75 research outputs found

    An explicit universal cycle for the (n-1)-permutations of an n-set

    Full text link
    We show how to construct an explicit Hamilton cycle in the directed Cayley graph Cay({\sigma_n, sigma_{n-1}} : \mathbb{S}_n), where \sigma_k = (1 2 >... k). The existence of such cycles was shown by Jackson (Discrete Mathematics, 149 (1996) 123-129) but the proof only shows that a certain directed graph is Eulerian, and Knuth (Volume 4 Fascicle 2, Generating All Tuples and Permutations (2005)) asks for an explicit construction. We show that a simple recursion describes our Hamilton cycle and that the cycle can be generated by an iterative algorithm that uses O(n) space. Moreover, the algorithm produces each successive edge of the cycle in constant time; such algorithms are said to be loopless

    Pop & Push: Ordered Tree Iteration in ?(1)-Time

    Get PDF

    Subset-lex: did we miss an order?

    Full text link
    We generalize a well-known algorithm for the generation of all subsets of a set in lexicographic order with respect to the sets as lists of elements (subset-lex order). We obtain algorithms for various combinatorial objects such as the subsets of a multiset, compositions and partitions represented as lists of parts, and for certain restricted growth strings. The algorithms are often loopless and require at most one extra variable for the computation of the next object. The performance of the algorithms is very competitive even when not loopless. A Gray code corresponding to the subset-lex order and a Gray code for compositions that was found during this work are described.Comment: Two obvious errors corrected (indicated by "Correction:" in the LaTeX source

    Lattice path matroids: enumerative aspects and Tutte polynomials

    Get PDF
    Fix two lattice paths P and Q from (0,0) to (m,r) that use East and North steps with P never going above Q. We show that the lattice paths that go from (0,0) to (m,r) and that remain in the region bounded by P and Q can be identified with the bases of a particular type of transversal matroid, which we call a lattice path matroid. We consider a variety of enumerative aspects of these matroids and we study three important matroid invariants, namely the Tutte polynomial and, for special types of lattice path matroids, the characteristic polynomial and the beta invariant. In particular, we show that the Tutte polynomial is the generating function for two basic lattice path statistics and we show that certain sequences of lattice path matroids give rise to sequences of Tutte polynomials for which there are relatively simple generating functions. We show that Tutte polynomials of lattice path matroids can be computed in polynomial time. Also, we obtain a new result about lattice paths from an analysis of the beta invariant of certain lattice path matroids.Comment: 28 pages, 11 figure

    Transitive and Gallai colorings

    Full text link
    A Gallai coloring of the complete graph is an edge-coloring with no rainbow triangle. This concept first appeared in the study of comparability graphs and anti-Ramsey theory. We introduce a transitive analogue for acyclic directed graphs, and generalize both notions to Coxeter systems, matroids and commutative algebras. It is shown that for any finite matroid (or oriented matroid), the maximal number of colors is equal to the matroid rank. This generalizes a result of Erd\H{o}s-Simonovits-S\'os for complete graphs. The number of Gallai (or transitive) colorings of the matroid that use at most kk colors is a polynomial in kk. Also, for any acyclic oriented matroid, represented over the real numbers, the number of transitive colorings using at most 2 colors is equal to the number of chambers in the dual hyperplane arrangement. We count Gallai and transitive colorings of the root system of type A using the maximal number of colors, and show that, when equipped with a natural descent set map, the resulting quasisymmetric function is symmetric and Schur-positive.Comment: 31 pages, 5 figure

    On some third parts of nearly complete digraphs

    Get PDF
    AbstractFor the complete digraph DKn with n⩾3, its half as well as its third (or near-third) part, both non-self-converse, are exhibited. A backtracking method for generating a tth part of a digraph is sketched. It is proved that some self-converse digraphs are not among the near-third parts of the complete digraph DK5 in four of the six possible cases. For n=9+6k,k=0,1,…, a third part D of DKn is found such that D is a self-converse oriented graph and all D-decompositions of DKn have trivial automorphism group

    Ramanujan Coverings of Graphs

    Full text link
    Let GG be a finite connected graph, and let ρ\rho be the spectral radius of its universal cover. For example, if GG is kk-regular then ρ=2k1\rho=2\sqrt{k-1}. We show that for every rr, there is an rr-covering (a.k.a. an rr-lift) of GG where all the new eigenvalues are bounded from above by ρ\rho. It follows that a bipartite Ramanujan graph has a Ramanujan rr-covering for every rr. This generalizes the r=2r=2 case due to Marcus, Spielman and Srivastava (2013). Every rr-covering of GG corresponds to a labeling of the edges of GG by elements of the symmetric group SrS_{r}. We generalize this notion to labeling the edges by elements of various groups and present a broader scenario where Ramanujan coverings are guaranteed to exist. In particular, this shows the existence of richer families of bipartite Ramanujan graphs than was known before. Inspired by Marcus-Spielman-Srivastava, a crucial component of our proof is the existence of interlacing families of polynomials for complex reflection groups. The core argument of this component is taken from a recent paper of them (2015). Another important ingredient of our proof is a new generalization of the matching polynomial of a graph. We define the rr-th matching polynomial of GG to be the average matching polynomial of all rr-coverings of GG. We show this polynomial shares many properties with the original matching polynomial. For example, it is real rooted with all its roots inside [ρ,ρ]\left[-\rho,\rho\right].Comment: 38 pages, 4 figures, journal version (minor changes from previous arXiv version). Shortened version appeared in STOC 201
    corecore