130,932 research outputs found

    Evolution of Network Architecture in a Granular Material Under Compression

    Full text link
    As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying the progression of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and interparticle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the changes in this structure throughout the compression process. We separately consider the network of normal and tangential forces, and find that they display a different progression throughout compression. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be achieved by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than a purely local measure of interparticle forces alone. The results discussed throughout this study suggest that these network science techniques may provide a direct way to compare and classify data from systems under different external conditions or with different physical makeup

    Defining and identifying communities in networks

    Full text link
    The investigation of community structures in networks is an important issue in many domains and disciplines. This problem is relevant for social tasks (objective analysis of relationships on the web), biological inquiries (functional studies in metabolic, cellular or protein networks) or technological problems (optimization of large infrastructures). Several types of algorithm exist for revealing the community structure in networks, but a general and quantitative definition of community is still lacking, leading to an intrinsic difficulty in the interpretation of the results of the algorithms without any additional non-topological information. In this paper we face this problem by introducing two quantitative definitions of community and by showing how they are implemented in practice in the existing algorithms. In this way the algorithms for the identification of the community structure become fully self-contained. Furthermore, we propose a new local algorithm to detect communities which outperforms the existing algorithms with respect to the computational cost, keeping the same level of reliability. The new algorithm is tested on artificial and real-world graphs. In particular we show the application of the new algorithm to a network of scientific collaborations, which, for its size, can not be attacked with the usual methods. This new class of local algorithms could open the way to applications to large-scale technological and biological applications.Comment: Revtex, final form, 14 pages, 6 figure

    Local multiresolution order in community detection

    Full text link
    Community detection algorithms attempt to find the best clusters of nodes in an arbitrary complex network. Multi-scale ("multiresolution") community detection extends the problem to identify the best network scale(s) for these clusters. The latter task is generally accomplished by analyzing community stability simultaneously for all clusters in the network. In the current work, we extend this general approach to define local multiresolution methods, which enable the extraction of well-defined local communities even if the global community structure is vaguely defined in an average sense. Toward this end, we propose measures analogous to variation of information and normalized mutual information that are used to quantitatively identify the best resolution(s) at the community level based on correlations between clusters in independently-solved systems. We demonstrate our method on two constructed networks as well as a real network and draw inferences about local community strength. Our approach is independent of the applied community detection algorithm save for the inherent requirement that the method be able to identify communities across different network scales, with appropriate changes to account for how different resolutions are evaluated or defined in a particular community detection method. It should, in principle, easily adapt to alternative community comparison measures.Comment: 19 pages, 11 figure

    Modularity functions maximization with nonnegative relaxation facilitates community detection in networks

    Full text link
    We show here that the problem of maximizing a family of quantitative functions, encompassing both the modularity (Q-measure) and modularity density (D-measure), for community detection can be uniformly understood as a combinatoric optimization involving the trace of a matrix called modularity Laplacian. Instead of using traditional spectral relaxation, we apply additional nonnegative constraint into this graph clustering problem and design efficient algorithms to optimize the new objective. With the explicit nonnegative constraint, our solutions are very close to the ideal community indicator matrix and can directly assign nodes into communities. The near-orthogonal columns of the solution can be reformulated as the posterior probability of corresponding node belonging to each community. Therefore, the proposed method can be exploited to identify the fuzzy or overlapping communities and thus facilitates the understanding of the intrinsic structure of networks. Experimental results show that our new algorithm consistently, sometimes significantly, outperforms the traditional spectral relaxation approaches

    Multiresolution community detection for megascale networks by information-based replica correlations

    Full text link
    We use a Potts model community detection algorithm to accurately and quantitatively evaluate the hierarchical or multiresolution structure of a graph. Our multiresolution algorithm calculates correlations among multiple copies ("replicas") of the same graph over a range of resolutions. Significant multiresolution structures are identified by strongly correlated replicas. The average normalized mutual information, the variation of information, and other measures in principle give a quantitative estimate of the "best" resolutions and indicate the relative strength of the structures in the graph. Because the method is based on information comparisons, it can in principle be used with any community detection model that can examine multiple resolutions. Our approach may be extended to other optimization problems. As a local measure, our Potts model avoids the "resolution limit" that affects other popular models. With this model, our community detection algorithm has an accuracy that ranks among the best of currently available methods. Using it, we can examine graphs over 40 million nodes and more than one billion edges. We further report that the multiresolution variant of our algorithm can solve systems of at least 200000 nodes and 10 million edges on a single processor with exceptionally high accuracy. For typical cases, we find a super-linear scaling, O(L^{1.3}) for community detection and O(L^{1.3} log N) for the multiresolution algorithm where L is the number of edges and N is the number of nodes in the system.Comment: 19 pages, 14 figures, published version with minor change
    corecore