378 research outputs found

    A Survey on Spectrum Management in Cognitive Radio Networks

    Get PDF
    Cognitive radio networks will provide high bandwidth to mobile users via heterogeneous wireless architectures and dynamic spectrum access techniques. However, CR networks impose challenges due to the fluctuating nature of the available spectrum, as well as the diverse QoS requirements of various applications. Spectrum management functions can address these challenges for the realization of this new network paradigm. To provide a better understanding of CR networks, this article presents recent developments and open research issues in spectrum management in CR networks. More specifically, the discussion is focused on the development of CR networks that require no modification of existing networks. First, a brief overview of cognitive radio and the CR network architecture is provided. Then four main challenges of spectrum management are discussed: spectrum sensing, spectrum decision, spectrum sharing, and spectrum mobility

    Spectrum Sharing in Dynamic Spectrum Access Networks: WPE-II Written Report

    Get PDF
    A study by Federal Communication Commission shows that most of the spectrum in current wireless networks is unused most of the time, while some spectrum is heavily used. Recently dynamic spectrum access (DSA) has been proposed to solve this spectrum inefficiency problem, by allowing users to opportunistically access to unused spectrum. One important question in DSA is how to efficiently share spectrum among users so that spectrum utilization can be increased and wireless interference can be reduced. Spectrum sharing can be formalized as a graph coloring problem. In this report we focus on surveying spectrum sharing techniques in DSA networks and present four representative techniques in different taxonomy domains, including centralized, distributed with/without common control channel, and a real case study of DSA networks --- DARPA neXt Gen- eration (XG) radios. Their strengths and limitations are evaluated and compared in detail. Finally, we discuss the challenges in current spectrum sharing research and possible future directions

    Spectrum cartography techniques, challenges, opportunities, and applications: A survey

    Get PDF
    The spectrum cartography finds applications in several areas such as cognitive radios, spectrum aware communications, machine-type communications, Internet of Things, connected vehicles, wireless sensor networks, and radio frequency management systems, etc. This paper presents a survey on state-of-the-art of spectrum cartography techniques for the construction of various radio environment maps (REMs). Following a brief overview on spectrum cartography, various techniques considered to construct the REMs such as channel gain map, power spectral density map, power map, spectrum map, power propagation map, radio frequency map, and interference map are reviewed. In this paper, we compare the performance of the different spectrum cartography methods in terms of mean absolute error, mean square error, normalized mean square error, and root mean square error. The information presented in this paper aims to serve as a practical reference guide for various spectrum cartography methods for constructing different REMs. Finally, some of the open issues and challenges for future research and development are discussed.publishedVersio

    Characterization of spectrum activities in the U.S. public safety band for opportunistic spectrum access

    Get PDF
    Abstract — Dual site spectrum measurements have been made in the public safety band in Howard County, Maryland, USA. The public safety band is of interest because of its obvious importance and the increasing need to determine whether improved spectral utilization would accommodate increased usage for public safety. Two receiver suites were synchronized and used to measure concurrent spectra at separation between a few meters up to a few kilometers. These measurements prove useful in examining issues of spectrum sensing for dynamic spectrum access, including receiver sensitivity, primary user signal detection, adjacent channel interference, and policy performance with local and cooperative sensing. We analyze the collected data to characterize the usage of this public safety network and provide insights into how white space can be identified and utilized. We propose a class of opportunistic access strategies and demonstrate how collected data can be used to evaluate the performance of such schemes. Index Terms—dynamic spectrum access, public safety band, spectrum measurement, spectrum policy, and spectrum data analysis I

    Partial Discharge Detection and localization Using Software Defined Radio in the future smart grid

    Get PDF
    Partial discharge (PD) occurs if a high voltage is applied to insulation that contains voids. PD is one of the predominant factors to be controlled to ensure reliability and undisrupted functions of power generators, motors, Gas Insulated Switchgear (GIS) and grid connected power distribution equipment. PD can degrade insulation and if left untreated can cause catastrophic insulation failure. However, PD pulse monitoring and detection can save cost and life prior to plant failure. PD is detected using traditional methods such as galvanic contact methods or UHF PD detection methods. Recently, an alternative method for PD detection and monitoring using wireless technology has become possible. Software Defined Radio has opened new opportunities to detect and monitor PD activity. This research makes use of SDR technology for PD detection and monitoring. The main advantages of SDR technology are that it is cost-effective and it is relatively immune against environmental noise. This is because the noise at electrical power stations is from around a few KHz to a few MHz and this is well below the SDR frequency range and PD frequency band (50-800 MHz). However, noise or interference also exists in the PD frequency band. These interferences are narrow band and mainly from FM, TV broadcasting and mobile telephony signals whose frequencies are well known, thus these interferences can be possibly processed and removed. In this research two SDR products (Realtek software defined radio RTL-SDR/Universal software radio peripheral USRP N200) are used to detect PD signals emitted by a PD source that was located at a distance of 1 m in case of RTL-SDR device while in case of USRP N200 the PD source was located at a distance of 3 m. These PD signals once received by an SDR device are recorded and processed offline in order to localize the PD source. The detected PD signal was around 20 dB above background noise in case of the RTL-SDR device and 25 dB above background noise in case of using the USRP N200. Selecting the appropriate SDR device depends on factors such as high sensitivity and selectivity. Furthermore, although USRP N200 is more expensive than RTL-SDR dongles, USRP N200 was preferred over RTL-SDR as it demonstrates higher sensitivity and overall better results. PD detection using SDR devices was conducted in the frequency domain. These result were validated using a high-end costly device, i.e. spectrum analyzer. Generally, SDR devices demonstrate satisfactory results when compared to spectrum analyzers. Considering that spectrum analyzers cost around £10,000, while a USRP N200 SRD device costs less than £1000, SDR technology seems to be cost-effective. Following PD detection, PD localization was performed using USRP N200 results, and a localization algorithm based on Received Signal Strength (RSS) was adopted. The localization result was within a 1.3-meter accuracy and this can be considered as a relatively good result. In addition, and for the purpose of evaluating the proposed scheme, more experiments were conducted using another system that is based on radiometric sensors which is WSN PD system. The estimated error was 1m in case of using the SDR-USRP N200 system and 0.8 m in case of using the WSN PD system. Results of both systems were very satisfactory, although some results at the corners of the detection grid were not good and the error was higher than 3 meters due to the fact that the RSS algorithm performs poorly at corners. These experiments were used to validate both systems for PD detection and localization in industrial environments

    A Comprehensive Survey on Networking over TV White Spaces

    Full text link
    The 2008 Federal Communication Commission (FCC) ruling in the United States opened up new opportunities for unlicensed operation in the TV white space spectrum. Networking protocols over the TV white spaces promise to subdue the shortcomings of existing short-range multi-hop wireless architectures and protocols by offering more availability, wider bandwidth, and longer-range communication. The TV white space protocols are the enabling technologies for sensing and monitoring, Internet-of-Things (IoT), wireless broadband access, real-time, smart and connected community, and smart utility applications. In this paper, we perform a retrospective review of the protocols that have been built over the last decade and also the new challenges and the directions for future work. To the best of our knowledge, this is the first comprehensive survey to present and compare existing networking protocols over the TV white spaces.Comment: 19 page
    • …
    corecore