power

requirements of Virtex-6 device is much higher than that for Virtex-II or Zynq-7 devices and

is so mainly because of the underlying technology.

Figure 3.18 Operating frequency calculated from the maximum combinational delay

for different values of B and L.

Figure 3.19 Power estimated by the Xpower analyzer for different values of B and L.

58

Although the proposed HAMF implemented with B = 4 has a lower operating frequency

compared to that with B = 2 and B = 3, it is still acceptable for filtering FHD videos in real-

time. As mentioned earlier, the quality of the image filtered using the algorithmic level

implementation of the proposed HAMF with B = 4 is better than those filtered with B = 2 and

B = 3. Hence, we calculate the maximum operating frequency of the proposed HAMF

implementation on hardware with B = 4, by specifying the timing constraints in the

implementation tool. We carry out this on all the FPGAs devices considered for different values

of L.

Using the maximum operating frequency, the throughput of the proposed HAMF

hardware implementation is calculated using Eq. (2.5). The frame size Fs for an FHD video is

1920 × 1080 and since all the implementations are for a single core architecture, ν = 1. Fig.

3.20 shows the throughput of the proposed HAMF hardware implementation in FHD video

frames per second on the three FPGA devices considered, for different values of L.

Figure 3.20 Throughput for FHD videos for different values of L.

59

It is observed from Fig. 3.20 that all the hardware implementations of the proposed HAMF

with different pipeline latencies can satisfy the real-time requirements of FHD video filtering

at the rate of 60 fps. The throughput increases with increasing pipeline latency and is higher

for newer generation FPGAs (Virtex-6 and Zynq-7) than that provided by the implementation

on Virtex-II. It must be also noted that the increase in the throughput is at the cost of the area,

as per the discussion in the previous sections.

To compare the proposed HAMF implementation with ASMF in terms of the hardware

performance, we implement ASMF with full synchronous pipelining with Ws = 5 on the three

FPGAs considered. Table 3.3 shows the hardware performance of ASMF in terms of slice-

LUTs, slice-registers/FFs and operating frequency on these FPGAs. For the purpose

comparison, the corresponding performance values for the proposed HAMF implemented with

B = 4, L = 14 and Ws = 5 are also presented in this table. It is seen from this table that the

proposed HAMF implementation provides a performance that is significantly superior to that

ASMF implementation on all the three FPGAs.

Table 3.3. Hardware implementation results of the proposed HAMF and ASMF.

FPGA

Device

ASMF HAMF (B = 4 and L = 14)

LUTs Registers/FFs Frequency

(MHz)

LUTs Registers/FFs Frequency

(MHz)

Virtex-2 5436 3552 246 2621 1885 366

Virtex-6 4953 3552 455 2032 1736 661

Zynq-7 4953 3552 583 2032 1736 770

3.5 Summary

By combining multiple techniques, namely, bit-plane-slicing, decision based median filtering

and histogram-based median calculation, a hybrid architecture for median filtering is proposed

60

and then implemented on different generation FPGAs. The hardware implementation of the

proposed HAMF can operate at very high frequencies when implemented with super-

pipelining. The proposed HAMF processes only the most significant B-bits of the pixel values.

As a result, the quality of the images filtered by the algorithmic level implementation of the

proposed HAMF is slightly lower than that using the ASMF. Through an analysis of the results

of implementation of the proposed HAMF with B = 4 and different values of L, it has been

shown that a trade-off could be achieved between the area and the throughput. The proposed

HAMF implementation with B = 4 and L = 14 provides a significant improvement in terms of

the area and operating frequency compared to that of the ASMF implementation. The hardware

implementation of the proposed HAMF satisfies the real-time requirements of FHD videos at

the rate of 60 fps; however, it is very slow to be considered for real-time filtering of UHD

videos. The frame resolution of a 4K UHD video is four times that of an FHD video frame and

hence, window sizes higher than 5 may be needed for filtering UHD videos. In order to fulfil

the needs of real-time UHD video filtering, we provide an efficient architecture of the

hierarchical histogram-based median filter and its FPGA implementation in the next chapter.

61

Chapter 4

Design and Implementation of the Hierarchical

Histogram-based Median Filter

4.1 Introduction

The hybrid architecture for median filtering presented in Chapter 3 can operate at high

frequencies and fulfil the real-time throughput requirements of FHD videos and is area efficient

when implemented on different generation FPGAs. However, the hardware implementation of

the proposed HAMF is for a fixed window size and the optimization achieved in its

implementation is at the cost of filtered image quality. The histogram module used in HAMF

uses cascaded adders to generate the histogram values. As a result, the operating frequency of

the proposed HAMF will decrease with increasing window size. In many applications, output

image quality is as important as the hardware performance, and a compromise in image quality

may not acceptable. Frame resolutions have increased from FHD to UHD in order to provide

better quality of images and there are no hardware implementations of median filters, that can

satisfy the real-time requirements of UHD videos for large window sizes. Hence, in this chapter

we present a hardware-based architecture for median filter and its FPGA implementation that

can satisfy the real-time throughput requirements of UHD videos for window sizes up to 15

[60]. The proposed hardware architecture is based on the hierarchical histogram-based median

filter (HHMF) [33], which uses histogram-based operations for computation of the median. As

opposed to the histogram-based median filter such as [32], HHMF calculates the histogram of

the input data in two steps.

62

In a histogram-based method, each element in the input array consisting of N elements,

is read and the count of the corresponding bin is incremented. For 8-bit input values, there are

256 such bins. After all the input values are read, values of bins starting from bin0 are added

together until the result of addition is greater than (N - 1)/2 and the bin whose value was added

last is the median. This technique is better than the sorting-based median calculation, as the

number of stages of calculation does not depend on N [28]. However, hardware implementation

of histogram-based median filter results in a lower speed due to involved memory operations

and cyclic reading of input pixels [29].

As mentioned earlier, the algorithms implemented on GPU for high performance such

as in [31] and [32] are based on histogram calculation and hence the histogram-based technique

can be used to create a winning architecture for real-time filtering of UHD videos. A median

filter designed using the conventional histogram-based technique is almost impossible to be

implemented on hardware without the use of memory bins, since for large window sizes, the

resource requirements will exceed that available in FPGAs. However, if the memory bins are

employed in hardware implementation as in [30], the throughput will get be very low.

The HHMF first processes the upper-half most-significant bits (MSBs) of the input data

and then the lower-half least-significant bits (LSBs) to obtain the median in two steps. The HH

median filtering algorithm presented in [33] is implemented on GPUs and provides a very high

throughput. HH median filtering is based on the same bin approach that is used in histogram-

based median filter, the difference being that the number of bins is reduced due to the reduction

in the range of input values, since each pixel is split into two parts. The number of storage bins

required for processing all the bits of pixel values is 2W (= 256 for W = 8), where W is number

of bits required for representation of the value of a pixel. However, if the pixel values are split

into 2 parts, each of W/2 bits, the number of bins is reduced to 2∙2(W/2) (=32 for W = 8). Due to

63

the reduced number of bins, it becomes feasible to implement a hardware architecture that

provides higher speed. Registers can be used to serve the purpose of bins instead of a ROM

based storage.

