133 research outputs found

    Detect-and-forward relaying aided cooperative spatial modulation for wireless networks

    No full text
    A novel detect-and-forward (DeF) relaying aided cooperative SM scheme is proposed, which is capable of striking a flexible tradeoff in terms of the achievable bit error ratio (BER), complexity and unequal error protection (UEP). More specifically, SM is invoked at the source node (SN) and the information bit stream is divided into two different sets: the antenna index-bits (AI-bits) as well as the amplitude and phase modulation-bits (APM-bits). By exploiting the different importance of the AI-bits and the APM-bits in SM detection, we propose three low-complexity, yet powerful relay protocols, namely the partial, the hybrid and the hierarchical modulation (HM) based DeF relaying schemes. These schemes determine the most appropriate number of bits to be re-modulated by carefully considering their potential benefits and then assigning a specific modulation scheme for relaying the message. As a further benefit, the employment of multiple radio frequency (RF) chains and the requirement of tight inter-relay synchronization (IRS) can be avoided. Moreover, by exploiting the benefits of our low-complexity relaying protocols and our inter-element interference (IEI) model, a low-complexity maximum-likelihood (ML) detector is proposed for jointly detecting the signal received both via the source-destination (SD) and relay-destination (RD) links. Additionally, an upper bound of the BER is derived for our DeF-SM scheme. Our numerical results show that the bound is asymptotically tight in the high-SNR region and the proposed schemes provide beneficial system performance improvements compared to the conventional MIMO schemes in an identical cooperative scenario.<br/

    Optimized Scalable Image and Video Transmission for MIMO Wireless Channels

    Get PDF
    In this chapter, we focus on proposing new strategies to efficiently transfer a compressed image/video content through wireless links using a multiple antenna technology. The proposed solutions can be considered as application layer physical layer (APP-PHY) cross layer design methods as they involve optimizing both application and physical layers. After a wide state-of-the-art study, we present two main solutions. The first focuses on using a new precoding algorithm that takes into account the image/video content structure when assigning transmission powers. We showed that its results are better than the existing conventional precoders. Second, a link adaptation process is integrated to efficiently assign coding parameters as a function of the channel state. Simulations over a realistic channel environment show that the link adaptation activates a dynamic process that results in a good image/video reconstruction quality even if the channel is varying. Finally, we incorporated soft decoding algorithms at the receiver side, and we showed that they could induce further improvements. In fact, almost 5 dB peak signal-to-noise ratio (PSNR) improvements are demonstrated in the case of transmission over a Rayleigh channel

    Hierarchical modulation with signal space and transmit diversity in Nakagami-m fading channel.

    Get PDF
    M. Sc. Eng. University of KwaZulu-Natal 2013.Hierarchical modulation (HM) is a promising scheme for wireless image and video transmission, exploiting the benefits of unequal error protection to ensure enhanced system performance. However, there is a limiting factor to the benefits of using only hierarchy to improve bit error rate (BER) performance of a transmission system. Diversity, namely signal space diversity (SSD) and Alamouti transmit diversity (ATD), can be introduced to improve BER performance results for HM systems. This dissertation presents the BER analysis of hierarchically modulated QAM with SSD and using maximal ratio combining (MRC) to retrieve the transmitted symbol from receiver antennas. In addition, the study includes the BER analysis of an identical system in an ATD scheme employing two transmit antennas and receiver antennas with MRC. SSD comprises of two fundamental stages: constellation rotation and component interleaving. The angle at which the constellation is rotated can affect the performance of the system. In the past, the rotation angle is determined based on a design criterion which maximizes the diversity order by minimizing the Euclidean square product or, alternatively, minimizes an SER expression. In this dissertation, a simple method for determining a rotation angle at which system performance is optimal for hierarchical constellations is presented. Previously, the BER analysis for HM involves an intricate approach where the probability of an error occurring is determined by considering the probability of a transmitted symbol exceeding past a set decision boundary. This dissertation presents the Nearest Neighbor (NN) union bound approach for determining an accurate approximation of the BER of an HM system with SSD. This method of analysis is later extended for an ATD scheme employing HM with SSD. Although introducing diversity elevates the system performance constraints on HM, it does so at the cost of detection complexity. To address this issue, a reduced complexity maximum-likelihood (ML) based detector is also proposed. While the conventional ML detector performs an exhaustive search to find the minimum Euclidean distance between the received symbol and all possible modulated symbols, the proposed detector only considers the nearest neighbors of the received symbol. By reducing the number of comparisons, a complexity reduction of 51.43% between the proposed detector and the optimal detector for 16-QAM is found

