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Abstract 

Efficient Real-Time Architectures and FPGA Implementations of Histogram-Based Median 

Filters for High Definition Videos 

Anish Goel 

 Digital filtering plays an important role in many signal processing applications. 

Filtering is performed to recover the original signal from its corrupted version. Median filter is 

a non-linear digital filter that replaces a sample in a given window by the median value of the 

samples in the window. For images corrupted with impulse noise, median filter provides a very 

high quality of filtered images. Several modifications of median filters have been proposed and 

implemented to achieve high image quality compared to that provided by conventional median 

filters. When these filters are implemented on hardware platforms such as FPGAs, the 

performance parameters, namely, the area, power and operating frequency should be taken into 

consideration in addition to the quality of the filtered image. Therefore, efficient 

implementation of median filters on FPGAs for image and video processing algorithms has 

been a topic of much interest.  

 The existing hardware-based median filters for high definition video formats do not 

always satisfy the real-time throughput requirements or are inefficient with respect to hardware 

performance parameters, such as the area and frequency. This is due to the fact that most of the 

existing techniques use sorting-based median calculation, which results in a low hardware 

performance. In this thesis, architectures that use histogram-based median computation, which 

is a non-sorting-based operation, are designed with a view of efficient hardware 

implementation. This is carried out in two parts. We design and implement efficient 

architectures that satisfy the real-time throughput requirements of full high definition (FHD) 

videos in the first part and that of ultra high definition (UHD) videos in the second part. 
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In the first part, an efficient real-time histogram-based median filter that uses the 

concept of bit-plane-slicing and adaptive switching median filter (ASMF) is designed and 

implemented on FPGAs. We term this architecture as hybrid architecture for median filtering 

(HAMF). The proposed HAMF computes an approximate median, since it uses only the most 

significant B-bits of the pixel values for median calculation. As a result, the algorithmic level 

implementation of the proposed HAMF results in a slight degradation in the filtered image 

quality compared to that provided by ASMF. The proposed HAMF provides a significant 

improvement over ASMF in terms of the area and operating frequency, when implemented on 

different generation FPGAs. Analysis of the different parameters, such as the number of bit-

planes used in the computation of the median and the number of pipelining stages, is carried 

out to study the trade-off between the quality of the filtered image and hardware performance. 

 Although the FPGA implementation of the proposed HAMF provides a very high 

operating frequency, the quality of the images filtered by its algorithmic level implementation 

decreases with increasing window size and noise density. This filter may be suitable for 

applications that require FHD filtering with cost constraints, but not for applications where the 

output image quality is as important as the hardware performance. Hence, in the second part, 

we design an efficient and real-time architecture of the hierarchical histogram-based median 

filter (HHMF). The proposed architecture is designed using a full synchronous pipeline, a 

synchronous accumulate-and-compare unit, and is scalable. The FPGA implementation of the 

proposed architecture of HHMF can perform real-time filtering of 4K and 8K UHD videos. 

The quality of the image filtered by HHMF is not compromised as in the case of HAMF, since 

HHMF uses all the bit-planes and computes the actual median. Although the FPGA 

implementation of HHMF results in more area utilization, the proposed implementation is more 

economical than a GPU-based HHMF implementation and provides a better throughput. 
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Chapter 1 

Introduction  

1.1 Median Filtering 

Filtering is one of the most important topics in signal processing applications and is used in 

recovering the original signal from a corrupted signal.  Median filter is a non-linear filter used 

for smoothing 1D and 2D signals and is based on the median operation. Median filter replaces 

a noisy value in a set of given values by the median of all the values within this set. In digital 

images, noise is a random variation of the brightness or color information. Median filter is used 

to remove such random variations and it is very effective in removing impulse noise in images. 

When a median filter is applied to a window of a noisy image, it replaces the center pixel of 

the window by the median of the pixels within. For filtering images affected by salt and pepper 

noise, a type of impulsive noise, median filter has proved to be very effective in providing high 

quality filtered images, even for a high density of salt and pepper noise. Since median filter is 

based on a windowing operation, its window size Ws is an important parameter, which dictates 

the number of input values to be used, and hence, the number of operations required for the 

computation of a median value. In image processing, the window size Ws of a median filter is 

always chosen as odd so that the pixel to be filtered is surrounded by equal number of pixels 

on all sides. As a result, each window is a square window and its total size in terms of the 

number of pixels is Ws
2. Median filter with higher window sizes may provide a higher quality 

filtered image. However, the median operation is costly, and its complexity increases with 

increasing window size.  

The most common method of filtering an image using a median filter is to consider 

successive overlapping windows of the image and apply the median operation on each of the 
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windows to generate the output image. As a result, each pixel of the input image is replaced by 

the median of the pixel values of the elements of the window corresponding to that pixel. Such 

a type of median filter is called conventional median filter (CMF). Although CMF is effective 

in removing noise from an image, it also filters the edges in the image, resulting in a smooth 

output image. In a case where all pixels of the input image are not affected by noise, such a 

smoothing effect results in a low quality output image. Hence, for images affected by salt and 

pepper noise, an adaptive switching median filter (ASMF) is used. This type of filter replaces 

the center pixel of the input window by the median of the window, only if an impulse noise is 

detected in the center pixel. If an impulse noise is not detected, the input pixel value is passed 

on to the output. As a result, the non-noisy pixels remain unaltered and the edges in the input 

image are not smoothened.   

Median filters have been implemented on various platforms to provide high quality filtered 

images and high performance with respect to the speed. However, due to increase in the 

demand of real-time image and video processing, many hardware-based architectures, such as 

those in [1] and [2], have recently been proposed and implemented for achieving high 

processing speeds. Recent trends in increasing frame resolutions from full high definition 

(FHD) to ultra high definition (UHD) require high speed architectures for image and video 

processing algorithms such as for filtering, edge detection, segmentation and morphological 

operations. Among these, filtering is not only an important image pre-processing step, but a 

stand-alone operation for images corrupted by noise [3].  

An image may be affected by different types of noises such as Gaussian, Poisson, speckle 

noise or impulsive noise. The possible sources of impulsive noise in images are defects in the 

sensing or capturing device, memory corruptions and shot noise [4]. These sources of noise 

affect an image in such a way that some of the pixel values are set to a minimum value whereas 
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some others to maximum value, a phenomenon that characterizes salt and pepper noise [5]. To 

recover the original image from an image corrupted by salt and pepper noise, spatial-domain 

filtering is typically used, in which the best match for each corrupted pixel is calculated. 

Finding a pixel from the neighborhood or a close approximation based on the neighborhood 

pixels to replace the corrupted pixel is a typical approach in spatial-domain image filtering. In 

this approach a 2D window surrounding the noisy pixel is used for processing. Although 

algorithms and techniques have tried to solve the problem of retrieving the original pixels from 

the corrupted pixels, it may be interesting to note that the actual value of the corrupted pixels 

may never be known. This is supported by the fact that none of the existing algorithms of 

median filtering provides infinite peak signal-to-noise ratio (PSNR) between the original image 

and the image filtered from its noisy version, even in the presence of low density noise. 

Median filter provides better results compared to that provided by many other filters for 

images corrupted with impulsive noise [6]. Median filter is based on the median operation, 

where a value M is selected from a set of N values such that there are (N-1)/2 values greater 

than M and (N-1)/2 values less than M, assuming that N is odd. A simple way to calculate M is 

to sort the N input values in ascending order and select the element at position  

[(N-1)/2] + 1 as the median, which is the basic sorting-based median filtering algorithm [7]. A 

sorting-based median filter is typically implemented using the classical sorting network [8], 

which has multiple compare-and-swap (CS) units, as the ones used in [9]. This type of 

implementation using sorting network is very costly in terms of the hardware resources, since 

the number of cascaded stages of CS unit increase with increasing window size [10]. These 

cascaded stages also reduce the speed of the filtering operation, resulting in a low throughput. 

Fig. 1.1 shows the typical steps of median filtering of an image of size m × n. As mentioned 

earlier, the most important parameter of a median filter is its window size Ws.  In Fig.1.1 Ws is 
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considered to be 5. To start the filtering operation, the input image is padded on all sides with 

border pixels. The width of the border Np resulting from the pixels padded to the input image 

is given by 

𝑁𝑝 = (𝑊𝑠 − 1)/2     (1.1) 

assuming that Ws is odd.  

 

Figure 1.1. Median filtering steps. 

Starting from the top left corner of the padded image, overlapping windows are 

successively processed in a raster pattern. Processing involves calculating the median y[i,j] of 

the pixel values in the window considered using  

𝑦[𝑖, 𝑗] = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑥[𝑖, 𝑗] ∈ 𝑊𝑠}                 (1.2) 

where x [i, j] is the set of pixels surrounding the pixel under consideration. The output image 

is generated by replacing each image pixel by the median calculated using Eq. (1.2). Since the 

window size Ws is odd, a pixel to be processed is surrounded by equal number of pixels on each 

side. Hence, the minimum value of Ws is 3, which forms a 3 × 3 window with the center pixel 

surrounded by a single pixel in each of the horizontal, vertical and diagonal directions.  
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1.2 Literature Review 

Several algorithms and implementations have been proposed and implemented on different 

platforms such as CPUs, GPUs, ASIC and FPGAs. In this section, we discuss many relevant 

algorithms, techniques and implementations by categorizing them into one of the five following 

categories. These categories are stated listed along with their main attributes. 

1. Computationally complex schemes: Require a special platform such as a GPU or a 

parallel processing architecture for implementation. 

2. ASIC implementations: Implemented as a dedicated IC using VLSI ASIC design 

flow. 

3. Technique with approximate median computation: Implemented to provide 

approximate median values for optimizing hardware performance. 

4. Sorting-based techniques: Use the conventional sorting-based median calculation. 

5. Histogram-based techniques: Use histogram-based median calculation. 

1.2.1 Computationally Complex Schemes 

Computationally intensive median filtering techniques such, as in [11] and [12], have been 

proposed and implemented to provide high performance with respect to the quality of the 

filtered images. It is to be noted that a computationally complex technique imposes processing 

time restrictions on the platform on which the algorithm is implemented, and hence, the 

throughput of such filters in terms of the number of filtered frames per second (fps) is low. As 

a result, these algorithms are implemented on GPUs to improve the performance. For achieving 

high performance of the complex algorithms, hardware platforms such as FPGAs, or parallel 

processing architectures [13] - [15], are used for their implementations. Such implementations 

yield performance equivalent to that provided by the GPU implementations.  
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1.2.2 ASIC Implementations 

Although architectural improvements focus on the performance of filters with respect to area, 

delay and power, the lowest level of abstraction of a digital system lies in the underlying VLSI 

technology. An ASIC implementation of an area efficient 1D median filter is presented in [16]. 

Another ASIC implementation, which is energy efficient and yields a high-throughput is 

implemented using 90-nm technology in [17] and can operate in GHz range. A modular design 

of the filter in [17] is presented in [18], which provides the highest ever reported operating 

frequency of over 2 GHz for median filters. These techniques use a basic building block of 

partial median computing unit to implement 1D median filter, which is based on the concept 

of bit-plane-slicing and is responsible for area and delay optimization. Although the ASIC 

implementations provide the best hardware performance, they are still limited with regard to 

issues like time-to-market, cost, flexibility and yield.  

1.2.3 Technique with Approximate Median Computation  

When the subjective quality of an image is of concern, there is no significant loss of visual 

information even if some of the pixels are not retrieved to their near-original values. As a result, 

a technique based on approximate arithmetic in [19], is implemented to optimize hardware 

performance parameters such as the area and power at minimal cost of image quality. 

Approximate arithmetic is typically used at the circuit level to calculate an approximate output 

[20]. Depending on the application, a drop in the image quality is acceptable in return to the 

hardware performance parameters.  

1.2.4 Sorting-Based Techniques 

Many modifications of the classical sorting network have been proposed and implemented to 

improve the hardware performance of median filters. Techniques presented in [21], [22] and 
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[23] use row-wise, column-wise and diagonal-wise sorting, whereas the technique presented in 

[24] uses a batcher’s bitonic sort [8] to speed up the process. The latency of a median filtering 

architecture directly depends on the number of sorting stages that are cascaded in the 

architecture to calculate the median values. Although most of these architectures use 

pipelining, however, all the stages in a sorting network have the same latencies, and hence, a 

longer pipeline in the architecture will not increase the throughput [25]. 

1.2.5 Histogram-Based Techniques 

To overcome the disadvantages of sorting-based algorithms, non-sorting histogram-based 

algorithms, such as [26], [27] and [28], have been developed for faster computation of median 

values. However, these algorithms are suitable for CPU or GPU implementations. As for an 

implementation on an FPGA, the work in [29] provides the first hardware implementation of a 

non-sorting-based median filtering using histogram-based operation. Another implementation 

of the architecture of [29], is proposed in [30] for larger window sizes. However, these 

implementations use read-only-memory (ROM) and process all bit-planes of an image, 

resulting in a low operating frequency. 

Algorithms implemented on GPU for high performance, such as the ones in [31] and [32] 

are based on histogram calculation. Thus, histogram-based techniques are capable of providing 

architectures for real-time filtering of FHD and UHD videos. Hardware implementations of 

histogram-based median filter provides a low throughput as in [29], in view of the memory 

bins used for storing histogram values. On the other hand, hardware implementation of the 

conventional histogram-based technique is not feasible without the use of memory bins, since 

for a high window size, the resource requirement will exceed that available in FPGAs. 

