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Abstract. In a previous work, the authors introduced the class of graphs
with bounded induced distance of order k, (BID(k) for short) to model
non-reliable interconnection networks. A network modeled as a graph in
BID(k) can be characterized as follows: if some nodes have failed, as long
as two nodes remain connected, the distance between these nodes in the
faulty graph is at most k times the distance in the non-faulty graph. The
smallest k such that G ∈ BID(k) is called stretch number of G. In this
paper we give new characterization, algorithmic, and existence results
about graphs with small stretch number.

1 Introduction

The main function of a network is to provide connectivity between the sites.
In many cases it is crucial that (properties about) connectivity is preserved
even in the case of (multiple) faults in sites. Accordingly, a major concern in
network design is fault-tolerance and reliability. That means in particular that
the network to be constructed shall remain reliable even in the case of site faults.

According to the actual applications and requirements, the term ‘reliability’
may stand for different features. In this work, it concerns bounded distances,
that is our goal is to investigate about networks in which distances between
sites remain small even in the case of faulty sites. As the underlying model, we
use unweighted graphs, and measure the distance in a network in which node
faults have occurred by a shortest path in the subnetwork that is induced by
the non-faulty components. Using this model, in [7] we have introduced the class
BID(k) of graphs with bounded induced distance of order k. A network modeled
as a graph in BID(k) can be characterized as follows: if some nodes have failed,
as long as two nodes remain connected, the distance between these nodes in the
faulty graph is at most k times the distance in the non-faulty graph.

Some characterization, complexity, and structural results about BID(k) are
given in [7]. In particular, the concept of stretch number has been introduced:
the stretch number s(G) of a given graph G is the smallest rational number
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k such that G belongs to BID(k). Given the relevance of graphs in BID(k) in
the area of communication networks, our purpose is to provide characterization,
algorithmic, and existence results about graphs having small stretch number.

Results. We first investigate graphs having stretch number at most 2. In this
context we show that: (i) there is no graph G with stretch number s(G) such
that 2 − 1

i < s(G) < 2 − 1
i+1 , for each integer i ≥ 1 (this fact was conjectured

in [7]); (ii) there exists a graph G such that s(G) = 2− 1
i , for each integer i ≥ 1.

These results give a partial solution to the following more general problem:
Given a rational number k, is k an admissible stretch number, i.e., is there a
graph G such that s(G) = k? We complete the solution to this problem by
showing that every rational number k ≥ 2 is an admissible stretch number.
Finally, we give a characterization result in term of forbidden subgraphs for the
class BID(2 − 1

i ), for each integer i > 1. This characterization result allows us to
design a polynomial time algorithm to solve the recognition problem for the class
BID(2 − 1

i ), for each i ≥ 1 (if k is not fixed, this problem is Co-NP-complete for
the class BID(k) [7]). We conclude the paper by showing that such an algorithmic
approach cannot be used for class BID(k), for each integer k ≥ 2.

Related works. In literature there are several papers devoted to fault-tolerant
network design, mainly starting from a given desired topology and introducing
fault-tolerance to it (e.g., see [4,15,19]). Other works follow our approach.

In [14], a study about our concepts is performed: they give characterizations
for graphs in which no delay occurs in the case that a single node fails. These
graphs are called self-repairing. In [8], authors introduce and characterize new
classes of graphs that guarantee constant stretch factors k even when a multiple
number of edges have failed. In a first step, they do not limit the number of
edge faults at all, allowing for unlimited edge faults. Secondly, they examine the
case where the number of edge faults is bounded by a value `. The correspon-
ding graphs are called k–self-spanners and (k, `)–self-spanners, respectively. In
both cases, the names are motivated by strong relationships to the concept of
k–spanners [21]. Related works are also those concerning distance-hereditary gra-
phs [18]. In fact, distance-hereditary graphs correspond to the graphs in BID(1),
and graphs with bounded induced distance can be also viewed as a their pa-
rametric extension (in fact, BID(k) graphs are mentioned in the survey [2] as
k–distance-hereditary graphs). Distance-hereditary graphs have been investiga-
ted to design interconnection network topologies [6,11,13], and several papers
have been devoted to them (e.g., see [1,3,5,10,12,16,20,23]).