The performance of an algorithm implemented on a GPU is heavily dependent on the

GPU architecture and more importantly, on its count of processing cores. Although GPU is a

common platform for computationally demanding applications, the cost of GPUs is higher than

a typical FPGA (e.g. Artix-7) used in DSP applications. For low cost products, a GPU may not

be a desired solution as supporting peripherals are needed in addition to the GPU itself. High

power consumption of GPUs compared to FPGAs [61] makes them unsuitable for many

applications. At this point it is worthwhile mentioning that multi-processor system on chip

(MPSoC) architectures are becoming more popular for many real-time implementations of

applications, such as 4K video processing. These devices provide a very high degree of

flexibility due to their hardware-software co-design feature.

The present architectures of median filters implemented on FPGAs cannot be scaled for

UHD applications due to their dependency on sorting-based operations. Moreover, the

architectures that implement median filtering using non-sorting-based techniques use memory

as bins to store histogram count, which results in a very low frequency of operation due to

timing overheads added by memory read and write operations. Such architectures cannot

satisfy the real-time requirements of a UHD video system. Non-sorting-based histogram

calculation algorithms, such as HHMF, can satisfy the throughput requirements of a UHD

video system when implemented on GPUs. As discussed above, GPUs have their own

limitations such as cost and power requirements. Designing an FPGA-based architecture for

HHMF is a challenging task, since such an architecture may face limitations such as scalability

and ability to satisfy real-time requirements for applications like UHD videos.

64

We propose, for the HH-based median filter, an efficient hardware architecture that can

be mapped to any programmable logic device. The proposed hardware architecture can perform

median filtering operations at a very high speed for window sizes up to 15. The proposed

architecture implements full-synchronous pipelining to achieve maximum frequency of

operation. A novel approach to histogram calculation and accumulation module is used to

ensure full-synchronous operation of the pipeline. We implement, for the first time, a hardware

architecture for HHMF that provides results that are superior to that of NVIDIA Tesla and

Parker SoC GPUs in terms of the throughput. The proposed hardware architecture also satisfies

the pixel clock requirement (600 MHz) for a UHD video system when mapped to Xilinx

MPSoC by implementing a single pipelined core. We analyze the hardware performance of the

proposed median filter implemented with 1, 2 and 4 cores on Artix-7 FPGA for different

window sizes and compare the throughput performance with that of the HHMF algorithm on

GPUs.

 The chapter is organized as follows. Section 4.2 discusses the HH median

filtering algorithm. Section 4.3 presents the proposed hardware architecture for HHMF along

with its analysis. An FPGA implementation of the proposed architecture is presented in Section

4.4. Section 4.5 presents the hardware implementation results and comparative analysis.

Summary of the chapter is presented in section 4.6.

4.2 Hierarchical Histogram Median Filter

The HH-based median filtering algorithm calculates the median of the input window in

two parts. The steps involved in the median calculation using HHMF are shown in Algorithm

1. The higher nibble of the median, MH is calculated using steps 1-3, while the lower nibble,

ML is calculated using steps 5-7. The value Hi-1 calculated in Step 4 is used in step 7 to calculate

ML.

65

Algorithm I: Hierarchical Histogram-Based Median Calculation

Number of input data → N (odd), Range of a nibble (4-bits) → 0 to 15

1: Extract the higher nibble for each of the N values.

2: Calculate the histogram values H0 – H15 for the extracted nibbles.

3: Add the histogram values H0 – H15 successively until the addition exceeds (N - 1)/2.

 Index i of the last Hi added is the higher nibble MH.

4: Store the value of Hi-1 in accumulator A.

5: Extract the lower nibble for each of the N values, for which its higher nibble is equal

 to MH.

6: Calculate the histogram values H0 – H15 of the extracted nibbles.

7: Add the histogram values H0 – H15 successively to A until the addition

 exceeds (N - 1)/2. Index i of the last Hi added is the lower nibble ML.

8: Combine MH and ML to obtain the median M.

We now illustrate the above algorithm by an example. Fig. 4.1 shows the processing of

sample input data using HH median filtering consisting of N = 9 data values of a square window

of size Ws = 3. In the first step, all the higher nibbles of the input data are extracted for H0 –

H15 calculation. Histogram values starting from H0 are added in the accumulator, and after the

addition of H7, the result of accumulator is greater than 5. As a result, MH is 0x7. Accumulator

of the second block is initialized with H6. For each input data, if the value of the higher nibble

is equal to 0x7, then the corresponding lower nibble is retrieved. Histogram values H0 – H15

are calculated for these values and added to the accumulator successively. Addition of H3

results in the accumulator value to be greater than (N – 1)/2. As a result, ML is 0x3.

4. 3 Proposed Hardware Architecture

 This section presents the details of the proposed hardware architecture for

implementing HHMF. Features of the proposed hardware architecture, which makes it feasible

66

for real-time UHD video filtering, are also highlighted in this section. The proposed hardware

architecture is analyzed for implementation feasibility with respect to the area and latency.

Figure 4.1 An example of the HHMF Algorithm.

4.3.1 Architecture Overview

In the median calculation using the HH method, the median is calculated in two parts,

as illustrated in the previous section by an example. After MH calculation, for each element in

the input data, only if the value of the higher nibble is equal to the value of MH, then the

corresponding lower nibble is retrieved. If the input vector is read again after the calculation of

MH, the purpose of a pipelined architecture is defeated. Hence, we design an architecture in

which there is no more than one reference to the input data vector. This reference is in the first

cycle of the operation, where all the input elements of the vector are read and buffered.

Fig. 4.2 shows the proposed hardware architecture which consists of two blocks,

namely, HMH (Histogram of Median High) and HML (Histogram of Median Low), the former

corresponding to the higher and the later to the lower nibble calculation of the median. The

67

input value of the comparator of HMH is Ch and is calculated as [(N - 1)/2] + 1, where N is the

total number of input elements. The input value of the comparator of HML is Cl, which is

calculated as [(N – 1)/2] + 1 – BMH – 1, where BMH-1 is the count value of bin MH - 1.

The pipelined buffer, shown above the pipelined HMH block in Fig. 4.2, stores the

input data in a shift-register, which has the same latency as that of the pipelined HMH block.