An alternate to the histogram-based median filtering is the hierarchical histogram median 

filter (HHMF) [33], which processes the upper half most-significant bits (MSB) of the input 
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data first followed by processing the lower half least-significant bits (LSB), to obtain the 

complete median value in two steps. The hierarchical histogram-based median filtering 

algorithm presented in [33] is designed for GPUs and provides a performance in terms of speed 

which is superior to that of several other algorithms on the same platform. The hierarchical 

histogram-based median filtering is based on the same memory bin approach that is used in 

histogram-based median filter, the difference being that the number of bins is reduced in view 

of the reduction in the range of input values. This is a consequence of splitting the pixel values 

into two parts.         

1.3 Real-Time Implementation Requirements of FHD and UHD Videos 

The two most important parameters of a video are its frame resolution and the frame rate. The 

former specifies the size of each frame, whereas the latter is related to the smoothness of the 

video playback. In general, a higher resolution and a higher frame rate provide a superior 

quality video. A high definition video is a high-quality video with frame resolutions higher 

than that of its predecessor, the standard definition video. Any video having more than 480 

vertical lines in a frame is considered to be a high definition video. At present, FHD and UHD 

are the most commonly used standardized video formats. The typical frame rates of FHD 

videos as well as that of UHD videos are 30 fps and 60 fps. The typical frame resolutions of 

FHD and UHD videos are as follows:   

a. FHD, 2K = 2048 × 1080 

b. UHD, 4K = 3840 × 2160  

c. UHD, 8K = 7680 × 4320 

The pixels in a frame are placed in the same way as the elements are placed in a rectangular 

matrix. The frame resolution is the number of pixels present horizontally in the frame 

multiplied by the number of pixels present vertically in the frame, which gives the total size of 
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the frame in terms of the number of pixels. A higher number of pixels results in more resolution, 

providing a better quality image. The frame resolutions of FHD and UHD videos are also 

referred by numbers 2K, 4K and 8K, since these numbers approximately equal to the number 

of pixels in the horizontal direction of a frame. (Note: 1K binary is equivalent to 1024 in 

decimal) 

In order to satisfy the real-time processing requirements of the FHD and UHD videos, a 

system shall process PN number of pixels each second. Table 1.1 shows the values of PN for the 

two high definition formats considered. It is seen from this table that around 2 billion pixels 

need to be processed each second for the real-time processing of the highest resolution of 8K 

at the rate of 60 fps, making it a challenging task to design a real-time architecture to 

accomplish it. As a result, only ASIC implementations such as the ones provided in [18] can 

satisfy the real-time requirements of such a system. Although there exists an implementation 

of contextual image processing architecture of median filter (CIPMF) presented in [34] that 

can satisfy the real-time requirements of 4K UHD video at rate of 60 fps, it is limited to window 

size Ws = 3 and only 4K resolution. As the CIPMF architecture uses sorting-based method, its 

throughput will decrease with increasing window size, making it unsuitable for UHD 

applications.  

Table 1.1. Number of pixels to be processed for real-time processing of FHD and UHD videos 

Standard Resolution PN @ 30 fps PN @ 60 fps 

FHD, 2K 1920 × 1080 62,208,000 124,416,000 

UHD, 4K 3840 × 2160 248,832,000 497,664,000 

UHD, 8K 7680 × 4320 995,328,000 1,990,656,000 
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1.4 Motivation and Objectives of the Thesis 

Most of the existing techniques for the design of hardware architecture for median filtering 

focus on enhancing the hardware performance by modifying an existing algorithm or by adding 

another layer of complexity to optimize some of the hardware performance parameters. This 

optimization is achieved at the expense of some of the other performance parameters. Our 

objective in this thesis is to investigate the problem focusing primarily on bit-plane-slicing and 

architecture design and implementation of the histogram-based median filtering operations. 

Since the sorting-based techniques do not always satisfy requirements of the real-time 

filtering of high definition video formats or are inefficient, we consider the histogram-based 

median filtering techniques as the basis for achieving real-time performance for the high 

definition video formats considered. While providing high throughput using histogram-based 

techniques, we also analyze the effect of the implementations of the proposed hardware 

architectures on other performance parameters.  

We present two different architectures for high-speed median filtering along with their 

FPGA implementations. The proposed median filter designs are based on the histogram 

technique and implemented with a pipelined architecture to increase their maximum operating 

frequencies. In the first design, the speed of the median filter is enhanced by designing a 

hardware that processes a limited number of bits rather than all the bits of the pixels for 

calculating approximate median values. This design provides real-time median filtering of 

FHD videos at the cost of minimal image quality degradation. Since the proposed technique 

does not utilize all bit-planes of an image or video frame, the resulting hardware is simplified 

resulting in a reduced area utilization as an added advantage. 

In the second part of this thesis, we design an efficient architecture for the hierarchical 

histogram-based median filter, which satisfies the real-time pixel clock requirement of the 
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UHD videos when implemented on Xilinx UltraSclae+ MPSoC. The proposed architecture 

ensures that there is no degradation in the output image quality by calculating the exact median 

values. This is the first hardware implementation of the hierarchical histogram-based median 

filter and provides a performance superior to that provided by two of the NVIDIA GPUs in 

terms of the throughput. 

The main contributions of the work presented in this thesis can be summarized as follows: 

1. Design of histogram-based median filters and FPGA implementations with 

throughput as the primary criteria of optimization. 

2. Combination of multiple techniques to formulate a hybrid architecture for median 

filtering to provide a high throughput with minimal effect to the image quality. 

3. Analysis of the effect of pipeline latency on the hardware performance and that of 

the number of bit-planes on the quality of filtered images. 

4. Design of an efficient hardware architecture for the hierarchical histogram-based 

median filter to provide a high throughput implementation on FPGAs and MPSoCs. 

5. Analysis of the implementation of the proposed hierarchical histogram-based 

median filter architecture on parameters such as area and power with different 

window sizes. 

6. Analysis of throughput of the implementations of the proposed median filter 

architectures with respect to real-time requirements of FHD and UHD videos and 

their comparison with existing implementations. 

1.5 Organization of the Thesis 

In Chapter 2, a brief review of the concepts that characterize the various architectures of sorting 

and non-sorting based median filters is carried out. The concept of bit-plane-slicing and the 
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decision-based median filtering are also explained in this chapter and relevant examples are 

given.  The performance parameters used in this work to evaluate the results are presented in 

detail. Chapter 3 presents the design and implementation of the proposed histogram-based 

hybrid architecture for median filtering (HAMF). The quality of the images filtered with the 

algorithmic level implementation of the proposed HAMF, using the PSNR and SSIM metrics 

is analyzed. An analysis to examine the effect of the number of bit-planes on the quality of 

filtered image and to determine the effect of the number of pipeline stages on the area is also 

carried out in this chapter. In Chapter 4, a hierarchical histogram-based median filtering 

(HHMF) algorithm is first introduced, and then a hardware architecture and its FPGA 

implementations are presented. Results of implementation for different window sizes are 

presented and compared with that of HHMF implemented on a GPU platform. Finally, some 

concluding remarks on the investigation carried out in this thesis are made in Chapter 5. 
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Chapter 2  

Background Material 

This chapter presents the details of the sorting-based and non-sorting-based median filtering 

techniques in order to understand their underlying complexities. The concept of impulse noise 

in images and its removal is presented with some experimental results. An analysis of the effect 

of noise adaptive switching median filter on the quality of a filtered image is also presented in 

this chapter. The concept of bit-plane-slicing is discussed with an appropriate example. This 

chapter also presents the underlying concepts used for improving the performance of a 

hardware-based architecture using pipelined processing and reducing the combinational delay. 

The various parameters considered for the performance evaluation of the proposed filter 

architectures are also discussed. 

2.1 Median Filtering Techniques 

The median filtering algorithms used in image and signal processing are broadly classified into 

two categories, namely, sorting-based and non-sorting-based. The sorting-based median filters 

perform a sorting operation on the input elements in order to find the median value, whereas 

the non-sorting-based median filters are typically based on histogram operation for median 

calculation. Each of these techniques is discussed in detail in the following sub-sections.  

2.1.1. Sorting-based Median Filter 

A sorting based median filter is based on the bubble sort technique [35]. This type of filter 

compares every two consecutive elements in the input vector and swaps them, if value of the 

first element is greater than the value of the second. This type of filter consists of 2 phases – 

the odd phase and the even phase. In the odd phase, every odd indexed element is compared 
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with the next even indexed element. In the even phase, every even indexed element is compared 

with the next odd indexed element. The filter structure is formed by deploying N cascaded 

stages of the odd and even phases placed alternately, where N (an odd value) is the number of 

elements in the input array. After the input vector is sorted, the element from the output vector 

at position (N + 1)/2, is selected as the median. 

Fig. 2.1. shows an example of the median calculation for an input vector consisting of 

nine values, using the sorting-based median filter. The number of stages of compare and swap 

operation required in this example is 9 and the last stage generates the sorted vector. The value, 

6, at position 5 of the output vector is the median of the input vector. 

 

Figure 2.1 An example of sorting-based median calculation. 

A hardware architecture of the sorting-based median filter can be designed using the 

sorting network as in [8], which uses multiple units of a processing element, called as the 

compare-and-swap (CS) unit. Each CS unit consists of a comparator and a multiplexer. The 

network sorts the input values and the median value is stored in the appropriate output register. 

Fig. 2.2 (a) shows an architecture of the sorting network used for sorting ten input elements. 

Each block in this sorting network is the CS unit, which is similar to the one used in [9]. The 

architecture of a CS unit is shown in Fig. 2.2 (b). The CS unit compares two input numbers, 

namely, A and B, and generates the lower value on output L and the higher value on output H. 
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A register is implemented inside the CS unit that serves as the pipeline register for the sorting 

network. 

 

(a)             (b) 

Figure 2.2 (a) Network for sorting 10 input values (b) A compare and swap unit. 

Although this is one of the simplest hardware architectures for sorting-based median 

calculation, the number of stages in a sorting network increases linearly with number of input 

elements [8]. As a result, the pipeline latency of a sorting network for N input elements is N. 

The number of CS units required in a network to sort N input elements is  

N [(N – 1)/2], which increases rapidly with the value of N. The high latency and the high area 

contribute to the low efficiency of a sorting-based median filter. 

2.1.2. Non-sorting-based Median Filter  

To overcome the disadvantages of a sorting-based median filter architecture, non-sorting-based 

techniques, which are mainly histogram-based, are used for median calculation. The median of 

the input vector using histogram-based technique is calculated from the histogram of the input 

data. The histogram values H0 to Hi of the input data in the range 0 to i is calculated by counting 

the number of occurrences of each value of the input data in this range. Next, the values H0 to 

Hi are successively added until the result of the addition is greater than or equal to ⌈N/2⌉ 

(assuming N is odd). The index i of the last added Hi is the median.  
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 Fig. 2.3 shows an example of the median calculation using the histogram-based 

operation for the same values that were considered in the example of the sorting-based median 

calculation. The count of occurrences of the values of the input data in the range (0 to 7) is 

calculated as the histogram values represented by Hi. These values are added successively in 

an accumulator. On the sixth iteration of the addition operation, the result in the accumulator 

is ≥ ⌈N/2⌉, which in this case is equal to 5. This results in a median value of 6. 

 

Figure 2.3 An example of histogram-based median calculation. 

  

The steps to generate Hi and calculate the median are elaborated in Fig. 2.4. It is 

observed from this figure that the first step is to compare all the input elements with all the 

possible values that an element can take (0 to 7 in this case).  

 

Figure 2.4 Histogram generation and median calculation. 
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Hence, for nine input values there are seventy-two comparators, since each of the nine input 

values are compared with the range values 0 to 7. This comparison produces an output of 9 sets 

of binary values with 8 bits in each set. Next, the respective bits (0 to 7) of each set are added 

together and the output of the addition generates the histogram of the input data. These 

histogram values are added successively and after each step, the result is compared with ⌈N/2⌉, 

which is equal to 5 in this case. 

2.2 Impulse Noise Removal 

This section presents experimental results of filtering images corrupted by salt and pepper 

noise. Images with different density of salt-and-pepper noise are filtered using a median filter 

with different window sizes to analyze the quality of the output image with respect to the noise 

density and window size. The smoothing effect, that occurs due to the filtering of the edge 

pixels in the image, is analyzed for different window sizes. Experimental results of images 

filtered using an adaptive switching median filter are presented to analyses its effectiveness in 

preserving edges. 

2.2.1 Effect of Window Size and Noise Density 

The value of a noisy pixel in an image is quite far from the range of values of the other pixels 

in a given window. Median filter is very effective in removing impulse noise in images [36] 

and replaces the noisy pixels by the median of the respective window as the best match for the 

noisy pixels. This best match depends on the size of the window and the density of noise. We 

first examine the effect of filtering an image with low noise density using a median filter. Fig. 