The remainder of this extended abstract is organized as follows. Notations and
basic concepts used in this work are given in Section 2. In Section 3 we recall
definitions and results from [7]. Section 4 shows the new characterization results,
and in Section 5 we answer the question about admissible stretch numbers. In
Section 6 we give the complexity result for the recognition problem for the class
BID(2 − 1

i ), for every integer i ≥ 1, and in Section 7 we give some final remarks.
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Due to space limitations, some proofs and technical details are omitted and will
be provided in the full paper.

2 Notation

In this work we consider finite, simple, loopless, undirected and unweighted gra-
phs G = (V, E) with node set V and edge set E. We use standard terminologies
from [2,17], some of which are briefly reviewed here.

A subgraph of G is a graph having all its nodes and edges in G. Given a
subset S of V , the induced subgraph 〈S〉 of G is the maximal subgraph of G with
node set S. |G| denotes the cardinality of V . If x is a node of G, by NG(x) we
denote the neighbors of x in G, that is, the set of nodes in G that are adjacent
to x, and by NG[x] we denote the closed neighbors of x, that is NG(x) ∪ {x}.
G − S is the subgraph of G induced by V \ S.

A sequence of pairwise distinct nodes (x0, . . . , xn) is a path in G if (xi, xi+1) ∈
E for 0 ≤ i < n, and is an induced path if 〈{x0, . . . , xn}〉 has n edges. A graph
G is connected if for each pair of nodes x and y of G there is a path from x to y
in G.

A cycle Cn in G is a path (x0, . . . , xn−1) where also (x0, xn−1) ∈ E. Two
nodes xi and xj are consecutive in Cn if j = (i + 1) mod n or i = (j + 1) mod n.
A chord of a cycle is an edge joining two non-consecutive nodes in the cycle.
Hn denotes an hole, i.e., a cycle with n nodes and without chords. The chord
distance of a cycle Cn is denoted by cd(Cn), and it is defined as the minimum
number of consecutive nodes in Cn such that every chord of Cn is incident to
some of such nodes. We assume cd(Hn) = 0.

The length of a shortest path between two nodes x and y in a graph G
is called distance and is denoted by dG(x, y). Moreover, the length of a longest
induced path between them is denoted by DG(x, y). We use the symbols PG(x, y)
and pG(x, y) to denote a longest and a shortest induced path between x and y,
respectively. Sometimes, when no ambiguity occurs, we use PG(x, y) and pG(x, y)
to denote the sets of nodes belonging to the corresponding paths. IG(x, y) denotes
the set containing all the nodes (except x and y) that belong to a shortest path
from x to y.

If x and y are two nodes of G such that dG(x, y) ≥ 2, then {x, y} is a cycle-pair
if there exist a path pG(x, y) and a path PG(x, y) such that pG(x, y)∩PG(x, y) =
{x, y}. In other words, if {x, y} is a cycle-pair, then the set pG(x, y) ∪ PG(x, y)
induces a cycle in G.

Let G1, G2 be graphs having node sets V1∪{m1}, V2∪{m2} and edge sets E1,
E2, respectively, where {V1, V2} is a partition of V and m1, m2 6∈ V . The split
composition [9] of G1 and G2 with respect to m1 and m2 is the graph G = G1∗G2
having node set V and edge set E = E

′
1 ∪E

′
2 ∪{(x, y) | x ∈ N(m1), y ∈ N(m2)},

where E
′
i = {(x, y) ∈ Ei | x, y ∈ Vi} for i = 1, 2.
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3 Basic Definitions and Previous Results

In this section we recall from [7] some definitions and results useful in the rema-
inder of the paper.

Definition 1. [7] Let k be a real number. A graph G = (V, E) is a bounded
induced distance graph of order k if for each connected induced subgraph G′ of
G:

dG′(x, y) ≤ k · dG(x, y), for each x, y ∈ G′.

The class of all the bounded induced distance graphs of order k is denoted by
BID(k).