As soon as the value of MH is calculated, the HMH block feeds the desired values from the

pipelined buffer to the HML block along with the value of Cl. The value of MH is passed to

another pipelined buffer that is shown below the pipelined HML block in Fig. 4.2 and has the

same latency as that of the HML block. Thus, both MH and ML are available at the output at

the same time. As a result, the pipeline can work at full efficiency without any stall or delay.

Figure 4.2 Proposed hardware architecture for HHMF.

4.3.2 Architecture for HMH and MHL Blocks

Fig. 4.3 shows the architecture of the HMH and HML blocks. First, the input data is

fed to a comparator module that performs parallel comparison of all the input data elements to

all the possible values in the range of 4-bit numbers, i.e., 0 to 15. The inputs for the HMH block

are the higher nibbles of all the N input values. However, for the HML block, K (≤ N) input

68

values are fed from the pipelined buffer and the remaining N – K input values are forced to

assume the highest value, 15, in the range 0 to15, to ensure proper median calculation.

The output of the comparator module is a matrix consisting of N×16 binary values. The

histogram calculation module performs the addition of all the elements in each column of this

N×16 matrix to generate a 1×16 matrix. This is the histogram of the input data and represents

the count of each element in the range (0 to 15) of 4-bit numbers. The output of the histogram

calculation module is fed to the accumulate-and-compare (AC) module, where the histogram

values are accumulated starting from the value of H0. This module calculates the MH or ML

value by comparing the accumulated histogram values with Ch or Cl. Compared to the HML

block, the HMH block contains an additional module (shown in dotted lines in Fig. 4.3) that

calculates Cl, which is the comparator value for the HML block.

Figure 4.3 Architecture of the HMH/HML block.

A) Comparator Module

The comparator module consists of N units, each containing 16 comparators; one such unit is

shown in Fig. 4.4.

69

Figure 4.4 A Comparator Unit.

Each comparator in this unit compares the input element to each value in the range 0 to 15.

Although the size of the comparator module increases with N, the delay due to comparison in

the proposed hardware architecture is constant, irrespective of the value of N. Each comparator

is clocked with the system clock, which fulfils the need of a pipelined architecture.

B) Histogram Module

The histogram module adds all the ith bits (i = 0 to 15) in all the N units of the comparator

module to generate the histogram of the data. This is accomplished by 16 adder units, operating

in parallel, each adder unit dedicated to a particular value of i. Each adder unit adds N-bits to

generate a ⌈log2N⌉-bit value. The structure of an adder unit is shown in Fig. 4.5, which uses

registered adders. In contrast to a cascaded serial adder that requires N-cycles to perform the

addition of N-bits, the proposed structure requires only ⌈log2N⌉ cycles to compute the output.

70

Figure 4.5 Adder Unit.

C) Accumulate-and-compare (AC) module

After the generation of the histogram, next step is to determine the values of MH and ML using

the blocks HMH and HML, respectively. To calculate these values, the AC module adds the

histogram values H0 to H15. Accumulation of these 16 values without the use of a pipelined

architecture will result in a large delay. If the comparison with Ch or Cl is performed after each

addition, then the output of the comparison may become true during any stage of the

accumulation process depending on the values of the input vector. As a result, the pipeline

cannot operate in synchronous with the other modules/blocks.

To achieve a fully synchronous pipeline, each clocked adder of the AC module at

position P (0-15) has P cascaded registers at its input and (15 – P) cascaded registers at its

output, as shown in Fig. 4.6. Once the result of the accumulation becomes available (after 16

clock cycles), all the values accumulated by the various stages are compared at the same time

with Ch (Cl) to generate a row vector representing the output of each of the comparators of the

AC module shown in Fig. 4.6. The first occurrence of ‘1’ in this vector indicates the value of

71

MH (ML). This value is selected by the MH/ML selector unit. For example, if the output vector

for MH is [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1], then MH is 0xB.

Figure 4.6 Accumulator and compare module.

4.3.3 Architecture Analysis

Various components used in the proposed hardware architecture are adders, comparators and

registers. The adders and comparators are used for processing, while the registers are used for

pipelining. In this section, we analyze, for the hardware implementation feasibility, the number

of components required as the window size, Ws, increases. We also analyze the latency of the

proposed pipelined architecture for different window sizes in terms of the number of clock

cycles.

72

A) Area utilization in terms of the number of adders and comparators

Fig. 4.7 shows the number of adders and comparators required by the proposed

architecture for different window sizes for a single core fully-synchronous pipelined

architecture. A simple divide and conquer approach [62] can be used to simultaneously process

an arbitrary number, ν, partitions of the input image or video frame using ν cores of the

proposed architecture to increase the throughput by a factor of ν. This will increase the area

utilization by a factor of ν.

Figure 4.7 Number of adders and comparators as function of Ws

From Fig. 4.7 it is observed that the ratio of the number of adders or comparators

required for window size Ws to that of Ws – 2 goes on decreasing as the value of Ws increases.

This is due to the fact that the size of comparator module for each block is given by (16Ws
2),

which increases rapidly with Ws. However, neither the size of the histogram calculation module

nor that of the AC module increases as rapidly as that of the comparator module.

73

B) Area utilization in terms of the number of registers

The proposed architecture uses clocked comparators and clocked adders for its

implementation. As a result, each of the comparators or adders is implemented along-with a

register. The pipelined buffers shown in Fig. 4.2 consists purely of registers for buffering the

input data (N) and MH value. Fig. 4.8 shows the number of registers used by the HMH and

HML blocks, and that of the pipelined buffers as well as their sum as a function of the window

size. It is observed from Fig. 4.7 and Fig. 4.8 that the number of registers required by the

proposed architecture is larger than the total number of adders and comparators required, and

this is in view of the additional registers used by the pipelined buffers.

Figure 4.8 Number of registers as a function of Ws

C) Pipeline latency

The proposed architecture is designed in such a way that between a pair of cascaded

adders and/or comparators there is a register. This approach is adopted in order to minimize

74

the combinational delay and achieve a high throughput. As a result, a large number of registers

are cascaded in the pipeline. The pipeline latency L of the proposed architecture is given by

𝐿 = 2(⌈𝑙𝑜𝑔2𝑁⌉ + 18) (4.1)

where N is the number of elements in the input array, the integer 18 refers to the combined

delay of the comparator and AC modules, which is constant irrespective of the value of N. The

factor 2 in (4.1) is due to the fact that the HMH and HML blocks are cascaded and have the

same clock latencies. Fig. 4.9 shows the latency of the proposed design for different window

sizes.