2.5 (a) shows an original image and its corresponding noisy version having 5% salt and pepper 

noise density in Fig. 2.5 (b). Applying a median filter to the noisy image with window sizes 3, 

5, 7 and 9 results in the filtered image shown in Figs. 2.5 (c), (d), (e) and (f), respectively. 
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It is observed from Fig. 2.5 (c - f) that the noisy pixels in Fig. 2.5 (b) are not visible in the 

filtered images. However, there is a difference between the filtered images in (c), (d), (e) and 

(f) that can be clearly seen as a result of the smoothing effect, which increases with increasing 

window size. The smoothing effect is observed due to the pixels of the edges in the image being 

replaced by the median value of the corresponding window. By subjective evaluation of these 

figures, we can say that amongst all the filtered image, the image in (c) is the closest 

approximation to the original image in (a). 

       
(a)                                               (b) 

       
          (c)     (d) 

       
         (e)     (f) 

Figure 2.5 (a) Original Image (b) Image with 5% noise density (c-f) Images filtered using CMF 

with Ws = 3, 5, 7 and 9, repectively. 
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We now examine the effect of a more significant noise density (50%) on the filtered images 

with the same image and the same window sizes as in the previous experiment. Fig. 2.6 (a) 

shows an original image, its corrupted salt and pepper noisy version having 50% noise density 

in Fig. 2.6 (b) and the filtered images with Ws = 3, 5, 7 and 9 in Figs. (c), (d), (e) and (f), 

respectively. 

       

(a)                                               (b) 

       

          (c)     (d) 

       

         (e)     (f) 

Figure 2.6 (a) Original Image (b) Image with 50% noise density. (c-f) Images filtered using 

CMF with Ws = 3, 5, 7 and 9, repectively. 
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It is seen from Fig. 2.6 that the noisy pixels are not completely filtered out using lower 

window sizes (3, 5 and 7). However, the image in Fig. 2.6 (f) filtered with Ws = 9 does not 

seem to have any noisy pixel when examined subjectively. As a result, we can say that the 

image in (f) is the best approximation to the original image in (a) amongst all the filtered images 

(c), (d), (e) and (f). From these experiments, we can conclude that higher window sizes are 

better suited images corrupted with high density noise. For an image corrupted with low density 

noise, a filter with low window size provides a better-quality filtered image. Median filters 

such as the ones in [37] and [38] are adaptive with respect to window size, which changes 

depending on the noise density in the corrupted image and provides improved results.  

2.2.2 Switching Median Filter 

For a noisy image, the intensity of the pixel xij at the location (i,j) is described by the probability 

density function f(xij) given by following equation. 

𝑓(𝑥𝑖𝑗) =  {

𝑝𝑎

1 − 𝑝
𝑝𝑏

 

𝑓𝑜𝑟 𝑥𝑖𝑗 = 𝑎

 𝑓𝑜𝑟 𝑥𝑖𝑗 =  𝑦𝑖𝑗

𝑓𝑜𝑟 𝑥𝑖𝑗 = 𝑏

}      (2.1) 

where a is the minimum intensity, b is the maximum intensity, pa is probability of generation 

of intensity a, pb is the probability of generation of intensity b, noise density 

p = pa + pb, and yij is the intensity of pixel at location (i,j) in the corresponding uncorrupted 

image. For an efficient removal of the salt and pepper noise, the image pixels are filtered only 

if they are found to be equal to values a (minimum intensity) or b (maximum intensity) [39]. 

This type of a filter is commonly referred to as adaptive switching median filter (ASMF) or 

decision-based median filter. To eliminate the smoothing effect, a noise adaptive switching 

median filter performs filtering only if an impulse noise if detected in the pixel; otherwise, the 

input pixel is left un-filtered.  
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We analyze the effect of ASMF on an image corrupted by moderate density (25%) salt-

and-pepper noise. Fig. 2.7 (a) shows an original image, its corresponding noisy version with 

25% salt and pepper noise density in Fig. 2.7 (b) and images filtered using ASMF with Ws = 3, 

5, 7 and 9 in Figs. 2.7 (c), (d), (e) and (f), respectively.  

       

(a)                                               (b) 

       

          (c)     (d) 

       

         (e)     (f) 

Figure 2.7 (a) Original Image. (b) Image with 25% noise density. (c-f) Images filtered using 

ASMF with Ws = 3, 5, 7 and 9, respectively. 

 



22 
 

It is observed from this figure that some of the noisy pixels are not filtered with Ws = 3; 

however, with Ws = 5, 7 and 9, the output images do not seem to have retained any noisy pixel 

and also retain the sharp edges of the original image. By adaptivly changing the window size 

and performing decision-based filtering, algorithms such as in [40] provide very high quality 

filtered images.   

2.3 Bit Plane Processing in Images 

Pixels in a digital image are represented by numbers in the binary format using a set of bits. 

For example, in a gray-scale image, pixels have an intensity that ranges from 0 to 255. The 

numbers in this range can be represented using an 8-bit binary number. Fig. 2.8 shows the 8 

bit-planes of an image, each plane consisting of a single bit of all the pixels of the image.  

Representation of an image with one or more bits of the byte is called as bit-plane-slicing. 

 

Figure 2.8 Bit-planes in a gray-scale image. 

 To understand the contribution of each bit plane in the overall visualization of an image, 

Fig. 2.9 shows a sample image along with 8 separate bit-planes that are shown as separate 

binary images. It is observed from this figure that the higher bit-planes contribute more to the 

visual data in an image that the lower bit-planes do. The lower bit-planes add small details to 

an image, which may not be visible during a subjective examination.  
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Figure 2.9 Bit planes of a sample gray scale image. 

To visualize the effect of bit-plane-slicing, we consider the image shown in Fig. 2.10 

(a).  Fig. 2.10 (b) shows the image generated using the most significant 4 bit-planes and 

ignoring the lower 4 bit-planes of the original image shown in Fig. 2.10 (a).  

           

(a)          (b) 

Figure 2.10 (a) Original image (b) Image generated using the most significant 4 bit-planes. 
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It can be observed from this figure that the image in Fig. 2.10 (b), generated using the 

most significant 4 bit-planes, conveys all the visual information of the original image. 

However, the size of the image in (b) in terms of the computer memory is half to that of the 

image in (a). It is noted that using an image with fewer bit-planes instead of the full image will 

result in a simplification of the processing system. 

2.4 Performance Improvement of a Hardware-based Architecture 

The performance of a hardware-based architecture in terms of the delay can be improved by 

reducing the delay of the underlying circuits that are used in the architecture [41]. This section 

discusses the basic techniques that are used to reduce the delay in the hardware design for 

achieving higher operating frequencies.  

2.4.1 Reducing Circuit Delay by Parallel Processing 

In digital systems, the delay of a circuit is determined by the number of cascaded stages of 

combinational logic blocks from the input to the output. This delay can either be reduced by 

reducing the number of stages, or by reducing the delay of each stage.  Fig. 2.11 (a) shows Q 

number of cascaded combinational blocks (CB), each with a delay of δ. As a result, the total 

latency of this circuit is Q∙δ. Fig. 2.11 (b) shows a rearrangement of the Q blocks in a different 

format, where the number of cascaded blocks from the input to the output is reduced by 50%. 

As a result, the delay of the circuit is reduced to (Q∙δ/2). Such a parallel arrangement of the 

blocks is possible only if there is no dependency between the upper and lower blocks in Fig. 

2.11 (b). For a digital system having multiple paths from the input to the output, each having a 

different delay, the delay of the longest path is considered as the maximum combinational 

delay. This path is known as the critical path delay [42], and the maximum operating frequency 

of the circuit is calculated using the critical path delay.  
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(a)          (b) 

Figure 2.11. (a) Cascaded blocks (b) Cascaded blocks in a parallel arrangement. 

2.4.2 Increasing Operating Frequency using Pipelining 

The maximum frequency at which a circuit can operate is the inverse of its critical path delay. 

If the delay of the critical path is reduced, the operating frequency of the circuit will increase. 

The method used for reducing the critical path delay is shown in Fig. 2.12. Fig. 12 (a) shows 

two D flip-flops (FF) with a combinational circuit between them. The delay of this 

combinational circuit is δ. In Fig.2.12 (b), the same combinational circuit is split into two stages 

(CC I and CC II), each having a delay of δ/2 and a pipeline register is inserted between the two 

stages. As a result, the operating frequency of the circuit in (b) is twice that of the circuit in (a). 

This type of approach is possible only if the circuit can be split into two or more stages.  

 

Figure 2.12. (a) Combinational circuit as a single unit (b) Combinational circuit split into 

two stages. 
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 Super-scaler and super-pipelined architectures are commonly used in designing CPUs 

and GPUs for increasing their throughput [43]. While the super-scaler architecture aims at 

replicating the hardware for parallel processing, the super-pipelining aims at making the stages 

of a processing unit as shallow as possible by splitting them and adding pipelining registers 

[44]. Architecture such as [45] takes advantage of pipelining as well as parallel processing for 

designing a median filter, which can provide a very high throughput.  

2.5 Performance Parameters used for Evaluation 

In this section, we discuss the various performance parameters used for the evaluation of the 

implementations of the proposed median filter architectures. The proposed hybrid architecture 

for median filtering provides a high throughput at the cost of the output image quality. To 

evaluate the quality of the images filtered using the proposed hybrid architecture for median 

filtering, we calculate the peak-signal-to-noise-ration (PSNR) and the structural similarity 

index (SSIM) between the original and the filtered images. Since the median filter architectures 

presented in this thesis are implemented on FPGAs, parameters such as the area (in terms of 

slice-LUTs and slice-registers), frequency and power are used to evaluate the hardware 

performance. To analyze if an implementation can satisfy the real-time requirements of the 

video format considered, we calculate the throughput of the implementation in terms of the 

number of frames it can filter per second. 

2.5.1. Filtered Image Quality 

The quality of a filtered image can be judged qualitatively by visualizing the image and 

quantitatively by calculating the parameters, such as PSNR and SSIM.  

a) Peak signal-to-noise ratio 

The peak signal-to-noise ratio (PSNR) is the ratio between the maximum possible signal power 

and the power of the noise distorting the signal [46]. The PSNR is given by 
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𝑃𝑆𝑁𝑅 = 20 log [
255

𝑅𝑀𝑆𝐸
]                                            (2.2) 

where RMSE is the root mean square error and is the equal to the square root of the mean 

square error (MSE), which is calculated using 

𝑀𝑆𝐸 =  
1

𝑚 × 𝑛
∑ ∑[𝐼′(𝑖, 𝑗) − 𝐼(𝑖, 𝑗)]2

𝑛

𝑗=1

𝑚

𝑖=1

                              (2.3) 

where I is the original image and I’ is the filtered image, both of size m × n. 

b) Structural Similarity Index 

Structural similarity index (SSIM) is used to compare the luminance, contrast and structure of 

two different images. It can be treated as a similarity measure of two different images. SSIM 

of two images X and Y is defined as [47] 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =  
(2𝜇𝑥𝜇𝑦 + 𝐶1) ×  (2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥2+ 𝜇𝑦2 + 𝐶1) ×  (𝜎𝑥2 + 𝜎𝑦2 + 𝐶2)
                       (2.4) 

where  𝜇𝑖 (i = x or y) is the mean intensity, 𝜎𝑖 (i = x or y) is the standard deviation, and Ci (i = 

1 or 2) is the constant to avoid instability when 𝜇𝑥2+ 𝜇𝑦2  is very close to zero and is defined 

as 𝐶𝑖 = (𝐾𝑖𝑅)2, where Ki << 1 and R is the dynamic range of pixel values. For example, R = 

255 for 8-bit gray scale image. 

2.5.2. Hardware Implementation Parameters 

The typical parameters used for the performance evaluation of an FPGA-based hardware 

implementation are area, delay and power [48]. After implementation of the design on an 

FPGA, the area is reported by the tool (Xilinx Vivado design suite) in terms of the slices. The 

tool reports the number of slice-LUTs that are used to map logic, and the number of slice-

registers that are used as flip flops for storage. These numbers provide a clear idea of the area 

of the design on a FPGA device. The implementation tool also reports the total delay  

(net delay + logic delay) for the implemented design, after inserting the constraints in the timing 
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constraints editor. Using this delay, the maximum operating frequency of the design is 

calculated. The throughput T of a video processing system in number of frames per second 

(fps), of an implementation is given by 

𝑇 =  𝜈 [
(𝑓𝑚𝑎𝑥  ×  106) +  𝐿

𝐹𝑠

]                                              (2.5) 

where ν is the number of cores of the architecture, 𝑓𝑚𝑎𝑥  is maximum operating frequency in 

MHz, L is pipeline latency and Fs is size of the frame in number of pixels. Since L is very small 

compared to the operating frequency, it may be ignored. For all the implementations presented 

in this thesis, each core processes 1 pixel per clock and the size of each input pixel is considered 

as 8-bits. For filtering color images having pixel size of 24-bits, an approach presented in [49] 

can be used to map the three-dimensional color vectors into one-dimensional space (8-bit data). 

The mapped data can be filtered using the median filters presented in this work, providing the 

same throughput T, as that given by Eq. (2.5). Another method of filtering a color image is to 

filter only the luminance plane using CMF and then converting back to the original color space 

[50].  

 The Xilinx Xpower analyzer tool reports the static and dynamic powers of the 

implemented design along with their sum, which is the total power of the design. Although in 

this work, the primary hardware performance parameters are area and delay, we analyze the 

power reported by the Xpower analyzer tool by vector-less analysis of the implemented netlist, 

for various implementations in Chapter 3 and Chapter 4. The Xpower analyzer tool estimates 

the total on-chip power by assigning the default signal rates and static probabilities to the design 

nodes [51] [52]. Although the power estimated by this tool gives a rough estimate of the total 

on-chip power of the design [53], we can analyze the total on-chip power as a function of the 

pipeline latency, number of the most significant bits and window size. We specify the operating 
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frequency of the design in the Xpower analyzer tool, in order to obtain a better estimate of the 

total on-chip power. 