From the definition it follows that every class BID(k) is hereditary, i.e., if G ∈
BID(k), then G′ ∈ BID(k) for every induced subgraph G′ of G.

Definition 2. [7] Let G be a graph, and {x, y} be a pair of connected nodes in
G. Then:

1. the stretch number sG(x, y) of the pair {x, y} is given by sG(x, y) = DG(x,y)
dG(x,y) ;

2. the stretch number s(G) of G is the maximum stretch number over all pos-
sible pairs of connected nodes, that is, s(G) = max{x,y} sG(x, y);

3. S(G) is the set of all the pairs of nodes inducing the stretch number of G,
that is, S(G) = {{x, y} | sG(x, y) = s(G)}.

The stretch number of a graph determines the minimum class which a given
graph G belongs to. In fact, s(G) = min{t : G ∈ BID(t)}. As a consequence,
G ∈ BID(k) if and only if s(G) ≤ k.

Lemma 1. [7] Let G ∈ BID(k), and s(G) > 1. Then, there exists a cycle-pair
{x, y} that belongs to S(G).

Theorem 1. [7] Let G be a graph and k ≥ 1 a real number. Then, G ∈ BID(k)
if and only if cd(Cn) >

⌈
n

k+1

⌉
− 2 for each cycle Cn, n > 2k + 2, of G.

4 New Characterization Results

Graphs in BID(1) have been extensively studied and different characterizations
have been provided. One of these characterization is based on forbidden induced
subgraphs [1], and in [7] this result has been extended to the class BID(3

2 ). In
this section we further extend this characterization to the class BID(2 − 1

i ), for
every integer i ≥ 2.

Lemma 2. Let G be a graph with 1 < s(G) < 2, and let {x, y} ∈ S(G) be a
cycle-pair. If C is the cycle induced by pG(x, y) ∪ PG(x, y), then every internal
node of pG(x, y) is incident to a chord of C.
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Proof. Omitted. ut

Theorem 2. Given a graph G and an integer i ≥ 2, then G ∈ BID(2 − 1
i ) if

and only if the following graphs are not induced subgraphs of G:

1. Hn, for each n ≥ 6;
2. cycles C6 with cd(C6) = 1;
3. cycles C7 with cd(C7) = 1;
4. cycles C8 with cd(C8) = 1;
5. cycles C3i+2 with cd(C3i+2) = i.

Proof. Only if part. Holes Hn, n ≥ 6, have stretch number at least 2. Cycles with
6, 7, or 8 nodes and chord distance 1 have stretch number equal to 2, 5/2, and
3, respectively. Cycles C3i+2 with chord distance equal to i have stretch number
at least 2i+1

i+1 = 2− 1
i+1 . Since the considered cycles have stretch number greater

than 2− 1
i , then they are forbidden induced subgraphs for every graph belonging

to BID(2 − 1
i ).

If part. Given an arbitrary integer i ≥ 2, we prove that every graph G 6∈
BID(2 − 1

i ) contains one of the forbidden subgraphs or a proper induced sub-
graph G′ 6∈ BID(2 − 1

i ). In the latter case, we can recursively apply to G′ the
following proof.

If G 6∈ BID(2 − 1
i ) then, by Theorem 1, G contains a cycle Cn, n ≥ 6,

as induced subgraph such that 0 ≤ cd(Cn) ≤
⌈

i·n
3i−1

⌉
− 2. This means that

a cycle-pair {x, y} ∈ S(G) generates Cn. In particular, we can assume that
Cn is induced by the nodes of the two internal node-disjoint paths PG(x, y) =
(x, u1, u2, . . . , up, y) and pG(x, y) = (x, v1, v2, . . . , vq, y), such that p + q + 2 = n
and cd(Cn) = q.