Figure 4.9 Pipeline latency as a function of Ws

It is clear from (4.1) that the latency is dependent mainly on the factor ⌈log2N⌉ and

increases only when this factor increases. Although the latency of the proposed pipelined

design is very high, the pipeline ensures that it operates continuously to provide a high

throughput. The number of windows to be processed for the UHD video is massive (> 49 × 107

for 4K and > 199 × 107 for 8K at 60 fps); hence, the pipeline latency L, as given by (4.1) is

negligible. For the sorting-based architecture, implemented with pipelining as in [34], the

75

latency is given by Ws
2. Hence, for the largest window size considered in this paper (Ws = 15),

the latency of a sorting-based median filter is 225 clock cycles, significantly larger than 52,

which is the latency of the proposed architecture.

4.4 FPGA Implementation of Proposed Hardware Architecture

The implementation of the sorting-based median filter in [34] as a contextual image processing

operation is the only text that targets real-time UHD video filtering, although only for 4K

videos. Hence, to provide a comparative analysis, we map the proposed hardware architecture

to the same device, namely, Zynq-7 UltraScale+ MPSoC. An MPSoC such as Zynq-7

UltraScale+ takes advantage of the software programmability by integrating ARM-based

processors and the advantage of hardware reconfiguration using a FPGA fabric, both on the

same chip. However, it is a costly solution for many applications. Hence, we evaluate the

performance of the proposed median filter hardware for cheaper solutions, by implementing

single and multiple cores of the proposed HHMF hardware architecture on Pure (Non-MPSoC)

FPGA fabric such as Artix-7 FPGA.

4.4.1. Implementation on Zynq-7 UltraScale+ MPSoC

The proposed architecture is designed with RTL code written in VHDL on the Xilinx Vivado

design suite platform. The code is mapped to Xilinx Zynq-7 UltraScale+ MPSoC for Ws = 3.

Constraints are specified in the timing constraint editor to find the maximum delay (logic delay

+ net delay) of the design. Post implementation area utilization in terms of LUT, FF and BRAM

are reported by the implementation tool along-with the maximum delay and power on the

Zynq-7 UltraScale+ MPSoC device. Operating frequency of the design is calculated using the

reported maximum delay.

76

Fig. 4.10 shows the device view of the design implemented on Zynq-7 UltraScale+

MPSoC along with a magnified view of the underlying logic elements used to implement the

design. The shaded region in the top right corner of the device view is the proposed median

filter implemented with FPGA slices. It is seen from this figure that the area utilization is very

small, which leaves enough room for implementing the interfacing peripherals.

Figure 4.10 Device view of the implementation on Zynq-7 UltraScale+ MPSoC.

4.4.2 Implementation on Artix-7 FPGA

The RTL code for the proposed median filter is modular, since the parameters such as the

window size, the number of the stages in the adder unit (see Fig. 4.5) of the histogram

calculation module and the number of cores are variables. The code is mapped to Artix-7 FPGA

for window sizes ranging from Ws = 3 to Ws = 15 and for 1, 2 and 4 cores of the proposed

hardware architecture. Fig. 4.11 shows the device view of Artix-7 for 1, 2 and 4 cores of the

proposed hardware architecture for Ws = 15, from which the scalability and maximum device

utilization of the proposed FPGA implementation is observed. The area utilized by the

proposed architecture when implemented on FPGA is shown by the shaded region in Fig. 4.11.

It is seen from this figure that the maximum device utilization is in the case of the 4-core

architecture, and there is still enough room for additional logic required by the interfacing

77

hardware. In this case, the maximum utilization is 51% of the slice-LUTs and 36% of the slice-

registers of the total present in the Artix-7, as reported in the post implementation device

utilization report.

(a) (b) (c)

Figure 4.11 Device utilization of (a) 1 core (b) 2 core (c) 4 core architecture of the proposed

HHMF hardware for Ws = 15 on Artix-7 FPGA.

4.5 Hardware Implementation Results

This section presents the FPGA implementation results of the proposed HHMF hardware

architecture and analyses the area utilization, maximum operating frequency, power and

throughput. Using the maximum operating frequency fmax (MHz) of the proposed hardware

architecture, we calculate the throughput T in terms of the number of UHD video frames per

second using (2.5). The frame size Fs = 3840 × 2160 for 4K UHD format and ν is 1, 2 or 4

which is the number of cores. The frame size Fs = 7680 × 4320 for 8K UHD format. We

calculate the throughput for different window sizes and compare it to that of HHMF when

implemented on GPU.

78

4.5.1 Results of the implementation on Zynq-7 UltraScale+ MPSoC

The proposed HHMF hardware architecture can operate at a maximum frequency of 625 MHz,

which satisfies the pixel clock requirement of a UHD video system when mapped to Zynq-7

UltraScale+ MPSoC. Table 4.1 shows the results of a single core implementation of the

proposed HHMF hardware architecture in terms of FPGA area (LUT, FF, BRAM), frequency

and power for Ws = 3, which processes a single input pixel per clock (ppc) cycle. The

throughput is calculated using (2.5). The number of input pixels required in a single clock cycle

is also presented in this table. For comparative analysis, the corresponding results of CIPMF

with 2 and 4 ppc for the same window size are also included in this table.

Table 4.1. Results of Implementation on Zynq-7 UltraScale+ MPSoC

Filter

Hardware

No. of

Input

Pixels

Area Frequency

(MHz)

Throughput

(fps)

Power (W)

LUT FF BRAM

Proposed -1ppc 9 1534 1538 0 625 75 0.384

CIPMF - 2ppc 12 1446 1264 3 300 72 0.641

CIPMF - 4ppc 18 2295 1605 3 150 72 0.535

The proposed median filter hardware provides a throughput higher than that of either

implementations of CIPMF. The CIPMF (4ppc) implementation requires approximately 50%

more LUTs and consumes about 40% more power compared to the proposed implementation

and operates at 150 MHz Although the CIPMF (2ppc) implementation utilizes a slightly lower

number of LUTs and FFs, its power consumption is twice that of the proposed implementation

at the operating frequency of 300MHz, which is less than one-half of the proposed one. The

number of input pixels required by the proposed hardware implementation in a single clock

cycle is 9 in contrast to that of CIPMF, which requires 12 and 18 pixels to be read in a single

79

clock cycle for 2 and 4 ppc format, respectively. Reading a higher number of pixels in a clock

cycle requires more interfacing hardware, which increases the hardware complexity of the

overall design.

4.5.2 Results of the implementation on Artix-7 FPGA

Fig. 4.12 shows the resource utilization in terms of the FPGA slice-LUTs and slice-registers of

the proposed HHMF hardware architecture with different number of cores and window sizes

when implemented on Artix-7 FPGA.

Figure 4.12 Resource utilization of the proposed HHMF hardware on Artix-7 FPGA

The Artix-7 FPGA implements the logic using 6-input LUTs. For lower window sizes many

LUTs are under-utilized; however, for higher window sizes more logic fits into a single LUT

resulting in its full utilization. The number of LUTs and registers are almost equal for lower

window sizes; however, for higher window sizes the number of registers needed is significantly

more than the number of LUTs. This is due to the increase in the number of registers utilized

by the pipelined buffer, the size of which increases as the square of the input window size.