2.6. Summary 

This chapter has presented details of the sorting and non-sorting-based median calculation 

techniques that are primarily used in the implementation of median filters. The advantages and 

disadvantages of the sorting and non-sorting-based median calculations have been discussed 

with respect to hardware implementation. An analysis of the noise density and window size 

has been provided with respect to the quality of the filtered image. Background techniques used 

in our work, such as the decision-based median filtering and bit-plane-slicing have been 

discussed with examples. Parameters used for the performance evaluation with respect to the 

quality of filtered images and hardware implementation have been presented along with 

relevant details. 
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Chapter 3  

Design and Implementation of a Hybrid Architecture for 

Median Filtering 

3.1 Introduction 

When median filters are implemented on a hardware platform such as FPGAs, the primary aim 

is to optimize at least one of the three VLSI performance parameters, namely, area, frequency 

and power. The VLSI technology used for fabrication of FPGAs is based on CMOS circuits 

[54]. The performance parameters of CMOS circuits are interdependent [55] and hence, it may 

not be possible to optimize more than one of these parameters at the same time. For instance, 

increasing the operating frequency increases the power dissipation [56].  Most hardware-based 

median filters concentrate on optimizing one of the three performance parameters such that the 

other parameters are not adversely affected. This type of approach is adopted, since the 

parameter selected for optimization is solely dependent on the target application. For example, 

in applications that have real-time requirements, the operating frequency of the design is most 

important and hence the power consumption and area are of secondary concern. This chapter 

presents the design and FPGA implementation of a median filter architecture for real-time 

filtering of FHD videos [57]. The implementation of the proposed architecture on different 

generation FPGAs provides a high frequency of operation and optimizes the area at the same 

time. The optimization in the proposed median filter architecture is achieved at a minimum 

cost of filtered image quality.  

The design of the proposed architecture for median filtering is based on three different 

strategies. The first strategy used in the proposed architecture is the histogram-based operation, 
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which reduces the combinational delay of the circuit, resulting in a high frequency of operation. 

The hardware implementation of the conventional histogram-based median calculation uses 

memory bins for storing the histogram counts as in the case of [30] and hence, provides a low 

throughput. Therefore, we design an architecture that does not use memory bins for storage, 

but instead uses registers.  Such an architecture will result in a very large area due to the wide 

range of pixel values (0 to 255). It will also require a large number of registers (256) to store 

the histogram counts, resulting in an increased area. In order to reduce the area, we use the 

concept of bit-plane-slicing and process only B most significant bits (MSBs) for median 

calculation. This is the second strategy used in the proposed architecture and this results in a 

low area utilization. The effect of processing only the most significant B-bits of the pixel values 

results in an approximate median calculation, due to which the quality of the filtered image is 

compromised. Hence, to improve the quality, we use the strategy employed in the adaptive 

switching median filter (ASMF) in the proposed architecture. This is the third strategy used in 

the proposed architecture for median filtering.   

 The underlying strategies used in the proposed architecture for median filtering were 

discussed in the background material presented in Chapter 2. Although the underlying 

strategies used in the proposed architecture have been implemented discretely on FPGAs, their 

combined effect has never been implemented and analyzed. In view of using the above-

mentioned strategies in the design of the proposed architecture, we refer to the resulting 

architecture as the hybrid architecture for median filtering (HAMF). We implement the 

proposed HAMF on FPGAs with three different values of B and analyze its effect on the output 

image quality, operating frequency, area and power.  

3.2 Approximate Median Calculation 

Many neighboring pixels in an image have values, which are similar or very close to one 

another [3]. Also, the most significant bit-planes of an image consists of more significant 
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information. As a result, an approximate median of the values in a window of an image can be 

calculated by processing only the most significant B-bits instead of processing all the bits. The 

number of hardware components required to implement a median filter, which processes B-bits 

is significantly less than that required to implement a median filter that processes W-bits, 

provided B < W. Processing the most significant B-bits results in a hardware simplification and 

is a commonly used technique in image processing algorithms. Median filters that use higher 

nibble (4-bits) of pixel values have been implemented in [21] and [22], resulting in a lower 

area and a higher operating frequency. Although it is common to segment a pixel value into 

upper and lower nibbles, and process only the upper nibble, this concept is derived from the 

bit-plane-slicing technique. Hence, we utilize and generalize this concept, and process the most 

significant B-bits to calculate the approximate median value. 

Fig. 3.1 shows the weight of each bit of a pixel towards its influence on the value of the pixel. 

All weights are normalized to 256, which is the maximum value of each pixel of a gray scale 

image. The weight of each bit is calculated as 2r-1/256, where r is the index of the bit, 1 being 

the LSB and 8 being the MSB.  It is seen from this figure that the MSB (bit 8) contributes to 

50% of the data. If we consider bits 8 and 7, they will together contribute to 75% of the data. 

Bits 8, 7 and 6 together contribute to 87.5% of the data value and similarly, bits 8 to 5 together 

contribute 93.75% to the data. We consider B = 2, 3 and 4, which will calculate the median 

using 75%, 87.5% and 93.75% of the pixel data. For B = 5, only 3.125% of additional 

information will be used. However, its hardware requirement will increase significantly and 

hence, we will consider only 2, 3 and 4 as the suitable values of B in our implementations. 

By processing only the most significant B-bits of pixel values, a B-bit median will be 

obtained. However, the word length W of the median should be the same as that of the word 

length of the input data elements. Our method to process only the most significant B-bits and 

calculate a W-bit approximate median is explained by the following example. 
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Figure 3.1 Weight of bits in value of a pixel. 

Consider a window of size Ws = 3 with the values of its elements, as shown in Fig. 3.2 (a). An 

approximate median of the values with W = 8 in this window is to be calculated with B = 4. As 

a first step, the lower nibbles (4-bits) of all the values in the input window are masked and the 

resulting 3 × 3 window is shown in Fig. 3.2 (b). In the next step, we sort this window using 

only the higher nibbles and the resulting window is shown in Fig. 3.2 (c).  The median as per 

the sorted data is 0x4. Although its lower nibble has a value 0x1, it is not available since it is 

masked. Hence, we need to find a lower nibble for the value 0x4 in order to find the complete 

8-bit median. In our method, we pick the first element from the sorted window, which has its 

corresponding higher nibble equal to 0x4, which for this example is 0x46. Although the actual 

median of the values considered in this example is 0x42, our result is 0x46 and hence, we say 

an approximate median is calculated. The maximum error resulting from this technique is 0xF, 

which is possible in a case where the 4-bit median is calculated to be 0x4, the actual median is 

0x40 and the median value selected is 0x4F. 
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Figure 3.2 Median calculation using only higher nibbles. (a) Input window (b) Window with 

lower nibbles masked (c) Window sorted using only the higher nibbles (d) Output window. 

 

When this technique is applied for filtering images, it is experimentally observed that there 

is no significant difference in the quality of the filtered image, irrespective of the value selected 

as the lower nibble. For the example considered above, the possible values of the lower nibble 

for 0x4 are 0x6, 0x1, and 0x2. We select the first value (in the sorted matrix), i.e., 0x6 to be 

the value of the lower nibble of the median, since it does not add any overhead to the hardware. 

Similarly, for image filtering operation, we choose the first lower nibble in all the windows. 

Although the lowers nibbles are not used for processing or calculation, when the higher nibbles 

are processed, the former are always attached to the respective higher nibbles. For many 

windows in an image, the actual or the exact median is calculated by processing only the most 

significant B-bits. For instance, in the example considered above, if we interchange the 

positions of the pixels with values 0x46 and 0x42 in the input window, we observe that the 

calculated median is 0x42, which is the actual median. 

To demonstrate the effect of calculating the approximate median using the most significant 

B-bits on the output image quality, images from the database [58] and a frame of videos from 

the database [59] are processed to calculate the actual and approximate medians with B = 2, 3 

and 4. Results of the approximate filtering on a sample image are shown in Fig 3.3. In this 

figure, (a) shows the input image and (b) shows the graphs of actual and approximate medians 
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calculated using the proposed technique with different values of B for various pixels of the 

input image. It is seen from Fig. 3.3 (b) that the difference between the actual median and the 

median calculated using the most significant B-bits is negligible. 

 
(a)    

 
(b)  

Figure 3.3 (a) Goldhill Image from the database given in [58]. (b) Actual median and 

approximate medians with B = 4, 3 and 2 for various pixels. 
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Fig. 3.4 shows the filtered images. In this figure, (a) is the image filtered using the actual 

median and (b), (c) and (d) are images filtered using the proposed technique with B = 4, 3 and 

2, respectively. Although the images (b), (c) and (d) appear very similar to the image (a), there 

is a substantial difference between them. This difference is due to the difference between the 

approximate and actual median values, even though the later difference is not observable in 

Fig. 3.3 (b). The difference in the image quality is calculated in terms of PSNR of images in 

Fig. 3.4 (b), (c) and (d) with respect to the image in Fig. 3.3 (a) and is shown in the respective 

Figures 3.3 (b), (c) and (d).  

  
   (a)     (b) (PSNR = 34.2) 

  
(c) (PSNR = 30.1)    (d) (PSNR = 27) 

Figure 3.4 Goldhill image filtered with (a) actual median, approximate median with (b) B = 4, 

(c) B = 3 and (d) B = 2. 
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Fig. 3.5 shows similar results on a sample frame taken from the four people video from the 

database in [59] with the corresponding filtered images, shown in Fig. 3.6. From these figures, 

the same conclusion can be drawn as in the case of the previous experiment, wherein the image 

from the database in [58] was considered. 

       

(a)     

 

(b)  

Figure 3.5 (a) A frame of four people video from the database given in [59]. (b) Actual median 

and approximate median with B = 4, 3 and 2 for various pixels. 
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(a)      (b) (PSNR = 37)   

  

(c) (PSNR = 32.4)       (d) (PSNR = 28.4) 

Figure 3.6 A frame of four people video filtered with (a) actual median, approximate median 

with (b) B = 4, (c) B = 3 and (d) B = 2. 

 

From these experiments, it is observed that a better approximation to the actual median is 

obtained when a higher value of B is employed. 

3.3 Block Diagram of the Proposed Hybrid Architecture for Median 

Filtering 

Fig. 3.7 shows the block diagram of the proposed HAMF that can process N W-bit input values. 

Out of the W-bits, B-bits are processed using the histogram-based technique to calculate a B-

bit median value. The calculated B-bit median is used to select a W-bit median from the input 

window, as explained in the previous section. Based on the decision of the impulse noise 
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detector, the selected W-bit median or the value of the input pixel is passed on to the output. 

The figure shows an input window consisting of N input values. Each pixel in this window is 

represented by W-bits. All the pixel values are fed to the proposed HAMF, of which the most 

significant B-bits of all the pixel values are read by the histogram calculation block.  This block 

calculates the histogram values H0 to H(2
B

-1), of the input data. The histogram values are then 

added successively, starting with the value of H0, until the result of the addition exceeds (N – 

1)/2. The index i of the last added Hi is the B-bit median of the data fed to the histogram 

calculation block. 

 

Figure 3.7 Proposed hybrid architecture for median filtering.  

3.3.1 Architecture of the Histogram-based Median Calculation Block 

Fig. 3.8 shows the architecture of the proposed histogram-based median calculation block for 

B = 2 and N = 5, as an example.  It is seen from this figure that there are 3 stages in the median 

calculation block. Stage I is the comparator stage, where all the input values are compared with 

all the values in the range 0 to 2B-1. The output of stage I consists of N sets, each set having 2B 

binary values. The second stage (Stage II) adds all the binary values corresponding to each 

value in the range 0 to 2B-1 to generate the histogram values H0 to H(2
B

-1) of the input data.  

Stage III adds these values successively and after each addition, compares the result to the 

value ⌈N/2⌉ which is equal to 3 for this example. As soon as the comparison becomes true, the 



40 
 

index i of the last added Hi is selected as the output. The various stages of the architecture have 

pipeline registers between them, as shown in this figure. 

 

Figure 3.8 Pipelined histogram-based median calculation block. 

The structure of the histogram-based median calculation block is the same (3-stage) 

irrespective of the values of B and N. However, the number of comparators in stage I increases 

with increasing values of N and B. The number of comparators required in stage I is N∙2B. The 

number of adders in stage II is dependent on B alone and is equal to 2B; however, each adder 

is of N-bits. The number of adders in stage III is also dependent on B alone and is equal to 

2B-1. 



41 
 

 The operating frequency of the proposed median calculation block is dependent on the 

delay of its critical path. By analyzing the proposed architecture, we find that this delay is the 

delay of stage II. Hence, we apply the concept of super-pipelining technique by introducing 

registers inside stage II to increase the operating frequency of the design. Although increasing 

the number of registers will increase the latency of the design, the corresponding throughput 

will also increase. An analysis of the relationship between the latency, operating frequency and 

area will be presented in the results section of this chapter. Since a super-pipelined architecture 

results in a greater utilization of the registers, we implement the super-pipeline with different 

latencies to analyze the relation between the throughput and the utilization of the registers. 