If q = 0 then we obtain the holes Hn, n ≥ 6. If q =
⌈

i·n
3i−1

⌉
− 2 and n =

6, 7, 8, 3i + 2, then we obtain the other forbidden subgraphs.
Now, we show that if n ≥ 9, n 6= 3i + 2, and q fulfills 1 ≤ q ≤

⌈
i·n

3i−1

⌉
− 2,

then Cn contains one of the given forbidden subgraphs or an induced subgraph
G′ such that G′ 6∈ BID(2 − 1

i ).
By Lemma 2, every node vk, 1 ≤ k ≤ q, must be incident to a chord of

Cn, otherwise Cn has a stretch number greater or equal to 2 and hence it is
itself a forbidden subgraph of G. As a consequence, we can denote by rj the
largest index j′ such that vj and uj′ are connected by a chord of Cn, i.e. rj =
max{j′ | (vj , uj′) is a chord of Cn}. Informally, rj gives the rightmost chord
connecting vj to some vertex of PG(x, y).

Notice that, if r1 > 3 then the subgraph of Cn induced by the nodes
v1, x, u1, . . . , ur1 is forbidden, since it is a cycle with at least 6 nodes and chord
distance at most 1. Hence, in the remainder of this proof we assume that r1 ≤ 3.

Let us now analyze two distinguished cases for Cn, according whether the
chord distance q of Cn either (i) fulfills 1 ≤ q <

⌈
i·n

3i−1

⌉
− 2, or (ii) is equal to⌈

i·n
3i−1

⌉
− 2.
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(i) We consider Cn with n ≥ 9 and chord distance q such that 1 ≤ q <
⌈

i·n
3i−1

⌉
−

2. If Cn′ denotes the subgraph induced by the nodes of Cn except the nodes
x, u1, . . . , ur1−1, then Cn′ is a cycle with n′ ≥ n−3 nodes and chord distance at
most q−1. To prove that Cn′ is forbidden, we have to show that

⌈
i·n′
3i−1

⌉
−2 ≥ q−1:

⌈
i·n′
3i−1

⌉
− 2 ≥

⌈
i·n−3i
3i−1

⌉
− 2 ≥ q − 1,

⌈
i·n−3i
3i−1

⌉
− 2 > q − 2,

⌈
i·n−3i
3i−1 + 2

⌉
− 2 > q,

⌈
i·n+4i−2

3i−1

⌉
− 2 > q.

The last inequality holds because 4i−2 ≥ 0 for each integer i ≥ 1, and
⌈

i·n
3i−1

⌉
−

2 > q.

(ii) We consider Cn with n ≥ 9 and chord distance q such that q =
⌈

i·n
3i−1

⌉
− 2.

In this case q is given whenever a fixed value for n is chosen. In general, since
n ≥ 9, it follows that q ≥ 2.

Let us analyze again the cycle Cn′ . Recalling that n′ ≥ n − 3 and cd(Cn′) ≤
q − 1, then

⌈
i·n′
3i−1

⌉
− 2 ≥

⌈
i·n−3i
3i−1

⌉
− 2 ≥ q − 1

is equivalent to
⌈

i·n−1
3i−1

⌉
− 2 ≥ q.

In the following we show that, for every n such that 9 ≤ n ≤ 6i, either this
relation holds or n is equal to 3i + 2. This means that the cycle Cn′ is forbidden
for each cycle Cn, 9 ≤ n ≤ 6i.

Since
⌈

i·n
3i−1

⌉
− 2 = q holds by hypothesis, we have to study when

⌈
i·n−1
3i−1

⌉
≥⌈

i·n
3i−1

⌉
. This relation does not hold if and only if there exists an integer m such

that i·n−1
3i−1 ≤ m < i·n

3i−1 , that is i·n−1
3i−1 = m. Then, since this equality is equivalent

to n = 3m − m−1
i , m can be equal to ` · i + 1 only, for each integer ` ≥ 0. As

a consequence, n = 3m − m−1
i = 3(` · i + 1) − `, ` ≥ 0. For ` = 0 we obtain

n = 3 (but we are considering n ≥ 9), for ` = 1 and ` = 2 the value of n is 3i+2
and n = 6i + 1, respectively. The cycle with 3i + 2 nodes is one of the forbidden
cycles in the statement of the theorem. As a conclusion, the induced cycle Cn′

shows that Cn contains a forbidden induced subgraph when 9 ≤ n ≤ 6i.
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It remains to be considered the case when n ≥ 6i + 1. In this case q =⌈
i·n

