10 research outputs found

    RIGHTING OF CHINESE MITTEN CRABS (ERIOCHEIR SINENSIS) AND THEIR MODELS

    Get PDF
    The usage of unmanned underwater vehicles for marine tasks is continuously growing and bioinspired stabilizing systems shall help them to gain and keep a stable position during work. Therefore the righting maneuver of E. sinensis has been studied. These crabs are able to perform a 180°-rotation with an angular velocity of 4.30 s−1 when falling underwater from a supine starting position. High-speed particle image velocimetry has shown, that propulsive forces with a peak of 0.021 ± 0.001 N were produced by the hind legs to initiate and stop the rotation. In a numerical multibody simulation a constant force of 0.009 N acting for 0.2 s leads to the same rotation. In order to prove this mechanism, it was implemented into a robotic system. Its mean density of 1.15 g/cm3 deviates not more than 4% from the biological and numerical models. It can complete a 180°-turn within 1.03 ± 0.12 s with a rotational velocity of up to 4.25 s−1

    Experimental Evidence of Pitch Control of an All-Terrain AGV during a Ballistic Phase

    Get PDF
    International audienceIn some conditions, four-wheeled high speed mobile robots designed for open-field applications may take off and land badly. In order to avoid this dead-end situation, it is possible to use the mechanical principle of angular momentum conservation for correcting the pitch angle of the vehicle during the ballistic phases of actual jumps. In this study, the mechanical model of pitch control has been verified in laboratory experiments with a prototype of all-terrain AGV called "RobCat". Two series of trials have been realized on a specific test bench in which RobCat was hanged on a transversal axis passing through its CoM. In each series, RobCat was equipped either with its original hollow rubber tyres or with solid wheels having equivalent inertial parameters. The results of these experiments validated the mechanical model of angular momentum conservation of RobCat during an airborne phase and the feasibility of controlling RobCat's orientation around its pitch axis by accelerating or braking its wheels. The conclusions of this experimental study are highly encouraging for building agile mobile robots able to roll at high velocities on irregular grounds and that will combine the speed of aerial drones with the large autonomy and interaction capacity of terrestrial robots

    RIGHTING OF CHINESE MITTEN CRABS (ERIOCHEIR SINENSIS) AND THEIR MODELS

    Get PDF

    From Rousettus aegyptiacus (bat) Landing to Robotic Landing: Regulation of CG-CP Distance Using a Nonlinear Closed-Loop Feedback

    Get PDF
    Bats are unique in that they can achieve unrivaled agile maneuvers due to their functionally versatile wing conformations. Among these maneuvers, roosting (landing) has captured attentions because bats perform this acrobatic maneuver with a great composure. This work attempts to reconstruct bat landing maneuvers with a Micro Aerial Vehicle (MAV) called Allice. Allice is capable of adjusting the position of its Center of Gravity (CG) with respect to the Center of Pressure (CP) using a nonlinear closed-loop feedback. This nonlinear control law, which is based on the method of input-output feedback linearization, enables attitude regulations through variations in CG-CP distance. To design the model-based nonlinear controller, the Newton-Euler dynamic model of the robot is considered, in which the aerodynamic coefficients of lift and drag are obtained experimentally. The performance of the proposed control architecture is validated by conducting several experiments

    Soft Legged Wheel-Based Robot with Terrestrial Locomotion Abilities

    Get PDF
    In recent years robotics has been influenced by a new approach, soft-robotics, bringing the idea that safe interaction with user and more adaptation to the environment can be achieved by exploiting easily deformable materials and flexible components in the structure of robots. In 2016, the soft-robotics community has promoted a new robotics challenge, named RoboSoft Grand Challenge, with the aim of bringing together different opinions on the usefulness and applicability of softness and compliancy in robotics. In this paper we describe the design and implementation of a terrestrial robot based on two soft legged wheels. The tasks predefined by the challenge were set as targets in the robot design, which finally succeeded to accomplish all the tasks. The wheels of the robot can passively climb over stairs and adapt to slippery grounds using two soft legs embedded in their structure. The soft legs, fabricated by integration of soft and rigid materials and mounted on the circumference of a conventional wheel, succeed to enhance its functionality and easily adapt to unknown grounds. The robot has a semi stiff tail that helps in the stabilization and climbing of stairs. An active wheel is embedded at the extremity of the tail in order to increase the robot maneuverability in narrow environments. Moreover two parallelogram linkages let the robot to reconfigure and shrink its size allowing entering inside gates smaller than its initial dimensions

    Design and experimental validation of reorientation manoeuvres for a free falling robot inspired from the cat righting reflex

    Get PDF
    This paper presents two distinct manoeuvres allowing an articulated robot in free fall to change its orientation using closed paths in the joint space. It is shown through dynamics simulations that the magnitude of the net rotation is dependent upon the amplitude of the angular displacement of the joints. With realistic joint limitations, the robot, which includes rotary actuators only, can perform a 180-degree reorientation about its longitudinal axis, similar to the cat righting reflex. The second manoeuvre allows the robot to accomplish rotations of smaller magnitude about a different axis. A physical prototype and a VICON motion tracking system are used to experimentally validate the simulation results. Finally, it is shown that the two manoeuvres, which yield rotations about fixed axes, can be repeated and alternated to enable the robot to reach any arbitrary 3D orientation

    Développement et expérimentation d'algorithmes de réorientation pour un robot sériel en chute libre