3.3.2 Decision Based Median Filtering 

Fig. 3.9 shows the modification carried out in a conventional median filter to convert it to a 

noise adaptive switching median filter. It is seen from this figure that the output pixel is selected 

as the median of the input window only if the input pixel is found noisy. Salt and pepper noise 

in a gray scale image can be easily detected by comparing an input pixel value with a value of 

255 for salt and with a value of 0 for the pepper. If one of these two comparisons hold true, the 

input pixel is detected as noisy and is filtered. If neither of the comparison holds true, the pixel 

is interpreted as a non-noisy pixel and its corresponding value is passed to the output. Filtering 

only the noisy pixels results in a better image quality without an undesired smoothing effect.  

 

Figure 3.9 Noise adaptive switching median filter. 
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This technique can be applied to any median filter, which does not use noise adaptive filtering 

to convert it to a noise adaptive switching filter. This type of filtering is also called as the 

decision based median filtering. In the proposed HAMF block diagram shown in Fig. 3.7, the 

decision based median filtering is achieved using the impulse noise detector and output 

selection blocks. 

3.4 Results and Analysis 

In this section, results on the quality of images filtered by an algorithmic level Matlab 

implementation of the proposed HAMF, depicted in Fig. 3.7, are analyzed for different values 

of the noise density, window size and B. Based on this analysis, an appropriate window size 

that is suitable for hardware implementation is selected. The proposed HAMF is implemented 

for the selected window size using RTL coding in VHDL. The design is simulated for 

functional verification and mapped to different generation FPGAs to evaluate the hardware 

performance. We implement the proposed HAMF on FPGAs with different values of B and 

pipeline latency L, to study the effect on the operating frequency, power and area. The 

throughput of the hardware implementation of the proposed HAMF in terms of FHD video 

frames per second (fps) is calculated to see whether it satisfies the real-time requirements of 

FHD videos.  

3.4.1 Filtered Image Quality 

To evaluate the performance in terms of the filtered image quality, images and frames of videos 

from databases in [58] and [59], respectively, are considered. Salt and pepper noise of different 

densities are added, and the noisy images and video frames are filtered using the algorithmic 

level Matlab Implementation of the proposed HAMF with different values of B. For each 

filtered image, PSNR and SSIM are calculated with respect to the original image. The PSNR 

and SSIM values of the images filtered using adaptive switching median filter (ASMF) are also 
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calculated. Fig. 3.10 shows the results of PSNR with increasing noise density on the baboon 

image from the database in [58]. Figures 3.10 (b), (c) and (d) show the results for B = 4, 3 and 

2, respectively, for different window sizes. Fig. 3.10 (a) show the result for different window 

sizes for the image filtered using ASMF. 

 

(a)  

 

(b)  
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(c) 

 

(d) 

Figure 3.10 PSNR as a function of noise density for the baboon image for different values for 

Ws, using (a) ASMF and the proposed technique with (b) B = 4 and with (c) B = 3 and (d) B = 

2.  
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Fig. 3.11 shows similar results on a single frame of the video four people from the database in 

[59].  

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3.11 PSNR as a function of noise density for a single frame of four people video for 

different values of Ws, using (a) ASMF and the proposed technique with (b) B = 4 and with (c) 

B = 3 and (d) B = 2.  
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It is observed from Fig. 3.10 and Fig. 3.11 that PSNR decreases with increasing noise density. 

The value of PSNR for Ws = 3 is the highest for lower noise densities; however, as the noise 

density increases, PSNR decreases rapidly and goes below the value corresponding to the 

window sizes 5, 7 and 9. We choose Ws = 5, since PSNR is the highest for this this value of 

window size in the range of noise density considered. The PSNR is higher for higher values of 

B and is the highest with ASMF, where the median filtering is performed using all bits of the 

pixel values.  

Table 3.1 shows the values of PSNR and SSIM for some of the images in the database [58] 

and a single frame of each of the six videos selected from the database in [59]. These results 

are obtained with Ws = 5, 30% noise density and different values of B.  

Table 3.1: PSNR and SSIM for images and video frames from the databases in [58] and [59] 

The PSNR and SSIM values for the images and video frames filtered using ASMF are also 

included in this table for the purpose of comparison. It is seen from this table that the quality 

of the filtered images and video frames in terms of PSNR and SSIM increases with increasing 

Image/Video  PSNR SSIM 

ASMF Proposed HAMF ASMF Proposed HAMF 

B = 4 B = 3 B = 2 B = 4 B = 3 B = 2 

Baboon 25.42 25.17 24.75 23.41 0.8650 0.8457 0.8233 0.7707 

Barbara 27.33 27.15 26.58 25.02 0.9066 0.8878 0.8648 0.7825 

Gold hill 32.48 31.62 30.36 27.46 0.9205 0.8930 0.8502 0.7526 

Lena 33.71 31.88   30.88    28.12    0.9500 0.9268 0.9067     0.8049     

Peppers 33.10 32.48 31.28    27.81    0.9453 0.9187 0.8945 0.7879         

Four People 32.41 31.88 30.85   28.09  0.9667 0.9412 0.9143     0.8385     

Kris and Sara 32.38 32.11 31.19   27.80  0.9765 0.9581 0.9096    0.7584    

People  40.79 38.05 35.58    30.33    0.9861 0.9497 0.9081 0.7780         

Tennis 26.49 26.29 25.85    24.94    0.8482 0.8349 0.8110 0.7669         

Vidyo 1 35.65 34.77 33.26    29.06   0.9759 0.9538 0.9250     0.7929     

Vidyo 4 35.50 34.78 33.22 28.70 0.9748 0.9538 0.9154     0.7591     
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value of B. The values of PSNR and SSIM for the images filtered using the algorithmic level 

implementation of the proposed HAMF with B = 4 is very close to the corresponding PSNR 

and SSIM values obtained using ASMF. 

For qualitative analysis, we consider the original baboon image shown in Fig. 3.12 (a) and 

its corrupted version with 30% salt-and-pepper noise in Fig. 3.12 (b). Fig. 3.12 (c) shows the 

image filtered using ASMF with Ws = 5, whereas Figures 3.12 (d), (e) and (f) show the filtered 

images using the proposed technique with Ws = 5 and B = 4, 3 and 2, respectively. The 

corresponding values of PSNR and SSIM are also included below the figures. 

           
  (a)          (b) (PSNR = 10.79, SSIM = 0.1407) 

      
(c) (PSNR = 25.42, SSIM = 0.865)      (d) (PSNR = 25.17, SSIM = 0.8457) 
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(e)  (PSNR = 24.75, SSIM = 0.8233)          (f) (PSNR = 23.41, SSIM = 0.7707) 

Figure 3.12 Results on baboon image (a) Original Image (b) corrupted image with 30% salt-

and-pepper noise (c) filtered image using ASMF, and filtered images using the proposed 

technique with (d) B = 4, and with (e) B = 3 and (f) B = 2. 

 

As mentioned before, the optimal window size for median calculation is Ws = 5. Hence, we 

implement the proposed HAMF on hardware with Ws = 5 and different values of B. The 

proposed HAMF can be implemented on hardware for higher values of Ws; however, it will 

result in a degraded hardware performance due to a large area and low operating frequencies. 

We synthesize the proposed HAMF on hardware with different values of B in order to find its 

impact on the area and operating frequency. Using the implementation results, we can see if 

there exists a trade-off between the output image quality and the hardware performance.  

3.4.2 Simulation Results 

To verify the functionality of the proposed HAMF that calculates an approximate median, we 

carry out the behavioral simulation of the proposed HAMF implemented with B = 2, 3 and 4 

by feeding random numbers as the input pixel values to calculate the output. As mentioned 

earlier Ws is chosen to be 5. Fig. 3.13 shows the results of simulation for HAMF with B = 2 

and Ws = 5, where the input values d1-d25 are 0x[72, 7e, 14, 23, 24, 25, 32, 36, 38, 37, 48, 41, 

00, 5a, 58, 7a, 72, 7c, 83, 5d, 51, 74, 7a, 7c, a9]. The most significant 2-bits of the input values 
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are considered for median calculation which results in a 2-bit median equal to 0x1. Hence, the 

first element in the input vector with the value of the upper 2-bits equal to 0x1, which is 0x72 

in this case, is selected as the approximate median. This value is available at the output port 

dout as shown in the Fig. 3.13. The result of the median appears at the output after 14 clock 

cycles, which is the latency of the design implemented with 12 pipeline registers in the 

histogram calculation module of Fig 3.7. Two additional clock cycles are required by the 

median selection unit, resulting in a total of 14 clock cycle latency.  

Fig. 3.14 shows the simulation results of the proposed HAMF implemented with B = 3 

and Ws = 5. The input vector fed to this design is the same as in the previous simulation. 

However, as this design processes upper 3-bits, the calculated value of the median is 0x2. As 

a result, the first matching element from the input vector with the value of the upper 3 bits 

equal to 0x2, which is 0x48 in this case, is selected as the median. 

Fig. 3.15 shows the simulation results for proposed HAMF implemented with B = 4 

and Ws = 5. The input vector fed to this design is the same as in the previous simulations. 

However, as this design processes upper 4 bits, the value of the calculated median is 0x5. As a 

result, the first matching element from the input vector with the value of the upper 4 bits equal 

to 0x5, which is 0x5a in this case, is selected as the median. 

The actual value of the median of the input vector considered in these simulations is 

0x58. However, the calculated median values using B = 2, 3 and 4 are 0x72, 0x48, and 0x5a, 

respectively. This shows that a closer approximation to the actual median value is obtained 

using a higher value of B. 
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Figure 3.13 Simulation results of the proposed HAMF with B = 2, Ws = 5. 
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Figure 3.14 Simulation results of proposed HAMF with B = 3, Ws = 5. 
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Figure 3.15 Simulation results of proposed HAMF with B = 4, Ws = 5. 
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3.4.3 FPGA Implementation of the Proposed HAMF 

The proposed HAMF is implemented on 3 different generation of Xilinx FPGAs, namely, 

Virtex-II, Virtex-6 and Zynq-7, with Ws = 5 and different values of B (2, 3 and 4). Different 

FPGAs are chosen to analyze the effect of implementation of the proposed architecture on older 

(Virtex-II and Virtex-6) as well as the newer (Zynq-7) generation FPGAs, in terms of the 

hardware performance. The results of the implementation of a non-pipelined version of the 

proposed architecture with different values of B are presented in Table 3.2. In this table, the 

area is reported in terms of the slice-LUTs and slice-registers. The operating frequency is 

calculated from the maximum combinational delay as reported by the synthesis tool. 

Table 3.2. Hardware implementation results of the proposed HAMF implemented without 

pipelining. 

FPGA 

Device 

# Slice LUTs # Slice Registers Frequency (MHz) 

B = 2 B = 3 B = 4 B = 2 B = 3 B = 4 B = 2 B = 3 B = 4 

Virtex-2 301 499 1050 541 881 1838 25.8 20.2 16.9 

Virtex-6 271 385 705 - - - 98.6 61.4 36.9 

Zynq-7 271 385 705 - - - 110 68.5 41.5 

 

It is observed from Table 3.2 that the area required for implementation in terms of slice-

LUTs increases with increasing value of B for the FPGAs considered. In the case of Virtex-II, 

slice-registers are required in addition to slice LUTs, which is due to the underlying architecture 

of Virtex-II. The operating frequency decreases with increasing value of B. This is a result of 

cascaded configuration of LUTs during design implementation. The cascaded configuration is 

required for the implementations that have a larger number of slices.  

The operating frequency of the design on all the devices considered is low and cannot 

satisfy the real-time throughput requirements of the FHD video filtering. This is a result of the 

large combinational delay due to the absence of the pipeline registers. In order to increase the 
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operating frequency of the design, we implement pipelined versions of these by introducing 

pipeline registers. Introduction of these pipeline registers increases the operating frequency of 

the design, but also increases the slice-register utilization at the same time. Hence, we 

implement the pipelined version of the proposed HAMF with different number of pipeline 

registers inside the adder stage, namely, stage II (Fig. 3.8) of the histogram-based median 

calculation block, to evaluate the effect on the register utilization and operating frequency. Fig. 

3.16 shows the LUT utilization and Fig. 3.17 shows the registers/FF utilization for B = 2, 3 and 

4 and L = 8, 10 and 14. It is seen from Fig. 3.16 that the LUT utilization increases only slightly 

with increasing pipeline latency, irrespective of the device used. Since Virtex-II is an older 

generation device, its LUT utilization is higher than that of Virtex-6 or Zynq-7, which have 

nearly the same amount of utilization. The LUT utilization increases significantly with B, due 

to the logic involved in processing more bits with higher values of B.  

 

Figure 3.16 Slice-LUT utilization for different values of B and L 

It is observed from Fig. 3.17 that the register/FF utilization increases with increasing 

value of B or L. The register utilization in the case of Virtex-2 implementation is greater than 
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the utilization in the case of Virtex-6 and Zynq-7 implementation. The maximum register 

utilization is in the case of L = 14 and B = 4, since a large number of registers are required as 

a consequence of a greater number of pipeline stages and increased value of B. 

