7 research outputs found

    Energy Efficient Location Aided Routing Protocol for Wireless MANETs

    Get PDF
    A Mobile Ad-Hoc Network (MANET) is a collection of wireless mobile nodes forming a temporary network without using any centralized access point, infrastructure, or centralized administration. In this paper we introduce an Energy Efficient Location Aided Routing (EELAR) Protocol for MANETs that is based on the Location Aided Routing (LAR). EELAR makes significant reduction in the energy consumption of the mobile nodes batteries by limiting the area of discovering a new route to a smaller zone. Thus, control packets overhead is significantly reduced. In EELAR a reference wireless base station is used and the network's circular area centered at the base station is divided into six equal sub-areas. At route discovery instead of flooding control packets to the whole network area, they are flooded to only the sub-area of the destination mobile node. The base station stores locations of the mobile nodes in a position table. To show the efficiency of the proposed protocol we present simulations using NS-2. Simulation results show that EELAR protocol makes an improvement in control packet overhead and delivery ratio compared to AODV, LAR, and DSR protocols.Comment: 9 Pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS 2009, ISSN 1947 5500, Impact factor 0.423, http://sites.google.com/site/ijcsis

    Cluster Based Geo-Routing Protocol

    Get PDF
    This paper addresses the problem of the overhead resulting from flooding the control packets in mobile ad hoc networks in searching for routes between the source and destination. We propose a location enhanced routing protocol for clustered MANETs based on the cluster based routing protocol (CBRP). Our protocol employs local position information obtained by smart antennas to discover routes and make routing decisions for the clustered MANETs. One of the CHs, named general manager (GM), is assigned the responsibility to maintain the local positions of the other nodes. The GM divides the space into four quarters and periodically sends HELLO messages that reach all the nodes. Then each node sends its location information to the GM when this information is changed. Also, the GM has the responsibility to route data from the source to the destination. Simulation results show enhancing the performance of clustered MANETs by decreasing the control packets overhead

    A location routing protocol based on smart antennas for wireless sensor networks

    Get PDF
    ABSTRACT: The task of finding and maintaining routes in a Wireless Sensor Networks is a nontrivial task since energy restrictions and sudden changes in node status (e.g. failure) cause frequent and unpredictable topological changes. This work introduces a novel location routing protocol that uses smart antennas to estimate nodes positions into the network and to deliver information basing routing decisions on neighbor’s status connection and relative position, named LBRA. The main purpose of LBRA is to eliminate network control overhead as much as possible. To achieve this goal, the algorithm employs local position for route decision, implements a novel mechanism to collect the location information and involves only route participants in the synchronization of location information. In addition, the protocol uses node battery information to make power aware routing decisions. In order to asses LBRA a series of simulations were designed with the help of the Network Simulator 2 (ns2). The experiment results showed that LBRA succeed in reducing the control overhead and the routing load, improving the packet delivery rate. Additionally, network power depletion is more balanced, since routing decisions are made depending on nodes’ battery leve