80

The HHMF algorithm, originally designed for GPU, provides a very high performance in

terms of the throughput on NVIDIA GPUs such as Tesla and SoC parker as presented in [33],

but such implementations are costly as noted earlier. We wish to investigate as to whether the

throughput offered by these GPUs can be achieved by the proposed implementation on FPGA.

Hence, we calculate the throughput of our implementation using (2.5) and compare it with the

throughput reported by [33] for NVIDIA Tesla and SoC Parker GPUs. Fig. 4.13 shows the

throughput values obtained by the FPGA implementation of the proposed HHMF hardware

architecture. Performance reported by [33] is also presented in the same graph for comparison.

Figure 4.13 Throughput as a function of the window size

 It is seen from Fig. 4.13 that the proposed 4 core architecture is the only one which can

satisfy the real-time requirements of a 4K UHD video 60 fps for all window sizes in the range

considered. The performance obtained by the proposed 4-core HHMF hardware is superior to

that of NVIDIA GPUs, except in the case of NVIDIA Tesla GPU with Ws = 3, wherein the

throughput of the proposed one is slightly lower. In general, the throughput decreases with

increasing window size, irrespective of the implementation. However, the throughput of the

81

proposed HHMF hardware is not adversely affected by the increasing window size. In

particular it is observed that for large window sizes, the throughput of the proposed 4 core

implementation is much higher than that offered by the GPUs. The throughput of the proposed

deign when implemented on FPGA is based on the post-implementation delay reported by the

tool. The value of the delay is large for lower window sizes, since the net/routing delays are

larger compared to the logic delays. However, as the window size increases, there is no

significant increase in the net/routing delay, but the logic delay goes on increasing due to the

cascaded LUT configuration. For 15 × 15 window size, the throughput of the proposed HHMF

hardware is slightly higher than that for 13 × 13 window size. This is due to the fact that these

filter implementations have the same latencies and placement of the logic on FPGA results in

lower net delays for Ws = 15 compared to that for Ws = 13.

Although the number of cores in a processing system is one of the factors which decides

the throughput, a greater number of cores adds more complexity to the design in terms of the

overall architecture. In terms of the number of cores, the implementation of the proposed

median filter architecture with 4 cores can provide a throughput higher than that of the NVIDIA

TESLA 2070 GPU which has 448 cores. The proposed median filter when implemented with

2 cores provides a throughput higher than that provided by the 256 core NVIDIA Parker SoC.

The power requirements of the proposed implementations are estimated by the Xilinx

Xpower analyzer tool with vector-less analysis of the implemented netlist. In order to get a

better estimate of the power, we specify the operating frequency of the respective

implementations during the power analysis [51]. Fig. 14 shows the total on-chip power reported

by the Xpower analyzer tool for various implementations of the proposed HHMF hardware

architecture with different number of cores and window sizes. It is seen from this figure that

the power increases with increasing window size or the number of cores. It is to be noted that

82

although the power estimated by the Xpower analyzer may be slightly higher than the actual

power utilized by the design [51], an FPGA based implementation is more energy-efficient

with one order of magnitude lower energy than the same implementation on a GPU, for the

same image processing task [63], [64].

Figure 14.4 Total on-chip power of the proposed HHMF hardware on Artix – 7 FPGA.

The implementation of the proposed HHMF hardware on Artix – 7 FPGA can satisfy the

real-time requirements of 8K UHD video at frame rates of 30 and 60 fps up to a window size

of 9. For window sizes greater than 9, the slices required for the implementation exceed that

available in the FPGA used for implementation. Fig. 4.15 shows the number of cores of the

proposed HHMF hardware required for real-time filtering of 8K UHD videos at the above-

mentioned frame rates as a function of Ws (≤ 9). As observed from this figure, 8-core

implementation of the proposed HHMF hardware can satisfy the real-time requirements of 8K

UHD video at frame rate of 30 fps whereas a 12-core implementation can satisfy the real-time

requirements of the same video format at frame rate of 60 fps.

83

Figure 14.5 Number of cores required for filtering 8K UHD videos as a function of

Ws ≤ 9.

4.6 Summary

We proposed and implemented an efficient and fully-synchronous pipelined architecture

for hierarchical histogram-based median filter, which is known to provide a high throughput

when implemented on GPUs. The proposed architecture for the HHMF is designed such that it

provides high operating frequencies and is scalable. We implemented the proposed median

filter hardware on Artix-7 FPGA for window sizes ranging from 3 to 15 and different number

of cores to evaluate the performance in terms of area and the throughput. Comparative analysis

of the proposed implementations is carried out with the state-of-the-art median filter

implementations to show the superiority of the proposed FPGA implementation in terms of the

throughput. The 4-core implementation of the proposed HHMF hardware can satisfy the real-

time requirements of 4K UHD videos at the frame rate of 60 fps for Ws ≤ 15. The proposed

filter hardware can also satisfy the real-time requirements of 8K UHD videos at the frame rates

of 30 and 60 fps, when implemented with 8 and 12 cores, respectively for Ws ≤ 9.

84

Chapter 5

Conclusion

5.1 Concluding Remarks

Median filters are known to provide high quality filtered signals when used for processing

noisy signals. Due to the effectiveness of median filters, they are widely used for the removal

of impulse noise and are extensively employed in applications involving speech, signal and

image processing. As a result, several algorithms and architectures have been proposed and

implemented for providing high quality filtered images and enhanced hardware performance.

High-speed architectures and implementations are needed in order to satisfy the real-time

throughput requirements of video formats such as full high definition (FHD) videos. Although

many of the existing hardware-based implementations of median filters can satisfy the real-

time throughput requirements of FHD videos, they are inefficient with respect area, when

implemented on hardware. Moreover, the frame resolutions have now increased from FHD to

ultra high definition (UHD), providing higher quality images and videos. However, the real-

time requirements of UHD videos cannot be satisfied by the existing hardware architectures

for FHD video filtering. As a result, efficient hardware-based architectures and

implementations that can process in real-time, massive data contained in UHD video format

are required.

In this thesis, we have presented one such architecture and its implementation for each

of the video format considered. The proposed architectures have been implemented on FPGAs,

which are a key device in the current digital consumer electronics. The architectures presented

in this thesis make use of the concept of histogram-based median calculation instead of the

85

sorting-based median calculation, which is used in most of the existing architectures. An

architecture that uses sorting-based median calculation consists of cascaded stages of compare-

and-swap (CS) units. This type of architecture is inefficient with respect to the area and

operating frequency, since the number of CS units as well as the number of cascaded stages

increases with increasing window size. However, in an architecture that uses histogram-based

median calculation, the number of stages remains constant irrespective of the window size.