 

Figure 3.17 Slice-Register/FF utilization for different values of B and L 

Fig. 3.18 shows the operating frequency of the design synthesized on the three FPGAs 

for different values of B and L. It is observed from this figure that the operating frequency 

increases with L, since the cascaded combinational blocks are divided into smaller blocks (see 

Fig. 2.12). With a higher pipeline latency, the delay of each combinational block is reduced, 

resulting in a higher frequency of operation. The operating frequency is calculated from the 

maximum combinational delay, as reported by the synthesis tool. 

Fig. 3.19 shows the power as estimated by the Xilinx Xpower analyzer tool when the 

three FPGAs are used for implementation with different values of B and L. The operating 

frequency of the clock of the each of the designs is specified in the Xpower analyzer tool. It is 

seen from this figure that the power dissipation increases with increasing pipeline latency, and 

this is due to the higher operating frequency as seen from Fig. 3.18. There is a slight increase 
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in the power with increasing value of B, irrespective of the device used. Also, the power 

requirements of Virtex-6 device is much higher than that for Virtex-II or Zynq-7 devices and 

is so mainly because of the underlying technology.  

 

Figure 3.18 Operating frequency calculated from the maximum combinational delay 

for different values of B and L. 

 

 

Figure 3.19 Power estimated by the Xpower analyzer for different values of B and L. 
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Although the proposed HAMF implemented with B = 4 has a lower operating frequency 

compared to that with B = 2 and B = 3, it is still acceptable for filtering FHD videos in real-

time. As mentioned earlier, the quality of the image filtered using the algorithmic level 

implementation of the proposed HAMF with B = 4 is better than those filtered with B = 2 and 

B = 3.  Hence, we calculate the maximum operating frequency of the proposed HAMF 

implementation on hardware with B = 4, by specifying the timing constraints in the 

implementation tool. We carry out this on all the FPGAs devices considered for different values 

of L.  

Using the maximum operating frequency, the throughput of the proposed HAMF 

hardware implementation is calculated using Eq. (2.5). The frame size Fs for an FHD video is 

1920 × 1080 and since all the implementations are for a single core architecture, ν = 1. Fig. 

3.20 shows the throughput of the proposed HAMF hardware implementation in FHD video 

frames per second on the three FPGA devices considered, for different values of L.  

 

Figure 3.20 Throughput for FHD videos for different values of L. 
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It is observed from Fig. 3.20 that all the hardware implementations of the proposed HAMF 

with different pipeline latencies can satisfy the real-time requirements of FHD video filtering 

at the rate of 60 fps. The throughput increases with increasing pipeline latency and is higher 

for newer generation FPGAs (Virtex-6 and Zynq-7) than that provided by the implementation 

on Virtex-II. It must be also noted that the increase in the throughput is at the cost of the area, 

as per the discussion in the previous sections.  

To compare the proposed HAMF implementation with ASMF in terms of the hardware 

performance, we implement ASMF with full synchronous pipelining with Ws = 5 on the three 

FPGAs considered. Table 3.3 shows the hardware performance of ASMF in terms of slice-

LUTs, slice-registers/FFs and operating frequency on these FPGAs. For the purpose 

comparison, the corresponding performance values for the proposed HAMF implemented with 

B = 4, L = 14 and Ws = 5 are also presented in this table. It is seen from this table that the 

proposed HAMF implementation provides a performance that is significantly superior to that 

ASMF implementation on all the three FPGAs.   

Table 3.3. Hardware implementation results of the proposed HAMF and ASMF. 

FPGA 

Device 

ASMF HAMF (B = 4 and L = 14) 

LUTs Registers/FFs Frequency 

(MHz) 

LUTs Registers/FFs Frequency 

(MHz) 

Virtex-2 5436 3552 246 2621 1885 366 

Virtex-6 4953 3552 455 2032 1736 661 

Zynq-7 4953 3552 583 2032 1736 770 

 

3.5 Summary 

By combining multiple techniques, namely, bit-plane-slicing, decision based median filtering 

and histogram-based median calculation, a hybrid architecture for median filtering is proposed 
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and then implemented on different generation FPGAs. The hardware implementation of the 

proposed HAMF can operate at very high frequencies when implemented with super-

pipelining. The proposed HAMF processes only the most significant B-bits of the pixel values. 

As a result, the quality of the images filtered by the algorithmic level implementation of the 

proposed HAMF is slightly lower than that using the ASMF. Through an analysis of the results 

of implementation of the proposed HAMF with B = 4 and different values of L, it has been 

shown that a trade-off could be achieved between the area and the throughput.  The proposed 

HAMF implementation with B = 4 and L = 14 provides a significant improvement in terms of 

the area and operating frequency compared to that of the ASMF implementation. The hardware 

implementation of the proposed HAMF satisfies the real-time requirements of FHD videos at 

the rate of 60 fps; however, it is very slow to be considered for real-time filtering of UHD 

videos. The frame resolution of a 4K UHD video is four times that of an FHD video frame and 

hence, window sizes higher than 5 may be needed for filtering UHD videos. In order to fulfil 

the needs of real-time UHD video filtering, we provide an efficient architecture of the 

hierarchical histogram-based median filter and its FPGA implementation in the next chapter. 
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Chapter 4  

Design and Implementation of the Hierarchical 

Histogram-based Median Filter 

4.1 Introduction 

The hybrid architecture for median filtering presented in Chapter 3 can operate at high 

frequencies and fulfil the real-time throughput requirements of FHD videos and is area efficient 

when implemented on different generation FPGAs. However, the hardware implementation of 

the proposed HAMF is for a fixed window size and the optimization achieved in its 

implementation is at the cost of filtered image quality. The histogram module used in HAMF 

uses cascaded adders to generate the histogram values. As a result, the operating frequency of 

the proposed HAMF will decrease with increasing window size. In many applications, output 

image quality is as important as the hardware performance, and a compromise in image quality 

may not acceptable. Frame resolutions have increased from FHD to UHD in order to provide 

better quality of images and there are no hardware implementations of median filters, that can 

satisfy the real-time requirements of UHD videos for large window sizes. Hence, in this chapter 

we present a hardware-based architecture for median filter and its FPGA implementation that 

can satisfy the real-time throughput requirements of UHD videos for window sizes up to 15 

[60]. The proposed hardware architecture is based on the hierarchical histogram-based median 

filter (HHMF) [33], which uses histogram-based operations for computation of the median. As 

opposed to the histogram-based median filter such as [32], HHMF calculates the histogram of 

the input data in two steps.  
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In a histogram-based method, each element in the input array consisting of N elements, 

is read and the count of the corresponding bin is incremented. For 8-bit input values, there are 

256 such bins. After all the input values are read, values of bins starting from bin0 are added 

together until the result of addition is greater than (N - 1)/2 and the bin whose value was added 

last is the median.  This technique is better than the sorting-based median calculation, as the 

number of stages of calculation does not depend on N [28]. However, hardware implementation 

of histogram-based median filter results in a lower speed due to involved memory operations 

and cyclic reading of input pixels [29].  

As mentioned earlier, the algorithms implemented on GPU for high performance such 

as in [31] and [32] are based on histogram calculation and hence the histogram-based technique 

can be used to create a winning architecture for real-time filtering of UHD videos. A median 

filter designed using the conventional histogram-based technique is almost impossible to be 

implemented on hardware without the use of memory bins, since for large window sizes, the 

resource requirements will exceed that available in FPGAs. However, if the memory bins are 

employed in hardware implementation as in [30], the throughput will get be very low.  

The HHMF first processes the upper-half most-significant bits (MSBs) of the input data 

and then the lower-half least-significant bits (LSBs) to obtain the median in two steps. The HH 

median filtering algorithm presented in [33] is implemented on GPUs and provides a very high 

throughput. HH median filtering is based on the same bin approach that is used in histogram-

based median filter, the difference being that the number of bins is reduced due to the reduction 

in the range of input values, since each pixel is split into two parts. The number of storage bins 

required for processing all the bits of pixel values is 2W (= 256 for W = 8), where W is number 

of bits required for representation of the value of a pixel. However, if the pixel values are split 

into 2 parts, each of W/2 bits, the number of bins is reduced to 2∙2(W/2) (=32 for W = 8). Due to 
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the reduced number of bins, it becomes feasible to implement a hardware architecture that 

provides higher speed. Registers can be used to serve the purpose of bins instead of a ROM 

based storage. 

The performance of an algorithm implemented on a GPU is heavily dependent on the 

GPU architecture and more importantly, on its count of processing cores. Although GPU is a 

common platform for computationally demanding applications, the cost of GPUs is higher than 

a typical FPGA (e.g. Artix-7) used in DSP applications. For low cost products, a GPU may not 

be a desired solution as supporting peripherals are needed in addition to the GPU itself. High 

power consumption of GPUs compared to FPGAs [61] makes them unsuitable for many 

applications. At this point it is worthwhile mentioning that multi-processor system on chip 

(MPSoC) architectures are becoming more popular for many real-time implementations of 

applications, such as 4K video processing. These devices provide a very high degree of 

flexibility due to their hardware-software co-design feature.  

The present architectures of median filters implemented on FPGAs cannot be scaled for 

UHD applications due to their dependency on sorting-based operations. Moreover, the 

architectures that implement median filtering using non-sorting-based techniques use memory 

as bins to store histogram count, which results in a very low frequency of operation due to 

timing overheads added by memory read and write operations. Such architectures cannot 

satisfy the real-time requirements of a UHD video system. Non-sorting-based histogram 

calculation algorithms, such as HHMF, can satisfy the throughput requirements of a UHD 

video system when implemented on GPUs. As discussed above, GPUs have their own 

limitations such as cost and power requirements. Designing an FPGA-based architecture for 

HHMF is a challenging task, since such an architecture may face limitations such as scalability 

and ability to satisfy real-time requirements for applications like UHD videos. 
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We propose, for the HH-based median filter, an efficient hardware architecture that can 

be mapped to any programmable logic device. The proposed hardware architecture can perform 

median filtering operations at a very high speed for window sizes up to 15. The proposed 

architecture implements full-synchronous pipelining to achieve maximum frequency of 

operation. A novel approach to histogram calculation and accumulation module is used to 

ensure full-synchronous operation of the pipeline. We implement, for the first time, a hardware 

architecture for HHMF that provides results that are superior to that of NVIDIA Tesla and 

Parker SoC GPUs in terms of the throughput. The proposed hardware architecture also satisfies 

the pixel clock requirement (600 MHz) for a UHD video system when mapped to Xilinx 

MPSoC by implementing a single pipelined core. We analyze the hardware performance of the 

proposed median filter implemented with 1, 2 and 4 cores on Artix-7 FPGA for different 

window sizes and compare the throughput performance with that of the HHMF algorithm on 

GPUs. 

 The chapter is organized as follows. Section 4.2 discusses the HH median 

filtering algorithm. Section 4.3 presents the proposed hardware architecture for HHMF along 

with its analysis. An FPGA implementation of the proposed architecture is presented in Section 

4.4. Section 4.5 presents the hardware implementation results and comparative analysis. 

Summary of the chapter is presented in section 4.6. 

4.2 Hierarchical Histogram Median Filter 

The HH-based median filtering algorithm calculates the median of the input window in 

two parts. The steps involved in the median calculation using HHMF are shown in Algorithm 

1. The higher nibble of the median, MH is calculated using steps 1-3, while the lower nibble, 

ML is calculated using steps 5-7. The value Hi-1 calculated in Step 4 is used in step 7 to calculate 

ML. 
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Algorithm I: Hierarchical Histogram-Based Median Calculation 

Number of input data → N (odd), Range of a nibble (4-bits) → 0 to 15 

1: Extract the higher nibble for each of the N values. 

2: Calculate the histogram values H0 – H15 for the extracted nibbles. 

3: Add the histogram values H0 – H15 successively until the addition exceeds (N - 1)/2. 

    Index i of the last Hi added is the higher nibble MH. 

4: Store the value of Hi-1 in accumulator A. 

5: Extract the lower nibble for each of the N values, for which its higher nibble is equal 

    to MH. 

6: Calculate the histogram values H0 – H15 of the extracted nibbles. 

7: Add the histogram values H0 – H15 successively to A until the addition 

                exceeds (N - 1)/2. Index i of the last Hi added is the lower nibble ML. 

8: Combine MH and ML to obtain the median M. 

We now illustrate the above algorithm by an example. Fig. 4.1 shows the processing of 

sample input data using HH median filtering consisting of N = 9 data values of a square window 

of size Ws = 3. In the first step, all the higher nibbles of the input data are extracted for H0 – 

H15 calculation. Histogram values starting from H0 are added in the accumulator, and after the 

addition of H7, the result of accumulator is greater than 5. As a result, MH is 0x7. Accumulator 

of the second block is initialized with H6. For each input data, if the value of the higher nibble 

is equal to 0x7, then the corresponding lower nibble is retrieved. Histogram values H0 – H15 

are calculated for these values and added to the accumulator successively. Addition of H3 

results in the accumulator value to be greater than (N – 1)/2. As a result, ML is 0x3. 

4. 3 Proposed Hardware Architecture 

 This section presents the details of the proposed hardware architecture for 

implementing HHMF. Features of the proposed hardware architecture, which makes it feasible 
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for real-time UHD video filtering, are also highlighted in this section. The proposed hardware 

architecture is analyzed for implementation feasibility with respect to the area and latency. 

 

Figure 4.1 An example of the HHMF Algorithm. 