    Turbo trellis-coded hierarchical modulation assisted decode-and-forward cooperation

    No full text
    Hierarchical modulation, which is also known as layered modulation, has been widely adopted across the telecommunication industry. Its strict backward compatibility with single-layer modems and its low complexity facilitate the seamless upgrading of wireless communication services. The potential employment of hierarchical modulation in cooperative communications has the promise of increasing the achievable throughput at a low power consumption. In this paper, we propose a single-relay aided hierarchical modulation based cooperative communication system. The source employs a pair of Turbo Trellis-Coded Modulation schemes relying on specially designed hierarchical modulation, while the relay invokes the Decode-and-Forward protocol. We have analysed the system’s achievable rate as well as its bit error ratio using Monte-Carlo simulations. The results demonstrate that the power consumption of the entire system is reduced to 3.62 dB per time slot by our scheme

    Broadcasting scalable video with generalized spatial modulation in cellular networks

    Get PDF
    This paper considers the transmission of scalable video via broadcast and multicast to increase spectral and energy efficiency in cellular networks. To address this problem, we study the use of generalized spatial modulation (GSM) combined with non-orthogonal hierarchical M-QAM modulations due to the capability to exploit the potential gains of large scale antenna systems and achieve high spectral and energy efficiencies. We introduce the basic idea of broadcasting/multicasting scalable video associated to GSM, and discuss the key limitations. Non-uniform hierarchical QAM constellations are used for broadcasting/multicasting scalable video while user specific messages are carried implicitly on the indexes of the active transmit antennas combinations. To deal with multiple video and dedicated user streams multiplexed on the same transmission, an iterative receiver with reduced complexity is described. 5G New Radio (NR) based link and system level results are presented. Two different ways of quadruplicating the number of broadcasting programs are evaluated and compared. Performance results show that the proposed GSM scheme is capable of achieving flexibility and energy efficiency gain over conventional multiple input multiple output (MIMO) schemes.info:eu-repo/semantics/publishedVersio

    Hierarchical colour-shift-keying aided layered video streaming for the visible light downlink

    No full text
    Colour-shift keying (CSK) constitutes an important modulation scheme conceived for the visible light communications (VLC). The signal constellation of CSK relies on three different-color light sources invoked for information transmission. The CSK constellation has been optimized for minimizing the bit error rate, but no effort has been invested in investigating the feasibility of CSK aided unequal error protection (UEP) schemes conceived for video sources. Hence, in this treatise, we conceive a hierarchical CSK (HCSK) modulation scheme based on the traditional CSK, which is capable of generating interdependent layers of signals having different error probability, which can be readily reconfigured by changing its parameters. Furthermore, we conceived an HCSK design example for transmitting scalable video sources with the aid of a recursive systematic convolutional (RSC) code. An optimization method is conceived for enhancing the UEP and for improving the quality of the received video. Our simulation results show that the proposed optimized-UEP 16-HCSK-RSC system outperforms the traditional equal error protection scheme by ~ 1.7 dB of optical SNR at a peak signal-to-noise ratio of 37 dB, while optical SNR savings of up to 6.5 dB are attained at a lower PSNR of 36 dB
    corecore