4 research outputs found

    A note on connected dominating sets of distance-hereditary graphs

    Get PDF
    A vertex subset of a graph is a dominating set if every vertex of the graph belongs to the set or has a neighbor in it. A connected dominating set is a dominating set such that the induced subgraph of the set is a connected graph. A graph is called distance-hereditary if every induced path is a shortest path. In this note, we give a complete description of the (inclusionwise) minimal connected dominating sets of connected distance-hereditary graphs in the following sense: If G is a connected distance-hereditary graph that has a dominating vertex, any minimal connected dominating set is a single vertex or a pair of two adjacent vertices. If G does not have a dominating vertex, the subgraphs induced by any two minimal connected dominating sets are isomorphic. In particular, any inclusionwise minimal connected dominating set of a connected distance-hereditary graph without dominating vertex has minimal size. In other words, connected distance-hereditary graphs without dominating vertex are connected well-dominated. Furthermore, we show that if G is a distance-hereditary graph that has a minimal connected dominating set X of size at least 2, then for any connected induced subgraph H it holds that the subgraph induced by any minimal connected dominating set of H is isomorphic to an induced subgraph of G[X]

    A note on connected dominating sets of distance-hereditary graphs

    Get PDF
    A vertex subset of a graph is a dominating set if every vertex of the graph belongs to the set or has a neighbor in it. A connected dominating set is a dominating set such that the induced subgraph of the set is a connected graph. A graph is called distance-hereditary if every induced path is a shortest path. In this note, we give a complete description of the (inclusionwise) minimal connected dominating sets of connected distance-hereditary graphs in the following sense: If G is a connected distance-hereditary graph that has a dominating vertex, any minimal connected dominating set is a single vertex or a pair of two adjacent vertices. If G does not have a dominating vertex, the subgraphs induced by any two minimal connected dominating sets are isomorphic. In particular, any inclusionwise minimal connected dominating set of a connected distance-hereditary graph without dominating vertex has minimal size. In other words, connected distance-hereditary graphs without dominating vertex are connected well-dominated. Furthermore, we show that if G is a distance-hereditary graph that has a minimal connected dominating set X of size at least 2, then for any connected induced subgraph H it holds that the subgraph induced by any minimal connected dominating set of H is isomorphic to an induced subgraph of GX

    Networks with small stretch number

    Get PDF
    Abstract In a previous work, the authors introduced the class of graphs with bounded induced distance of order k (BID(k) for short), to model non-reliable interconnection networks. A network modeled as a graph in BID(k) can be characterized as follows: if some nodes have failed, as long as two nodes remain connected, the distance between these nodes in the faulty graph is at most k times the distance in the non-faulty graph. The smallest k such that G∈BID(k) is called stretch number of G. We show an odd characteristic of the stretch numbers: every rational number greater or equal 2 is a stretch number, but only discrete values are admissible for smaller stretch numbers. Moreover, we give a new characterization of classes BID(2−1/i), i⩾1, based on forbidden induced subgraphs. By using this characterization, we provide a polynomial time recognition algorithm for graphs belonging to these classes, while the general recognition problem is Co-NP-complete
    corecore