    Get PDF
    Ce mémoire présente 2 types de méthodes pour effectuer la réorientation d’un robot sériel en chute libre en utilisant les mouvements internes de celui-ci. Ces mouvements sont prescrits à partir d’algorithmes de planification de trajectoire basés sur le modèle dynamique du robot. La première méthode tente de réorienter le robot en appliquant une technique d’optimisation locale fonctionnant avec une fonction potentielle décrivant l’orientation du système, et la deuxième méthode applique des fonctions sinusoïdales aux articulations pour réorienter le robot. Pour tester les performances des méthodes en simulation, on tente de réorienter le robot pour une configuration initiale et finale identiques où toutes les membrures sont alignées mais avec le robot ayant complété une rotation de 180 degrés sur lui-même. Afin de comparer les résultats obtenus avec la réalité, un prototype de robot sériel plan flottant possédant trois membrures et deux liaisons rotoïdes est construit. Les expérimentations effectuées montrent que le prototype est capable d’atteindre les réorientations prescrites si peu de perturbations extérieures sont présentes et ce, même si le contrôle de l’orientation est effectué en boucle ouverte.This master’s thesis presents two different types of methods to reorient a free-floating serial manipulator with internal motion using path planning algorithms based on a dynamic model of the manipulator. The first method attempts to reorient the robot with a local optimisation technique using a potential function describing the global orientation of the robot, while the second method applies sinusoidal functions to the joints of the robot in order to reorient it. The proposed methods are tested with a robot that starts from a pose in which all the links are aligned and ends with the same configuration but with the robot having completed a 180 degrees rotation. To verify the simulation results against a real robot, a prototype of a planar robot with three bodies and two revolute joints is built. The experiments conducted show that the prototype is able to achieve the prescribed reorientation if almost no external torque is applied to the system, even though the control of the orientation is implemented in an open-loop mode

    Understanding the motions of the cheetah tail using robotics

    Get PDF
    The cheetah is capable of incredible feats of manoeuvrability. But, what is interesting about these manoeuvres is that they involve rapid swinging of the animal's lengthy tail. Despite this, very little is understood about the cheetah tail and its motion, with the common view being that it is "heavy" and possibly used as a "counter balance" or as a "rudder". In this dissertation, this subject is investigated by exploring the motions of the cheetah tail by means of mathematic al models, feedback control and novel robot platforms. Particularly, the motion in the roll axis is first investigated and it is determined that it assists stability of high speed turns. This is validated by modelling and experimental testing on a novel tailed robot, Dima I. Inspired by cheetah video observations, the tail motion in the pitch axis during rapid acceleration and braking manoeuvres is also investigated. Once again modelling and experimental testing on a tailed robot are performed and the tail is shown to stabilise rapid acceleration manoeuvres. Video observations also indicate the tail movement in the shape of a cone: a combination of pitching and yawing. Understanding this motion is done by setting up an optimization problem. Here, the optimal motion was found to be to a cone which results in a continuous torque on the body during a turn while galloping. A novel two degree of freedom tailed robot, Dima II, was then developed to experimentally validate the effect of this motion. Lastly, measurement of the cheetah tail inertia was performed during a routine necropsy where it was found to have lower inertia than assumed. However, the tail has thick, long fur that was tested in a wind tunnel. Here it was found that the furry tail is capable of producing significant drag forces without a weight penalty. Subsequently, mathematical models incorporating the aerodynamics of the tail were developed and these were used to demonstrate its effectiveness during manoeuvres

    Control of Bio-Inspired Sprawling Posture Quadruped Robots with an Actuated Spine

    Get PDF
    Sprawling posture robots are characterized by upper limb segments protruding horizontally from the body, resulting in lower body height and wider support on the ground. Combined with an actuated segmented spine and tail, such morphology resembles that of salamanders or crocodiles. Although bio-inspired salamander-like robots with simple rotational limbs have been created, not much research has been done on kinematically redundant bio-mimetic robots that can closely replicate kinematics of sprawling animal gaits. Being bio-mimetic could allow a robot to have some of the locomotion skills observed in those animals, expanding its potential applications in challenging scenarios. At the same time, the robot could be used to answer questions about the animal's locomotion. This thesis is focused on developing locomotion controllers for such robots. Due to their high number of degrees of freedom (DoF), the control is based on solving the limb and spine inverse kinematics to properly coordinate different body parts. It is demonstrated how active use of a spine improves the robot's walking and turning performance. Further performance improvement across a variety of gaits is achieved by using model predictive control (MPC) methods to dictate the motion of the robot's center of mass (CoM). The locomotion controller is reused on an another robot (OroBOT) with similar morphology, designed to mimic the kinematics of a fossil belonging to Orobates, an extinct early tetrapod. Being capable of generating different gaits and quantitatively measuring their characteristics, OroBOT was used to find the most probable way the animal moved. This is useful because understanding locomotion of extinct vertebrates helps to conceptualize major transitions in their evolution. To tackle field applications, e.g. in disaster response missions, a new generation of field-oriented sprawling posture robots was built. The robustness of their initial crocodile-inspired design was tested in the animal's natural habitat (Uganda, Africa) and subsequently enhanced with additional sensors, cameras and computer. The improvements to the software framework involved a smartphone user interface visualizing the robot's state and camera feed to improve the ease of use for the operator. Using force sensors, the locomotion controller is expanded with a set of reflex control modules. It is demonstrated how these modules improve the robot's performance on rough and unstructured terrain. The robot's design and its low profile allow it to traverse low passages. To also tackle narrow passages like pipes, an unconventional crawling gait is explored. While using it, the robot lies on the ground and pushes against the pipe walls to move the body. To achieve such a task, several new control and estimation modules were developed. By exploring these problems, this thesis illustrates fruitful interactions that can take place between robotics, biology and paleontology
    corecore