Although the size of components used in the various stages of a histogram-based architecture

increases with increasing window size, its overall area can be reduced by using the concept of

bit-plane-slicing.

In order to satisfy the real-time throughput requirements of FHD videos, in the first part

of the thesis, we have proposed a hybrid architecture for median filtering (HAMF) that

combines histogram-based median calculation with the concept of bit-plane-slicing and

adaptive switching median filter. The proposed architecture has been implemented on three

different FPGAs, namely, Virtex-II, Virtex-6 and Zynq-7. These implementations have been

optimized in terms of the area and can operate at a high frequency. The implementation of the

proposed HAMF is suitable for low cost applications, where a very high throughput is required

and a slight degradation in the quality of output image is acceptable. We have analyzed the

effect of the number of bit-planes on the quality of the filtered image and on the hardware

performance by implementing the proposed HAMF with three different values of number of

the most significant bits used in median calculation (B). The analysis has shown that the quality

of the images filtered by the algorithmic level implementation of the proposed HAMF

decreases with decreasing values of B; however, the hardware implementation with a lower

value of B is superior to that of an implementation with a higher value of B, in terms of area

and operating frequency. Hence, a trade-off could be achieved between the image quality and

hardware performance by an appropriate choice of the value of B. Although a subjective

86

examination of the images filtered using a lower value of B such as 2 and 3, shows very little

evidence of the input noise, the corresponding PSNR and SSIM values are significantly lower

than that of the images filtered using ASMF. As a result, the implementation of the proposed

HAMF with B = 4 is the optimum one. Analysis of the proposed HAMF implemented with B

= 4 and different pipeline latencies has shown that there could be a trade-off between the area

and the operating frequency. Hence, a suitable implementation may be selected depending on

the parameter (area or frequency) to be optimized. Although the implementations of the

proposed HAMF with different pipeline latencies can satisfy the real-time throughput

requirements of FHD videos, they are still very slow for real-time filtering of UHD videos.

 In order to fulfil the needs of real-time filtering of UHD videos and to overcome the

disadvantages of HAMF, such as degradation in the filtered image quality and fixed window

size, we have proposed an efficient architecture of the hierarchical histogram-based median

filter (HHMF), in the second part of the thesis. This filter splits the values of pixels into two

parts, namely, upper and lower nibbles and then calculates the median in two different stages.

Due to this feature of HHMF, we could design an efficient hardware architecture, which was

not possible to be accomplished for a histogram-based median filter. We have implemented the

proposed architecture of HHMF on Xilinx Artix – 7 FPGA, for window sizes ranging from 3

to 15. Although the implementation of the proposed HHMF architecture with higher window

sizes occupies more area when implemented on an FPGA, its operating frequency is very high,

and the architecture is scalable. The proposed HHMF architecture has been implemented with

full synchronous pipelining and its pipeline latency for higher window sizes, such as 9 to 15,

is very low compared to the corresponding latencies of the sorting-based median filter

architecture. A single core implementation of the proposed HHMF architecture can satisfy the

real-time throughput requirements of FHD videos at the rate of 60 fps for window sizes ranging

from 3 to 15. Implementation of the proposed HHMF architecture with 4 cores provides a high

87

throughput which can satisfy the real-time requirements of 4K UHD videos at the rate of 60

fps for all window sizes in the range considered. Implementation of the proposed hardware

architecture satisfies the real-time requirements of 8K UHD videos, up to a window size of 9

and frame rates of 30 and 60 fps, when implemented with 8 and 12 cores, respectively. The

proposed HHMF implementation is more economical compared to that of the NVIDIA Tesla

and Parker SoC GPUs and provides a throughput higher than that of the latter two, when

implemented with 2 and 4 cores, respectively.

5.2 Scope for Future Work

One of the basic methods that has been employed in the proposed HAMF is bit-place-slicing,

which results in the calculation of an approximate median. The hardware performance of

HAMF is improved by using a limited number of the most significant bits for calculation of

the approximate median. This method can be applied to the existing hardware-based median

filters and the performance of the resulting hardware can be studied with respect to the quality

of the filtered images and hardware parameters.

As mentioned in the thesis, the proposed hardware architecture of HHMF occupies

more area for implementations with window sizes ranging from 9 to 15. Therefore, it would be

of interest to study as to whether it is possible to optimize the architecture with respect to the

area, for window sizes larger than 9.

 Although the architectures presented in this thesis are implemented on FPGAs, they

can be implemented in ASICs. Using VLSI CAD tools, it is possible to map the synthesized

design of the proposed architectures to the physical design followed by ASIC implementations.

The hardware performance of these implementations can be studied and compared with that of

the FPGA implementations.

88

References

[1] M. Orlandić and K. Svarstad, “A low-complexity MPEG-2 to H.264/AVC wave front

intra-frame transcoder architecture,” Journal of Real-Time Image Proc., vol.

16, issue: 4, pp. 1007–1023, August 2019.

[2] H. Ge and J. Sha, “FPGA-based low-complexity high-throughput real-time hardware

accelerator for robust watermarking,” Journal of Real-Time Image Proc., vol.

16, issue: 4, pp. 813–820, August 2019.

[3] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Englewood Cliffs, NJ,

USA: Prentice-Hall, 2008, pp. 155–157.

[4] M. Alenrex and R. Chatterjee, “Impulsive noise in images: A brief review,” Computer

Vision Graphics and Image Processing, vol. 4, issue: 10, pp. 6-15, March 2018.

[5] Fabijanska and D. Sankowski, “Noise adaptive switching median-based filter for

impulse noise removal from extremely corrupted images,” IET Image Processing, vol.

5, issue: 5, pp. 472 – 480, August 2011.

[6] S. Herzog, “Efficient DSP implementation of median filtering for real-time audio noise

reduction,” presented at the 16th Int. Conference on Digital Audio Effects (DAFx-13),

Maynooth, Ireland, September 2–5, 2013. Available online:

http://dafx13.nuim.ie/proceedings.html.

[7] J. Suomela, “Median filtering is equivalent to sorting,” Available online:

https://arxiv.org/abs/1406.1717.

[8] K. E. Batcher, “Sorting networks and their applications,” in Proc. Spring Joint

computer conference, NY, USA, April 30-May 2, 1968, pp. 307–314.

[9] Sanny and V. K. Prasanna, “Energy-efficient median filter on FPGA,” in Proc. Int.