3i−1

⌉
− 2 implies q ≥ 2i, and hence we can compute the value ri. Since

vi, vi−1, . . . , v1, x, u1, . . . , uri
induce a cycle with chord distance i, then it has at

most 3i+1 nodes otherwise it is forbidden. In other words, ri ≤ 2i. The subgraph
Cn′′ induced by the nodes of Cn except the nodes vi−1, . . . , v1, x, u1, . . . , uri−1
is a cycle with n′′ ≥ n − 3i + 1 nodes and chord distance at most q − i. To prove
that Cn′′ is forbidden, let us show that

⌈
i·n′′
3i−1

⌉
− 2 ≥ q − i. The inequality

⌈
i·n′′
3i−1

⌉
− 2 ≥

⌈
i·(n−3i+1)

3i−1

⌉
− 2 ≥ q − i

is equivalent to ⌈
i·n

3i−1

⌉
− 2 ≥ q.

The last relation holds by hypothesis, and this concludes the proof ut

5 Admissible Stretch Numbers

In [7], it was conjectured that there exists no graph G such that 2− 1
i < s(G) <

2 − 1
i+1 , for each integer i ≥ 1. In this section we show that the conjecture is

true. Moreover, we extend the result by showing that it is possible to answer to
the following general question: Given a rational number t ≥ 1, is there a graph G
such that s(G) = t?. In other words, we can state when a given positive rational
number is an admissible stretch number.

Definition 3. A positive rational number t is called admissible stretch number
if there exists a graph G such that s(G) = t.

In the remainder of this section we first show that the conjecture recalled
above is true, and then we show that each positive rational number greater or
equal than 2 is an admissible stretch number.

Lemma 3. If p and q are two positive integers such that 2 − 1
i < p

q < 2 − 1
i+1 ,

for some integer i ≥ 1, then q > i.

Proof. Omitted. ut

Theorem 3. If t is a rational number such that 2 − 1
i < t < 2 − 1

i+1 , for some
integer i ≥ 1, then t is not an admissible stretch number.

Proof. We have to show that there exists no graph G such that 2 − 1
i < s(G) <

2 − 1
i+1 , for each integer i ≥ 1.

By contradiction, let us assume that there exist an integer i ≥ 1 and a
graph G such that 2 − 1

i < s(G) < 2 − 1
i+1 . By Lemma 1 there exists a cycle-

pair {x, y} ∈ S(G). If we assume that PG(x, y) = (x, u1, u2, . . . , up−1, y) and
pG(x, y) = (x, v1, v2, . . . , vq−1, y), then pG(x, y) ∪ PG(x, y) induces a cycle C,
and s(G) = p

q . By Lemma 3, the relation q > i holds; then, the node vi exists
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in the path pG(x, y). By Lemma 2, the node vi is incident to a chord of C, and
hence we can define the integer r, 1 ≤ r ≤ q − 1, such that

r = max{j | (vi, uj) is a chord of C}.

Let us now denote by CL the cycle induced by the nodes vi, vi−1, . . . , v1, x, u1,
u2, . . . , ur, and by CR the cycle induced by the nodes vi, vi+1, . . . , vq−1, y, up−1,
up−2, . . . , ur. In other words, the chord (vi, ur) divides C into the left cycle CL,
and the right cycle CR.

First of all, let us compute the stretch number of the cycle CR. Since
pG(x, y) = (x, v1, v2, . . . , vq−1, y) then pCR

(vi, y) = (vi, vi+1, . . . , vq−1, y). Moreo-
ver, since the path (vi, ur, ur+1, . . . , up−1, y) is induced in C, then its length
implies DCR

(vi, y) ≥ p − r + 1. Then

s(CR) ≥ sCR
(vi, y) ≥ p − r + 1

q − i
.

Since CR is an induced subgraph of G then

p − r + 1
q − i

≤ p

q
.

This inequality is equivalent to

p

q
≤ r − 1

i
.