4.3.1 Architecture Overview 

In the median calculation using the HH method, the median is calculated in two parts, 

as illustrated in the previous section by an example. After MH calculation, for each element in 

the input data, only if the value of the higher nibble is equal to the value of MH, then the 

corresponding lower nibble is retrieved. If the input vector is read again after the calculation of 

MH, the purpose of a pipelined architecture is defeated. Hence, we design an architecture in 

which there is no more than one reference to the input data vector. This reference is in the first 

cycle of the operation, where all the input elements of the vector are read and buffered. 

Fig. 4.2 shows the proposed hardware architecture which consists of two blocks, 

namely, HMH (Histogram of Median High) and HML (Histogram of Median Low), the former 

corresponding to the higher and the later to the lower nibble calculation of the median. The 
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input value of the comparator of HMH is Ch and is calculated as [(N - 1)/2] + 1, where N is the 

total number of input elements. The input value of the comparator of HML is Cl, which is 

calculated as [(N – 1)/2] + 1 – BMH – 1, where BMH-1 is the count value of bin MH - 1. 

The pipelined buffer, shown above the pipelined HMH block in Fig. 4.2, stores the 

input data in a shift-register, which has the same latency as that of the pipelined HMH block. 

As soon as the value of MH is calculated, the HMH block feeds the desired values from the 

pipelined buffer to the HML block along with the value of Cl. The value of MH is passed to 

another pipelined buffer that is shown below the pipelined HML block in Fig. 4.2 and has the 

same latency as that of the HML block. Thus, both MH and ML are available at the output at 

the same time. As a result, the pipeline can work at full efficiency without any stall or delay.  

 

Figure 4.2 Proposed hardware architecture for HHMF. 

4.3.2 Architecture for HMH and MHL Blocks 

Fig. 4.3 shows the architecture of the HMH and HML blocks. First, the input data is 

fed to a comparator module that performs parallel comparison of all the input data elements to 

all the possible values in the range of 4-bit numbers, i.e., 0 to 15. The inputs for the HMH block 

are the higher nibbles of all the N input values. However, for the HML block, K (≤ N) input 
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values are fed from the pipelined buffer and the remaining N – K input values are forced to 

assume the highest value, 15, in the range 0 to15, to ensure proper median calculation. 

The output of the comparator module is a matrix consisting of N×16 binary values. The 

histogram calculation module performs the addition of all the elements in each column of this 

N×16 matrix to generate a 1×16 matrix. This is the histogram of the input data and represents 

the count of each element in the range (0 to 15) of 4-bit numbers. The output of the histogram 

calculation module is fed to the accumulate-and-compare (AC) module, where the histogram 

values are accumulated starting from the value of H0. This module calculates the MH or ML 

value by comparing the accumulated histogram values with Ch or Cl. Compared to the HML 

block, the HMH block contains an additional module (shown in dotted lines in Fig. 4.3) that 

calculates Cl, which is the comparator value for the HML block. 

 

Figure 4.3 Architecture of the HMH/HML block. 

A) Comparator Module  

The comparator module consists of N units, each containing 16 comparators; one such unit is 

shown in Fig. 4.4.  
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Figure 4.4 A Comparator Unit. 

Each comparator in this unit compares the input element to each value in the range 0 to 15. 

Although the size of the comparator module increases with N, the delay due to comparison in 

the proposed hardware architecture is constant, irrespective of the value of N. Each comparator 

is clocked with the system clock, which fulfils the need of a pipelined architecture.  

B) Histogram Module 

The histogram module adds all the ith bits (i = 0 to 15) in all the N units of the comparator 

module to generate the histogram of the data. This is accomplished by 16 adder units, operating 

in parallel, each adder unit dedicated to a particular value of i. Each adder unit adds N-bits to 

generate a ⌈log2N⌉-bit value. The structure of an adder unit is shown in Fig. 4.5, which uses 

registered adders. In contrast to a cascaded serial adder that requires N-cycles to perform the 

addition of N-bits, the proposed structure requires only ⌈log2N⌉ cycles to compute the output.  



70 
 

 

Figure 4.5 Adder Unit. 

C) Accumulate-and-compare (AC) module 

After the generation of the histogram, next step is to determine the values of MH and ML using 

the blocks HMH and HML, respectively. To calculate these values, the AC module adds the 

histogram values H0 to H15. Accumulation of these 16 values without the use of a pipelined 

architecture will result in a large delay. If the comparison with Ch or Cl is performed after each 

addition, then the output of the comparison may become true during any stage of the 

accumulation process depending on the values of the input vector. As a result, the pipeline 

cannot operate in synchronous with the other modules/blocks.  

To achieve a fully synchronous pipeline, each clocked adder of the AC module at 

position P (0-15) has P cascaded registers at its input and (15 – P) cascaded registers at its 

output, as shown in Fig. 4.6. Once the result of the accumulation becomes available (after 16 

clock cycles), all the values accumulated by the various stages are compared at the same time 

with Ch (Cl) to generate a row vector representing the output of each of the comparators of the 

AC module shown in Fig. 4.6. The first occurrence of ‘1’ in this vector indicates the value of 
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MH (ML). This value is selected by the MH/ML selector unit. For example, if the output vector 

for MH is [0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1], then MH is 0xB.  

 

Figure 4.6 Accumulator and compare module. 

4.3.3 Architecture Analysis 

Various components used in the proposed hardware architecture are adders, comparators and 

registers. The adders and comparators are used for processing, while the registers are used for 

pipelining. In this section, we analyze, for the hardware implementation feasibility, the number 

of components required as the window size, Ws, increases. We also analyze the latency of the 

proposed pipelined architecture for different window sizes in terms of the number of clock 

cycles. 
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A) Area utilization in terms of the number of adders and comparators 

Fig. 4.7 shows the number of adders and comparators required by the proposed 

architecture for different window sizes for a single core fully-synchronous pipelined 

architecture. A simple divide and conquer approach [62] can be used to simultaneously process 

an arbitrary number, ν, partitions of the input image or video frame using ν cores of the 

proposed architecture to increase the throughput by a factor of ν. This will increase the area 

utilization by a factor of ν. 

 

Figure 4.7 Number of adders and comparators as function of Ws 

From Fig. 4.7 it is observed that the ratio of the number of adders or comparators 

required for window size Ws to that of Ws – 2 goes on decreasing as the value of Ws increases. 

This is due to the fact that the size of comparator module for each block is given by (16Ws
2), 

which increases rapidly with Ws. However, neither the size of the histogram calculation module 

nor that of the AC module increases as rapidly as that of the comparator module. 
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B) Area utilization in terms of the number of registers  

The proposed architecture uses clocked comparators and clocked adders for its 

implementation. As a result, each of the comparators or adders is implemented along-with a 

register. The pipelined buffers shown in Fig. 4.2 consists purely of registers for buffering the 

input data (N) and MH value. Fig. 4.8 shows the number of registers used by the HMH and 

HML blocks, and that of the pipelined buffers as well as their sum as a function of the window 

size. It is observed from Fig. 4.7 and Fig. 4.8 that the number of registers required by the 

proposed architecture is larger than the total number of adders and comparators required, and 

this is in view of the additional registers used by the pipelined buffers. 

 

Figure 4.8 Number of registers as a function of Ws 

C) Pipeline latency 

The proposed architecture is designed in such a way that between a pair of cascaded 

adders and/or comparators there is a register. This approach is adopted in order to minimize 
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the combinational delay and achieve a high throughput. As a result, a large number of registers 

are cascaded in the pipeline. The pipeline latency L of the proposed architecture is given by  

𝐿 =  2(⌈𝑙𝑜𝑔2𝑁⌉ +  18)   (4.1) 

where N is the number of elements in the input array, the integer 18 refers to the combined 

delay of the comparator and AC modules, which is constant irrespective of the value of N. The 

factor 2 in (4.1) is due to the fact that the HMH and HML blocks are cascaded and have the 

same clock latencies. Fig. 4.9 shows the latency of the proposed design for different window 

sizes. 

 

Figure 4.9 Pipeline latency as a function of Ws 

It is clear from (4.1) that the latency is dependent mainly on the factor ⌈log2N⌉ and 

increases only when this factor increases. Although the latency of the proposed pipelined 

design is very high, the pipeline ensures that it operates continuously to provide a high 

throughput. The number of windows to be processed for the UHD video is massive (> 49 × 107 

for 4K and > 199 × 107 for 8K at 60 fps); hence, the pipeline latency L, as given by (4.1) is 

negligible. For the sorting-based architecture, implemented with pipelining as in [34], the 
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latency is given by Ws
2. Hence, for the largest window size considered in this paper (Ws = 15), 

the latency of a sorting-based median filter is 225 clock cycles, significantly larger than 52, 

which is the latency of the proposed architecture. 

4.4 FPGA Implementation of Proposed Hardware Architecture 

The implementation of the sorting-based median filter in [34] as a contextual image processing 

operation is the only text that targets real-time UHD video filtering, although only for 4K 

videos. Hence, to provide a comparative analysis, we map the proposed hardware architecture 

to the same device, namely, Zynq-7 UltraScale+ MPSoC. An MPSoC such as Zynq-7 

UltraScale+ takes advantage of the software programmability by integrating ARM-based 

processors and the advantage of hardware reconfiguration using a FPGA fabric, both on the 

same chip. However, it is a costly solution for many applications. Hence, we evaluate the 

performance of the proposed median filter hardware for cheaper solutions, by implementing 

single and multiple cores of the proposed HHMF hardware architecture on Pure (Non-MPSoC) 

FPGA fabric such as Artix-7 FPGA.  

4.4.1. Implementation on Zynq-7 UltraScale+ MPSoC 

The proposed architecture is designed with RTL code written in VHDL on the Xilinx Vivado 

design suite platform. The code is mapped to Xilinx Zynq-7 UltraScale+ MPSoC for Ws = 3. 

Constraints are specified in the timing constraint editor to find the maximum delay (logic delay 

+ net delay) of the design. Post implementation area utilization in terms of LUT, FF and BRAM 

are reported by the implementation tool along-with the maximum delay and power on the 

Zynq-7 UltraScale+ MPSoC device. Operating frequency of the design is calculated using the 

reported maximum delay. 
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Fig. 4.10 shows the device view of the design implemented on Zynq-7 UltraScale+ 

MPSoC along with a magnified view of the underlying logic elements used to implement the 

design. The shaded region in the top right corner of the device view is the proposed median 

filter implemented with FPGA slices. It is seen from this figure that the area utilization is very 

small, which leaves enough room for implementing the interfacing peripherals. 

 

Figure 4.10 Device view of the implementation on Zynq-7 UltraScale+ MPSoC. 

4.4.2 Implementation on Artix-7 FPGA 

The RTL code for the proposed median filter is modular, since the parameters such as the 

window size, the number of the stages in the adder unit (see Fig. 4.5) of the histogram 

calculation module and the number of cores are variables. The code is mapped to Artix-7 FPGA 

for window sizes ranging from Ws = 3 to Ws = 15 and for 1, 2 and 4 cores of the proposed 

hardware architecture. Fig. 4.11 shows the device view of Artix-7 for 1, 2 and 4 cores of the 

proposed hardware architecture for Ws = 15, from which the scalability and maximum device 

utilization of the proposed FPGA implementation is observed. The area utilized by the 

proposed architecture when implemented on FPGA is shown by the shaded region in Fig. 4.11. 

It is seen from this figure that the maximum device utilization is in the case of the 4-core 

architecture, and there is still enough room for additional logic required by the interfacing 
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hardware. In this case, the maximum utilization is 51% of the slice-LUTs and 36% of the slice-

registers of the total present in the Artix-7, as reported in the post implementation device 

utilization report. 

 

(a)             (b)       (c) 

Figure 4.11 Device utilization of (a) 1 core (b) 2 core (c) 4 core architecture of the proposed 

HHMF hardware for Ws = 15 on Artix-7 FPGA. 

4.5 Hardware Implementation Results 

This section presents the FPGA implementation results of the proposed HHMF hardware 

architecture and analyses the area utilization, maximum operating frequency, power and 

throughput. Using the maximum operating frequency fmax (MHz) of the proposed hardware 

architecture, we calculate the throughput T in terms of the number of UHD video frames per 

second using (2.5). The frame size Fs = 3840 × 2160 for 4K UHD format and ν is 1, 2 or 4 

which is the number of cores. The frame size Fs = 7680 × 4320 for 8K UHD format. We 

calculate the throughput for different window sizes and compare it to that of HHMF when 

implemented on GPU. 
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4.5.1 Results of the implementation on Zynq-7 UltraScale+ MPSoC  

The proposed HHMF hardware architecture can operate at a maximum frequency of 625 MHz, 

which satisfies the pixel clock requirement of a UHD video system when mapped to Zynq-7 

UltraScale+ MPSoC. Table 4.1 shows the results of a single core implementation of the 

proposed HHMF hardware architecture in terms of FPGA area (LUT, FF, BRAM), frequency 

and power for Ws = 3, which processes a single input pixel per clock (ppc) cycle. The 

throughput is calculated using (2.5). The number of input pixels required in a single clock cycle 

is also presented in this table. For comparative analysis, the corresponding results of CIPMF 

with 2 and 4 ppc for the same window size are also included in this table.  