Conf. Reconfigurable Computing. FPGAs (ReConFig), Cancun, Mexico, Dec. 2013,

pp. 1–8.

https://link.springer.com/journal/11554/16/4/page/1
https://link.springer.com/journal/11554/16/4/page/1
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4149689
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5963771
http://dafx13.nuim.ie/proceedings.html
https://arxiv.org/abs/1406.1717

89

[10] Z. Vasicek and L. Sekanina, “Novel hardware implementation of adaptive median

filters,” in Proc. 11th IEEE Workshop on Design and Diagnostics of Electronics

Circuits and Systems, Bratislava, Slovakia, Apr. 2008, pp. 1 - 6.

[11] W. Chen, M. Beister, Y. Kyriakou and M. Kachelrieb, “High performance median

filtering using commodity graphics hardware,” in Proc. IEEE Nuclear Science

Symposium Conference Record, Orlando, FL, USA, January 2010, pp. 4142 – 4147.

[12] P. S. Battiato, “High performance median filtering algorithm based on NVIDIA GPU

computing,” in Proc. International Symposium for Young Scientists in Technology,

Engineering and Mathematics, Catania, Italy, September 2015, pp. 1-10.

[13] L. Hayat, M. Fleury and A. F. Clark, “Two-dimensional median filter algorithm for

parallel reconfigurable computers,” IEE Proc.-Vis. Image Signal Processing, vol. 142,

issue: 6, pp. 345 – 350, December 1995.

[14] R. M. Sanchez and P. A. Rodriguez, “Bi-dimensional median filter for parallel

computing architectures,” in Proc. IEEE International Conference on Acoustics,

Speech and Signal Processing, Kyoto, Japan, March 2012, pp. 1549 – 1552.

[15] R. M. Sanchez and P. A. Rodriguez, “Highly parallelable bi-dimensional median filter

for modern parallel programming models,” Journal of Signal Processing Systems

archive, vol. 71, issue: 3, pp. 221-235, June 2013.

[16] R. D. Chen, P. Y. Chen and C. H. Yeh, “Design of an area-efficient one-dimensional

median filter,” IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 60,

issue: 10, pp. 662 – 666, October 2013.

[17] R. D. Chen, P. Y. Chen and C. H. Yeh, “A low-power architecture for the design of a

one-dimensional median filter,” IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 62, issue: 3, pp. 266 - 270, March 2015.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8920
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8920
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7051297

90

[18] S. H. Lin, P. Y. Chen and C. K. Hsu, “Modular Design of High-Efficiency Hardware

Median Filter Architecture,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 65, issue: 6, pp. 1929 - 1940, June 2018.

[19] L. Sekanina, Z. Vasicek and V. Mrazek, “Approximate circuits in low-power image

and video processing: The approximate median filter,” Radio Engineering, vol. 26,

issue: 3, pp. 623 - 632, September 2017.

[20] S. Mittal, “A survey of techniques for approximate computing,” Journal ACM

Computing Surveys (CSUR), vol. 48, no. 4, pp. 62:1– 62:33, March 2016.

[21] E. Kalali and L. Hamzaoglu, “A low energy 2D adaptive median filter hardware,” in

Proc. Design, Automation & Test in Europe Conference & Exhibition, Grenoble,

France, March 2015, pp. 725–729.

[22] E. Kalali and L. Hamzaoglu, “Low complexity 2D adaptive image processing

algorithm and its hardware implementation,” IEEE Transactions on Consumer

Electronics, vol. 63, issue: 3, pp. 277 - 284, August 2017.

[23] V. Kumar, A. Asati and A. Gupta, “Low-latency median filter core for hardware

implementation of 5 × 5 median filtering,” IET Image Processing, vol. 11, issue: 10,

pp. 927–934, Oct. 2017.

[24] P. T. Jelodari, M. P. Kordasiabi, S. Sheikhaei and B. Forouzandeh, “FPGA

implementation of an adaptive window size image impulse noise suppression system,”

Journal of Real-Time Image Proc, vol. 10, pp. 1 – 12, July 2017.

[25] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The

Hardware Interface. Boston, MA, USA: Morgan Kaufmann, 2014, pp. 277- 290.

[26] T. S. Huang, G. Y. Yang and G. Y. Tang, “A fast two-dimensional median filtering

algorithm,” IEEE Transaction on Acoustics, Speech and Signal Processing, vol. ASSP-

27. issue:1, pp. 13-18, February 1979.

https://ieeexplore.ieee.org/author/37086035854
https://ieeexplore.ieee.org/author/37311131600
https://ieeexplore.ieee.org/author/37086373759
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8919
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8919
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8355985
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7076741
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4149689
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8068786

91

[27] B. Weiss, “Fast median and bilateral filtering,” ACM Transactions on Graphics (TOG)

vol. 25, issue: 3, pp. 519-526, July 2006.

[28] S. Perreault and P. Hebert, “Median filtering in constant time,” IEEE Transactions on

Image Processing, vol. 16 , issue: 9, pp. 2389–2394, Sept. 2007.

[29] S. A. Fahmy, P.Y.K. Cheung and W. Luk, “Novel FPGA-based implementation of

median and weighted median filters for image processing,” in Proc. International

Conference on Field Programmable Logic and Applications, Tampere, Finland, Aug.

2005, pp. 142–147.

[30] S. A. Fahmy, P. Y. K. Cheung and W. Luk, “High-throughput one dimensional median

and weighted median filters on FPGA,” IET Computers & Digital Techniques, vol. 3,

issue: 4, pp. 384–394, July 2009.

[31] M. Malek and C. W. Sensen, “Instant feedback rapid prototyping for GPU-accelerated

computation, manipulation, and visualization of multidimensional data,” International

Journal of Biomed Imaging, Article ID 2046269, June 2018.

[32] O. Green, “Efficient scalable median filtering using histogram-based operations,”

IEEE Transactions on Image Processing, vol. 27, issue: 5, pp. 2217–2228, May 2018.

[33] P. Szántó and B. Fehér, “Hierarchical histogram-based median filter for GPUs,” Acta

Polytechnica Hungarica, vol. 15, issue: 2, pp. 49–68, January 2018.

[34] M. Kowalczyk, D. Przewlocka and T. Kryjak, “Real-time implementation of

contextual image processing operations for 4K video stream in Zynq UltraScale+

MPSoC,” in Proc. Conference on Design and Architectures for Signal and Image

Processing, Porto, Portugal, Oct. 2018, pp. 37–42.

[35] K. Benkrid and D. Crookes, “New bit-level algorithm for general purpose median

filtering,” Journal of Electronic Imaging, vol. 12, issue :2, pp. 263-269, April 2003.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4286981
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10158
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10158
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10158
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008673/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008673/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8587115
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8587115
https://www.researchgate.net/scientific-contributions/8190261_Khaled_Benkrid
https://www.researchgate.net/profile/D_Crookes
https://www.researchgate.net/journal/1017-9909_Journal_of_Electronic_Imaging

92

[36] L. Tan and J. Jiang, Digital Signal Processing: Fundamentals and Applications.