From the relations
2 − 1

i
<

p

q
≤ r − 1

i

we obtain that r > 2i, that is r ≥ 2i + 1.
Let us now compute the stretch number of the cycle CL when r ≥ 2i + 1. In

this case, pCL
(x, ur) = (x, v1, v2, . . . , vi, ur) and PCL

(x, ur) = (x, u1, u2, . . . , ur).
Then

s(CL) ≥ sCL
(x, ur) =

r

i + 1
≥ 2i + 1

i + 1
≥ 2 − 1

i + 1
.

The obtained relation implies that s(CL) > s(G). This is a contradiction since
CL is an induced subgraph of G. ut

In order to show that each rational number equal or greater than 2 is admissi-
ble as stretch number, let us consider the graph G(n1, n2, . . . , nt) obtained by
composing t holes Hn1 , Hn2 , . . . , Hnt by split composition, where ni ≥ 5 for
1 ≤ i ≤ t. The holes correspond to the following chordless cycles (as an example,
see Figure 1, where t = 5) :

– Hn1 = (l1, x0, x1, m
′
1, r1, . . . );

– Hni
= (li, mi, xi, m

′
i, ri, . . . ), for each i such that 1 < i < t;

– Hnt = (lt, mt, xt, xt+1, rt, . . . ).
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The holes are composed by means of the split composition as follows:

G(n1, n2, . . . , nt) = Hn1 ∗ Hn2 ∗ · · · ∗ Hnt
,

and the marked nodes between Hni
and Hni+1 are m′

i and mi+1, 1 ≤ i < t,
respectively.

In the following, we denote by V1 (Vt, resp.) the set containing all the nodes
of the hole Hn1 (Hnt , resp.) but x0, x1, and m′

1 (mt, xt, and xt+1, resp.); we
denote by Vi the set containing all the nodes of the hole Hni but mi, xi, and
m′

i, 1 ≤ i ≤ t. Finally, we denote by X the set {x0, x1, . . . , xt+1}.

x3 x4

l3

m3 m4
m′

4

l4
r2 r3 r4

m′
3

x2

l2

m2

r1

x5

l4

m4

r4

x6

x1

l1

x0
m′

2

x3 x4

l3 l4
r2 r3 r4

x2

l2
r1

x5

l4
r4

x6

x1

l1

x0

m′
1

Fig. 1. The graph G(n1, n2, n3, n4, n5) obtained by the split composition of 5 holes. The
i-th hole has ni ≥ 5 nodes.

Lemma 4. Given the graph G = G(n1, n2, . . . , nt), the following facts hold:

1. sG(x0, xt+1) =
∑t

i=1 ni−3t+1
t+1 ;

2. if i < j then pG(xi, xj) ∪ PG(xi, xj) induces a subgraph isomorphic to
G(ni, ni+1, . . . , nj);

3. if nt ≥
∑t−1

i=1 ni

t−1 then sG(x0, xt+1) > sG(x0, xt);
4. there exists a pair {u, v} ∈ S(G) such that u ∈ X and v ∈ X;
5. if ni = n for some fixed integer n, 1 ≤ i ≤ t, then s(G) = sG(x0, xt+1) =

nt−3t+1
t+1 .

Proof. Omitted. ut
Notice that the stretch number of nodes x0 and xt+1 in G(n1, n2, . . . , nt) does
not depend on how many nodes are in each hole; it depends only on the total
number of nodes in G(n1, n2, . . . , nt) and on the number t of used holes.

Theorem 4. If t is a rationale number such that t ≥ 2, then t is an admissible
stretch number.
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Sketch of the Proof. Let us suppose that t = p/q for two positive integers p and
q. If q = 1 then G = H2p+2, if q = 2 then G = Hp+2. When q ≥ 3 we show that
the graph G is equal to G(n1, n2, . . . , nq−1) for suitable integers n1, n2, . . . , nq−1.