Table 4.1. Results of Implementation on Zynq-7 UltraScale+ MPSoC 

Filter 

Hardware 

No. of 

Input 

Pixels 

Area Frequency 

(MHz) 

Throughput 

(fps) 

Power (W) 

LUT FF BRAM 

Proposed -1ppc 9 1534 1538 0 625 75 0.384 

CIPMF - 2ppc 12 1446 1264 3 300 72 0.641 

CIPMF - 4ppc 18 2295 1605 3 150 72 0.535 

The proposed median filter hardware provides a throughput higher than that of either 

implementations of CIPMF. The CIPMF (4ppc) implementation requires approximately 50% 

more LUTs and consumes about 40% more power compared to the proposed implementation 

and operates at 150 MHz Although the CIPMF (2ppc) implementation utilizes a slightly lower 

number of LUTs and FFs, its power consumption is twice that of the proposed implementation 

at the operating frequency of 300MHz, which is less than one-half of the proposed one. The 

number of input pixels required by the proposed hardware implementation in a single clock 

cycle is 9 in contrast to that of CIPMF, which requires 12 and 18 pixels to be read in a single 
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clock cycle for 2 and 4 ppc format, respectively. Reading a higher number of pixels in a clock 

cycle requires more interfacing hardware, which increases the hardware complexity of the 

overall design. 

4.5.2 Results of the implementation on Artix-7 FPGA 

Fig. 4.12 shows the resource utilization in terms of the FPGA slice-LUTs and slice-registers of 

the proposed HHMF hardware architecture with different number of cores and window sizes 

when implemented on Artix-7 FPGA.   

 

Figure 4.12 Resource utilization of the proposed HHMF hardware on Artix-7 FPGA 

The Artix-7 FPGA implements the logic using 6-input LUTs. For lower window sizes many 

LUTs are under-utilized; however, for higher window sizes more logic fits into a single LUT 

resulting in its full utilization. The number of LUTs and registers are almost equal for lower 

window sizes; however, for higher window sizes the number of registers needed is significantly 

more than the number of LUTs. This is due to the increase in the number of registers utilized 

by the pipelined buffer, the size of which increases as the square of the input window size.  
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The HHMF algorithm, originally designed for GPU, provides a very high performance in 

terms of the throughput on NVIDIA GPUs such as Tesla and SoC parker as presented in [33], 

but such implementations are costly as noted earlier. We wish to investigate as to whether the 

throughput offered by these GPUs can be achieved by the proposed implementation on FPGA. 

Hence, we calculate the throughput of our implementation using (2.5) and compare it with the 

throughput reported by [33] for NVIDIA Tesla and SoC Parker GPUs. Fig. 4.13 shows the 

throughput values obtained by the FPGA implementation of the proposed HHMF hardware 

architecture. Performance reported by [33] is also presented in the same graph for comparison. 

 

Figure 4.13 Throughput as a function of the window size 

 It is seen from Fig. 4.13 that the proposed 4 core architecture is the only one which can 

satisfy the real-time requirements of a 4K UHD video 60 fps for all window sizes in the range 

considered. The performance obtained by the proposed 4-core HHMF hardware is superior to 

that of NVIDIA GPUs, except in the case of NVIDIA Tesla GPU with Ws = 3, wherein the 

throughput of the proposed one is slightly lower. In general, the throughput decreases with 

increasing window size, irrespective of the implementation. However, the throughput of the 
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proposed HHMF hardware is not adversely affected by the increasing window size. In 

particular it is observed that for large window sizes, the throughput of the proposed 4 core 

implementation is much higher than that offered by the GPUs. The throughput of the proposed 

deign when implemented on FPGA is based on the post-implementation delay reported by the 

tool. The value of the delay is large for lower window sizes, since the net/routing delays are 

larger compared to the logic delays. However, as the window size increases, there is no 

significant increase in the net/routing delay, but the logic delay goes on increasing due to the 

cascaded LUT configuration. For 15 × 15 window size, the throughput of the proposed HHMF 

hardware is slightly higher than that for 13 × 13 window size. This is due to the fact that these 

filter implementations have the same latencies and placement of the logic on FPGA results in 

lower net delays for Ws = 15 compared to that for Ws = 13.  

Although the number of cores in a processing system is one of the factors which decides 

the throughput, a greater number of cores adds more complexity to the design in terms of the 

overall architecture. In terms of the number of cores, the implementation of the proposed 

median filter architecture with 4 cores can provide a throughput higher than that of the NVIDIA 

TESLA 2070 GPU which has 448 cores. The proposed median filter when implemented with 

2 cores provides a throughput higher than that provided by the 256 core NVIDIA Parker SoC. 

The power requirements of the proposed implementations are estimated by the Xilinx 

Xpower analyzer tool with vector-less analysis of the implemented netlist. In order to get a 

better estimate of the power, we specify the operating frequency of the respective 

implementations during the power analysis [51]. Fig. 14 shows the total on-chip power reported 

by the Xpower analyzer tool for various implementations of the proposed HHMF hardware 

architecture with different number of cores and window sizes. It is seen from this figure that 

the power increases with increasing window size or the number of cores. It is to be noted that 
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although the power estimated by the Xpower analyzer may be slightly higher than the actual 

power utilized by the design [51], an FPGA based implementation is more energy-efficient 

with one order of magnitude lower energy than the same implementation on a GPU, for the 

same image processing task [63], [64]. 

 

Figure 14.4 Total on-chip power of the proposed HHMF hardware on Artix – 7 FPGA. 

 

The implementation of the proposed HHMF hardware on Artix – 7 FPGA can satisfy the 

real-time requirements of 8K UHD video at frame rates of 30 and 60 fps up to a window size 

of 9. For window sizes greater than 9, the slices required for the implementation exceed that 

available in the FPGA used for implementation. Fig. 4.15 shows the number of cores of the 

proposed HHMF hardware required for real-time filtering of 8K UHD videos at the above-

mentioned frame rates as a function of Ws (≤ 9). As observed from this figure, 8-core 

implementation of the proposed HHMF hardware can satisfy the real-time requirements of 8K 

UHD video at frame rate of 30 fps whereas a 12-core implementation can satisfy the real-time 

requirements of the same video format at frame rate of 60 fps.   
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Figure 14.5 Number of cores required for filtering 8K UHD videos as a function of  

Ws ≤ 9. 

4.6 Summary 

We proposed and implemented an efficient and fully-synchronous pipelined architecture 

for hierarchical histogram-based median filter, which is known to provide a high throughput 

when implemented on GPUs. The proposed architecture for the HHMF is designed such that it 

provides high operating frequencies and is scalable. We implemented the proposed median 

filter hardware on Artix-7 FPGA for window sizes ranging from 3 to 15 and different number 

of cores to evaluate the performance in terms of area and the throughput. Comparative analysis 

of the proposed implementations is carried out with the state-of-the-art median filter 

implementations to show the superiority of the proposed FPGA implementation in terms of the 

throughput. The 4-core implementation of the proposed HHMF hardware can satisfy the real-

time requirements of 4K UHD videos at the frame rate of 60 fps for Ws ≤ 15. The proposed 

filter hardware can also satisfy the real-time requirements of 8K UHD videos at the frame rates 

of 30 and 60 fps, when implemented with 8 and 12 cores, respectively for Ws ≤ 9. 
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Chapter 5 

Conclusion 

5.1 Concluding Remarks 

Median filters are known to provide high quality filtered signals when used for processing 

noisy signals. Due to the effectiveness of median filters, they are widely used for the removal 

of impulse noise and are extensively employed in applications involving speech, signal and 

image processing. As a result, several algorithms and architectures have been proposed and 

implemented for providing high quality filtered images and enhanced hardware performance. 

High-speed architectures and implementations are needed in order to satisfy the real-time 

throughput requirements of video formats such as full high definition (FHD) videos. Although 

many of the existing hardware-based implementations of median filters can satisfy the real-

time throughput requirements of FHD videos, they are inefficient with respect area, when 

implemented on hardware. Moreover, the frame resolutions have now increased from FHD to 

ultra high definition (UHD), providing higher quality images and videos. However, the real-

time requirements of UHD videos cannot be satisfied by the existing hardware architectures 

for FHD video filtering. As a result, efficient hardware-based architectures and 

implementations that can process in real-time, massive data contained in UHD video format 

are required.  

In this thesis, we have presented one such architecture and its implementation for each 

of the video format considered. The proposed architectures have been implemented on FPGAs, 

which are a key device in the current digital consumer electronics. The architectures presented 

in this thesis make use of the concept of histogram-based median calculation instead of the 
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sorting-based median calculation, which is used in most of the existing architectures. An 

architecture that uses sorting-based median calculation consists of cascaded stages of compare-

and-swap (CS) units. This type of architecture is inefficient with respect to the area and 

operating frequency, since the number of CS units as well as the number of cascaded stages 

increases with increasing window size. However, in an architecture that uses histogram-based 

median calculation, the number of stages remains constant irrespective of the window size. 

Although the size of components used in the various stages of a histogram-based architecture 

increases with increasing window size, its overall area can be reduced by using the concept of 

bit-plane-slicing.  

In order to satisfy the real-time throughput requirements of FHD videos, in the first part 

of the thesis, we have proposed a hybrid architecture for median filtering (HAMF) that 

combines histogram-based median calculation with the concept of bit-plane-slicing and 

adaptive switching median filter. The proposed architecture has been implemented on three 

different FPGAs, namely, Virtex-II, Virtex-6 and Zynq-7. These implementations have been 

optimized in terms of the area and can operate at a high frequency. The implementation of the 

proposed HAMF is suitable for low cost applications, where a very high throughput is required 

and a slight degradation in the quality of output image is acceptable. We have analyzed the 

effect of the number of bit-planes on the quality of the filtered image and on the hardware 

performance by implementing the proposed HAMF with three different values of number of 

the most significant bits used in median calculation (B). The analysis has shown that the quality 

of the images filtered by the algorithmic level implementation of the proposed HAMF 

decreases with decreasing values of B; however, the hardware implementation with a lower 

value of B is superior to that of an implementation with a higher value of B, in terms of area 

and operating frequency. Hence, a trade-off could be achieved between the image quality and 

hardware performance by an appropriate choice of the value of B. Although a subjective 
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examination of the images filtered using a lower value of B such as 2 and 3, shows very little 

evidence of the input noise, the corresponding PSNR and SSIM values are significantly lower 

than that of the images filtered using ASMF. As a result, the implementation of the proposed 

HAMF with B = 4 is the optimum one. Analysis of the proposed HAMF implemented with B 

= 4 and different pipeline latencies has shown that there could be a trade-off between the area 

and the operating frequency. Hence, a suitable implementation may be selected depending on 

the parameter (area or frequency) to be optimized. Although the implementations of the 

proposed HAMF with different pipeline latencies can satisfy the real-time throughput 

requirements of FHD videos, they are still very slow for real-time filtering of UHD videos. 

 In order to fulfil the needs of real-time filtering of UHD videos and to overcome the 

disadvantages of HAMF, such as degradation in the filtered image quality and fixed window 

size, we have proposed an efficient architecture of the hierarchical histogram-based median 

filter (HHMF), in the second part of the thesis. This filter splits the values of pixels into two 

parts, namely, upper and lower nibbles and then calculates the median in two different stages. 

Due to this feature of HHMF, we could design an efficient hardware architecture, which was 

not possible to be accomplished for a histogram-based median filter. We have implemented the 

proposed architecture of HHMF on Xilinx Artix – 7 FPGA, for window sizes ranging from 3 

to 15.  Although the implementation of the proposed HHMF architecture with higher window 

sizes occupies more area when implemented on an FPGA, its operating frequency is very high, 

and the architecture is scalable. The proposed HHMF architecture has been implemented with 

full synchronous pipelining and its pipeline latency for higher window sizes, such as 9 to 15, 

is very low compared to the corresponding latencies of the sorting-based median filter 

architecture. A single core implementation of the proposed HHMF architecture can satisfy the 

real-time throughput requirements of FHD videos at the rate of 60 fps for window sizes ranging 

from 3 to 15.  Implementation of the proposed HHMF architecture with 4 cores provides a high 
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throughput which can satisfy the real-time requirements of 4K UHD videos at the rate of 60 

fps for all window sizes in the range considered. Implementation of the proposed hardware 

architecture satisfies the real-time requirements of 8K UHD videos, up to a window size of 9 

and frame rates of 30 and 60 fps, when implemented with 8 and 12 cores, respectively. The 

proposed HHMF implementation is more economical compared to that of the NVIDIA Tesla 

and Parker SoC GPUs and provides a throughput higher than that of the latter two, when 

implemented with 2 and 4 cores, respectively. 

5.2 Scope for Future Work 

One of the basic methods that has been employed in the proposed HAMF is bit-place-slicing, 

which results in the calculation of an approximate median. The hardware performance of 

HAMF is improved by using a limited number of the most significant bits for calculation of 

the approximate median. This method can be applied to the existing hardware-based median 

filters and the performance of the resulting hardware can be studied with respect to the quality 

of the filtered images and hardware parameters. 

As mentioned in the thesis, the proposed hardware architecture of HHMF occupies 

more area for implementations with window sizes ranging from 9 to 15. Therefore, it would be 

of interest to study as to whether it is possible to optimize the architecture with respect to the 

area, for window sizes larger than 9. 

 Although the architectures presented in this thesis are implemented on FPGAs, they 

can be implemented in ASICs. Using VLSI CAD tools, it is possible to map the synthesized 

design of the proposed architectures to the physical design followed by ASIC implementations. 

The hardware performance of these implementations can be studied and compared with that of 

the FPGA implementations. 
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