30,248 research outputs found

    A Logical Approach to Efficient Max-SAT solving

    Get PDF
    Weighted Max-SAT is the optimization version of SAT and many important problems can be naturally encoded as such. Solving weighted Max-SAT is an important problem from both a theoretical and a practical point of view. In recent years, there has been considerable interest in finding efficient solving techniques. Most of this work focus on the computation of good quality lower bounds to be used within a branch and bound DPLL-like algorithm. Most often, these lower bounds are described in a procedural way. Because of that, it is difficult to realize the {\em logic} that is behind. In this paper we introduce an original framework for Max-SAT that stresses the parallelism with classical SAT. Then, we extend the two basic SAT solving techniques: {\em search} and {\em inference}. We show that many algorithmic {\em tricks} used in state-of-the-art Max-SAT solvers are easily expressable in {\em logic} terms with our framework in a unified manner. Besides, we introduce an original search algorithm that performs a restricted amount of {\em weighted resolution} at each visited node. We empirically compare our algorithm with a variety of solving alternatives on several benchmarks. Our experiments, which constitute to the best of our knowledge the most comprehensive Max-sat evaluation ever reported, show that our algorithm is generally orders of magnitude faster than any competitor

    Identifying Security-Critical Cyber-Physical Components in Industrial Control Systems

    Get PDF
    In recent years, Industrial Control Systems (ICS) have become an appealing target for cyber attacks, having massive destructive consequences. Security metrics are therefore essential to assess their security posture. In this paper, we present a novel ICS security metric based on AND/OR graphs that represent cyber-physical dependencies among network components. Our metric is able to efficiently identify sets of critical cyber-physical components, with minimal cost for an attacker, such that if compromised, the system would enter into a non-operational state. We address this problem by efficiently transforming the input AND/OR graph-based model into a weighted logical formula that is then used to build and solve a Weighted Partial MAX-SAT problem. Our tool, META4ICS, leverages state-of-the-art techniques from the field of logical satisfiability optimisation in order to achieve efficient computation times. Our experimental results indicate that the proposed security metric can efficiently scale to networks with thousands of nodes and be computed in seconds. In addition, we present a case study where we have used our system to analyse the security posture of a realistic water transport network. We discuss our findings on the plant as well as further security applications of our metric.Comment: Keywords: Security metrics, industrial control systems, cyber-physical systems, AND-OR graphs, MAX-SAT resolutio

    Fuzzy Maximum Satisfiability

    Full text link
    In this paper, we extend the Maximum Satisfiability (MaxSAT) problem to {\L}ukasiewicz logic. The MaxSAT problem for a set of formulae {\Phi} is the problem of finding an assignment to the variables in {\Phi} that satisfies the maximum number of formulae. Three possible solutions (encodings) are proposed to the new problem: (1) Disjunctive Linear Relations (DLRs), (2) Mixed Integer Linear Programming (MILP) and (3) Weighted Constraint Satisfaction Problem (WCSP). Like its Boolean counterpart, the extended fuzzy MaxSAT will have numerous applications in optimization problems that involve vagueness.Comment: 10 page

    On complexity of optimized crossover for binary representations

    Get PDF
    We consider the computational complexity of producing the best possible offspring in a crossover, given two solutions of the parents. The crossover operators are studied on the class of Boolean linear programming problems, where the Boolean vector of variables is used as the solution representation. By means of efficient reductions of the optimized gene transmitting crossover problems (OGTC) we show the polynomial solvability of the OGTC for the maximum weight set packing problem, the minimum weight set partition problem and for one of the versions of the simple plant location problem. We study a connection between the OGTC for linear Boolean programming problem and the maximum weight independent set problem on 2-colorable hypergraph and prove the NP-hardness of several special cases of the OGTC problem in Boolean linear programming.Comment: Dagstuhl Seminar 06061 "Theory of Evolutionary Algorithms", 200

    Optimization Modulo Theories with Linear Rational Costs

    Full text link
    In the contexts of automated reasoning (AR) and formal verification (FV), important decision problems are effectively encoded into Satisfiability Modulo Theories (SMT). In the last decade efficient SMT solvers have been developed for several theories of practical interest (e.g., linear arithmetic, arrays, bit-vectors). Surprisingly, little work has been done to extend SMT to deal with optimization problems; in particular, we are not aware of any previous work on SMT solvers able to produce solutions which minimize cost functions over arithmetical variables. This is unfortunate, since some problems of interest require this functionality. In the work described in this paper we start filling this gap. We present and discuss two general procedures for leveraging SMT to handle the minimization of linear rational cost functions, combining SMT with standard minimization techniques. We have implemented the procedures within the MathSAT SMT solver. Due to the absence of competitors in the AR, FV and SMT domains, we have experimentally evaluated our implementation against state-of-the-art tools for the domain of linear generalized disjunctive programming (LGDP), which is closest in spirit to our domain, on sets of problems which have been previously proposed as benchmarks for the latter tools. The results show that our tool is very competitive with, and often outperforms, these tools on these problems, clearly demonstrating the potential of the approach.Comment: Submitted on january 2014 to ACM Transactions on Computational Logic, currently under revision. arXiv admin note: text overlap with arXiv:1202.140
    • …
    corecore