Let b = 3+
⌊

p−1
q−1

⌋
and r = (p− 1) mod (q − 1). Let us choose the sizes of the

holes Hn1 , Hn2 , . . . , Hnq−1 according to the following strategy: r holes contain
exactly b + 1 nodes, while the remaining q − 1 − r contain exactly b nodes. By
Fact 1 of Lemma 4 it follows that sG(x0, xq) =

∑q−1
i=1 ni−3(q−1)+1

q = p
q . To prove

that S(G) = p/q, by Fact 4 of Lemma 4, we have to prove that sG(xi, xj) ≤
p/q, 1 ≤ i, j ≤ q − 2. This property holds only if we are able to determine a
deterministic method to decide whether the hole Hni

, 1 ≤ i ≤ q − 1, contains
either b or b + 1 nodes. In the full paper we show that such a deterministic
method exists. ut

Corollary 1. For each integer i ≥ 1, 2 − 1
i is an admissible stretch number.

Proof. From Fact 5 of Lemma 4, it follows that G = G(n1, n2, . . . , ni−1) such
that nj = 5 for each 1 ≤ j ≤ i − 1, has stretch equal to 2 − 1

i . ut
The results provided by Corollary 1, Theorem 3, and Theorem 4 can be summa-
rized in the following two corollaries.

Corollary 2. Let t be an admissible stretch number. Then, either t ≥ 2 or
t = 2 − 1

i for some integer i ≥ 1.

Corollary 3. For every admissible stretch number t, split composition can be
used to generate a graph G with s(G) = t.

Notice that, by Theorem 4, we can also use every irrational number greater
than 2 to define graph classes containing graphs with bounded induced distance.
For instance, BID(π) 6= BID(k) for every rational number k.

6 Recognition Problem

The recognition problem for BID(1) can be solved in linear time [1,16]. In [7], this
problem has been shown Co-NP-complete for the generic case (i.e., when k is not
fixed), and the following question has been posed: What is the largest constant k
such that the recognition problem for BID(k) can be solved in polynomial time?

In this section we show that Theorem 2 can be used to devise a polynomial
algorithm to solve the recognition problem for the class BID(k), for every k < 2.

Lemma 5. There exists a polynomial time algorithm to test whether a given
graph G contains, as induced subgraph, a cycle Cn with n ≥ 6 and cd(Cn) ≤ 1.

Proof. Omitted. ut

Theorem 5. For any fixed integer i ≥ 1, the recognition problem for the class
BID(2 − 1

i ) can be solved in polynomial time.
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Proof. For i = 1 the problem can be solved in linear time [1,16]. By Theorem 2,
a brute-force, rather naive algorithm for solving the recognition problem for the
class BID(2 − 1

i ), i > 1, is: test if G contains, as induced subgraph, (1) a cycle
Cn with n ≥ 6 and cd(Cn) ≤ 1, or (2) a cycle C3i+2 with chord distance equal
to i. To perform Test 1 above, we can use the algorithm of Lemma 5, and to
perform Test 2 we can check whether any subset of 3i + 2 nodes of G forms
a cycle with chord distance equal to i. The latter test can be implemented in
polynomial time since the number of subsets of nodes with 3i + 2 elements is
bounded by n3i+2. ut

7 Conclusions

In this paper we provide new results about graph classes that represent a para-
metric extension of the class of distance-hereditary graphs. In any graph G belon-
ging to the generic new class BID(k), the distance between every two connected
nodes in every induced subgraph of G is at most k times their distance in G.

The recognition problem for BID(2 − 1
i ) can be solved in polynomial time

(Theorem 5), and the corresponding algorithm is based on Theorem 2. Can the
same approach be used in order to solve the same problem for class BID(k),
k ≥ 2? In other words, if k ≥ 2 is an integer, is it possible to characterize
BID(k) by listing all its forbidden induced subgraphs? For instance, holes Hn

with n ≥ 2k + 3, and a finite number of cycles having different chord distance.
Unfortunately, the following theorem states that it is not possible.

Theorem 6. For each integers k ≥ 2 and i ≥ 2, there exists a minimal forbidden
induced cycle for the class BID(k) with chord distance equal to i.

Proof. Omitted. ut
Many problems are left open. For instance, what is the largest constant

k such that the recognition problem for BID(k) can be solved in polynomial
time? Moreover, several algorithmic problems are solvable in polynomial time
for BID(1). Can some of these results be extended to BID(k), k > 1?
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