    A Location Routing Protocol Based on Smart Antennas for Wireless Sensor Networks

    Get PDF
    RÉSUMÉ Les réseaux de capteurs sans fil sont une technologie émergente pour la surveillance de l’environnement. Un réseau de capteurs typique se compose d'un grand nombre de capteurs miniatures (noeuds) multifonctionnels, à faible coût et à faible consommation d’énergie, équipés d’un radio émetteur-récepteur et d’un ensemble de transducteurs pour récolter et transmettre des données environnementales d'une manière autonome. Une des contraintes les plus importantes de capteurs est la nécessitée d’économiser de l’énergie puisqu’ils utilisent des batteries de duré limitée, généralement irremplaçables. En outre, ils se caractérisent également par une faible vitesse de traitement, capacité de stockage et de bande passante, qui nécessite une gestion des ressources très attentive. En raison des limitations et caractéristiques inhérentes aux capteurs, le routage dans les réseaux de capteurs sans fil suppose un vrai défi. La tâche de trouver et de maintenir des routes n'est pas triviale étant donné les restrictions d'énergie et les changements soudains dans l'état des noeuds (exemple: mal-fonctionnement) qui entrainent des changements fréquents et imprévisibles dans la structure topologique. Ce travail présente LBRA, un nouveau protocole de routage géolocalisé qui utilise des antennes intelligentes pour estimer les positions des noeuds dans le réseau, et qui base les décisions de routage sur l’état de connexion des voisins et leur position relative. L'objectif principal de LBRA est d'éliminer le trafic de contrôle du réseau autant que possible. Pour atteindre cet objectif, l'algorithme emploie la position locale pour prendre des décisions de routage, met en oeuvre un nouveau mécanisme pour recueillir les informations de localisation et utilise seulement les noeuds impliqués dans la route pour faire la synchronisation des données de positionnement. De plus, le protocole considère le niveau de la batterie au moment de prendre des décisions de routage afin de balancer la dépense d’énergie du réseau. LBRA est une version améliorée du routage de ZigBee (norme actuelle pour les réseaux à faible coût et à faible consommation d’énergie) qui se base, lui aussi, sur AODV. Afin d'évaluer dans quelle mesure LBRA représente vraiment une amélioration par rapport au routage de ZigBee, une série de simulations a été effectué à l'aide du logiciel Network Simulator (ns). Les deux protocoles ont été implantés dans le simulateur. Les performances ont été comparées dans une variété de scenarios, dans des conditions différentes tels que les charges de trafic, les tailles de réseau et les conditions de mobilité. Les résultats des expériences ont montré que LBRA réussi à réduire le trafic de contrôle et la charge de routage, tout en améliorant le taux de livraison des paquets, à la fois pour les réseaux fixes et les réseaux mobiles. L'abaissement de l'alimentation du réseau est aussi plus équilibré, puisque les décisions de routage sont prises en fonction du niveau de la batterie des noeuds.----------ABSTRACT Wireless sensor networks are an emerging technology for environmental monitoring. A typical sensor network is composed of a large number of low-cost, low-power, multi-functional miniature sensor devices (nodes) equipped with a radio transceiver and a set of transducers utilized to acquire information about the surrounding environment. One of the most important constraints of sensor nodes is the low power consumption requirement since they carry limited, generally irreplaceable, batteries. In addition, they are also characterized by scarce processing speed, storage capacity and communication bandwidth, thus requiring careful resource management. Due to the inherent characteristics and restrictions of sensor nodes, routing in WSNs is very challenging. The task of finding and maintaining routes is nontrivial since energy restrictions and sudden changes in node status (e.g. failure) cause frequent and unpredictable topological changes. This work introduces a novel location routing protocol that uses smart antennas to estimate nodes positions into the network and to deliver information basing routing decisions on neighbour’s status connection and relative position, named LBRA. The main purpose of LBRA is to eliminate network control overhead as much as possible. To achieve this goal, the algorithm employs local position for route decision, implements a novel mechanism to collect the location information and involves only route participants in the synchronization of location information. In addition, the protocol uses node battery information to make power aware routing decisions. LBRA is an enhanced version of the ZigBee routing, which is the current standard for reliable, cost-effective and low power wireless networking, and like the latter is prototyped from AODV. In order to asses to what extent LBRA truly represents an improvement with respect to the ZigBee routing, a series of simulations were designed with the help of the Network Simulator (ns). Basically, both protocols were implemented in the simulator and its performance was compared in a variety of traffic load, network size and mobility conditions. The experiment results showed that LBRA succeed in reducing the control overhead and the routing load, improving the packet delivery rate for both static and mobile networks. Additionally, network power depletion is more balanced, since routing decisions are made depending on nodes’ battery level

    Impact of directional antennas on routing and neighbor discovery in wireless ad-hoc networks

    Get PDF
    Wireless ad-hoc networks are data networks that are deployed without a fixed infrastructure nor central controllers such as access points or base stations. In these networks, data packets are forwarded directly to the destination node if they are within the transmission range of the sender or sent through a multi-hop path of intermediary nodes that act as relays. This paradigm where a fixed infrastructure is not needed, is tolerant to topology changes and allows a fast deployment have been considered as a promissory technology that is suitable for a large number of network implementations, such as mobile hand-held devices, wireless sensors, disaster recovery networks, etc. Recently, smart directional antennas have been identified as a robust technology that can boost the performance of wireless ad-hoc networks in terms of coverage, connectivity, and capacity. Contrary to omnidirectional antennas, which can radiate energy in all directions, directional antennas can focus the energy in a specific direction, extending the coverage range for the same power level. Longer ranges provide shorter paths to destination nodes and also improve connectivity. Moreover, directional antennas can reduce the number of collisions in a contention-based access scheme as they can steer the main lobe in the desired direction and set nulls in all the others, thereby they minimize the co-channel interference and reduce the noise level. Connections are more reliable due to the increased link stability and spatial diversity. Shorter paths, as well as alternative paths, are also available as a consequence of the use of directional antennas. All these features combined results in a higher network capacity. Most of the previous research has focused on adapting the existing medium access control and routing protocols to utilize directional communications. This research work is novel because it improves the neighbor discovery process as it allows to discover nodes in the second neighborhood of a given node using a gossip based procedure and by sharing the relative position information obtained during this stage with the routing protocol with the aim of reducing the number of hops between source and destination. We have also developed a model to evaluate the energy consumed by the nodes when smart directional antennas are used in the ad-hoc network. This study has demonstrated that by adapting the beamwidth of the antennas nodes are able to reach furthest nodes and consequently, reduce the number of hops between source and destination. This fact not only reduces the end-to-end delay and improves the network throughput but also reduces the average energy consumed by the whole network
    corecore