Burlington, MA, USA: Elsevier Academic Press, 2019, pp. 649-726.

[37] S. Khan and D. Lee, “An adaptive dynamically weighted median filter for impulse

noise removal,” EURASIP Journal on Advances in Signal Processing, article no. 67,

December 2017.

[38] R. Ha, P. Liu and K. Ji, “An improved adaptive median filter algorithm and its

application,” in Proc. Pan JS., Tsai PW., Huang HC. (eds) Advances in Intelligent

Information Hiding and Multimedia Signal Processing. Smart Innovation, Systems and

Technologies, vol 64. Springer, Cham, pp. 179-186.

[39] T. Matsubara, V. G. Moshnyaga and K. Hashimoto., “A low-complexity and low

power median filter design,” in Proc. International Symposium on Intelligent Signal

Processing and Communication Systems, Chengdu, China, December 2010, pp. 1-4.

[40] Z. Zhang, D. Han, J. Dezert and Y. Yang, “A new adaptive switching median filter for

impulse noise reduction with pre-detection based on evidential reasoning,” Signal

Processing, vol. 147, pp. 173-189, Jun. 2018.

[41] M. M. Mano and M. D. Ciletti, Digital Design with an Introduction to Verilog HDL.

Upper saddle river, NJ, USA: Pearson Education, 2013, pp. 113 - 116.

[42] D. Blaauw, K. Chopra, A. Srivastava and L. Scheffer, “Statistical timing analysis:

From basic principles to state of the art,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 27, issue, pp. 589 – 607, April 2008.

[43] J. L. Hennessy and D. A. Patterson, Computer Organization: A Quantitative

Approach. MA, USA: Morgan Kaufmann, 2012, pp. C-58 – C-63.

[44] N. P. Jouppi, “Superscalar vs. Super-pipelined Architecture,” ACM Computer

Architecture News, vol. 16, issue: 3, pp. 71 – 80, June 1988.

https://www.sciencedirect.com/book/9780124158931
https://link.springer.com/journal/13634
https://ieeexplore.ieee.org/author/37276099100
https://ieeexplore.ieee.org/author/37301495000
https://ieeexplore.ieee.org/author/37278954400
https://ieeexplore.ieee.org/author/37266999100
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4475241

93

[45] J. Subramaniam, R. J. Kannan and D. Ebenezer, “Parallel and pipelined 2-D median

filter architecture,” IEEE Embedded Systems Letters, vol. 10, issue: 3, pp. 69 – 72,

September 2018.

[46] U. Sara, M. Akter and M. S. Uddin, “Image quality assessment through FSIM, SSIM,

MSE and PSNR - A comparative study,” Journal of Computer and

Communications, vol. 7, pp. 8-18, March 2019.

[47] R. Dosselmann and X. D. Yang, “A comprehensive assessment of the structural

similarity index,” Signal, Image and Video Processing, vol. 5, issue: 1, pp 81–91,

March 2011.

[48] M. Beltrán, A. Guzmán, and F. Sevillano, “High level performance metrics for FPGA-

based multiprocessor systems”, Performance Evaluation, vol. 67, issue: 6, pp. 417-

431, June 2010.

[49] C. S. Regazzoni and A. Teschioni, “A new approach to vector median filtering based

on space filling curves,” IEEE Transactions on Image processing, vol.6, pp. 1025 –

1037, July 1997.

[50] K. O. Boateng, B. W. Asubam and D. S. Laar, “Improving the effectiveness of the

median filter,” International Journal of Electronics and Communication Engineering,

vol.5, pp. 85-97, Jan. 2012.

[51] “Power Methodology Guide,” v14.5, Xilinx, USA, pp. 21 – 22, April 2013.

[52] “Vivado Design Suite user Guide: Power Analysis and Optimization,” v 2019.1,

Xilinx, USA, pp. 32 – 34, May 2019.

[53] D. Meidanis, K. Georgopoulos, I. Papaefstathiou, “FPGA power consumption

measurements and estimations under different implementation parameters,” in Proc.

Int. Conf. Field-Program. Technol. (FPT), New Delhi, India, Dec. 2011, pp. 1-6.

https://link.springer.com/journal/11760
https://link.springer.com/journal/11760/5/1/page/1
https://www.sciencedirect.com/science/journal/01665316/67/6

94

[54] U. Farooq, Z. Marrackchi and H. Mehrez, Tree-based Heterogeneous FPGA

Architectures Application Specific Exploration and Optimization. NY, USA: Springer-

Verlag, 2012, pp. 40 - 43.

[55] N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuit and System

Prospective. Boston, MA, USA: Addison-Wesley, 2011, pp. 55.

[56] A. P. Chandrakasan and R. W. Brodersen, “Minimizing power consumption in digital

CMOS circuits,” in Proc. IEEE, vol. 83, Apr. 1995, pp. 498–523.

[57] A. Goel, M. O. Ahmad and M.N.S. Swamy, “Design of a 2D median filter with a high

throughput FPGA implementation,” in Proc. 62nd IEEE Midwest Symposium on

Circuits and Systems, Dallas, TX, USA, Aug. 2019, pp. 1073 - 1076.

[58] Image Database: http://www.eecs.qmul.ac.uk/~phao/IP/Images/

[59] Video Database: https://media.xiph.org/video/derf/

[60] A. Goel, M. O. Ahmad and M.N.S. Swamy, “An Efficient Real-Time FPGA

Implementation of the Hierarchical Histogram-Based Median Filter for UHD Videos,”

submitted to IEEE Transactions on Circuits and Systems I: Regular Papers.

[61] “GPU vs FPGA performance comparison,” Whitepaper, Berten Digital Signal

Processing, Cantabria, Spain, May 2016.

[62] Q. F. Stout, “Supporting divide-and-conquer algorithms for image processing,”

Journal of Parallel and Distributed Computing, vol. 4, issue: 1, pp. 95–115, February

1987.

[63] X. Lu, L. Song, S. Shen, K. He, S. Yu and N. Ling, “Parallel Hough transform-based

straight line detection and its FPGA implementation in embedded vision,” Sensors, vol.

13, pp. 9223-9247, July 2013.

[64] J. Fowers, G. Brown, P. Cooke and G. Stitt, “A performance and energy comparison

of FPGAs, GPUs, and multicores for sliding-window applications,” in Proc. of the

http://www.eecs.qmul.ac.uk/~phao/IP/Images/
https://media.xiph.org/video/derf/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8919
https://www.sciencedirect.com/science/journal/07437315/4/1

95

ACM/SIGDA International Symposium on Field Programmable Gate Arrays,

Monterey, CA, USA, February 2012, pp. 47–56.

