7 research outputs found

    On-line and Dynamic Shortest Paths through Graph Decompositions (Preliminary Version)

    No full text
    We describe algorithms for finding shortest paths and distances in a planar digraph which exploit the particular topology of the input graph. We give both sequential and parallel algorithms that work on a dynamic environment, where the cost of any edge can be changed or the edge can be deleted. For outerplanar digraphs, for instance, the data structures can be updated after any such change in only O(log⁥n)O(\log n) time, where nn is the number of vertices of the digraph. The parallel algorithms presented here are the first known ones for solving this problem. Our results can be extended to hold for digraphs of genus o(n)o(n)

    On-line and dynamic algorithms for shortest path problems

    No full text
    We describe algorithms for finding shortest paths and distances in a planar digraph which exploit the particular topology of the input graph. An important feature of our algorithms is that they can work in a dynamic environment, where the cost of any edge can be changed or the edge can be deleted. For outerplanar digraphs, for instance, the data structures can be updated after any such change in only O(log⁥n)O(\log n) time, where nn is the number of vertices of the digraph. We also describe the first parallel algorithms for solving the dynamic version of the shortest path problem. Our results can be extended to hold for digraphs of genus o(n)o(n)

    A Linear-Processor Polylog-Time Algorithm for Shortest Paths in Planar Graphs

    No full text
    We give an algorithm requiring polylog time and a linear number of processors to solve singlesource shortest paths in directed planar graphs, bounded-genus graphs, and 2-dimensional overlap graphs. More generally, the algorithm works for any graph provided with a decomposition tree constructed using size-O( p n polylog n) separators

    Design and analysis of sequential and parallel single-source shortest-paths algorithms

    Get PDF
    We study the performance of algorithms for the Single-Source Shortest-Paths (SSSP) problem on graphs with n nodes and m edges with nonnegative random weights. All previously known SSSP algorithms for directed graphs required superlinear time. Wie give the first SSSP algorithms that provably achieve linear O(n-m)average-case execution time on arbitrary directed graphs with random edge weights. For independent edge weights, the linear-time bound holds with high probability, too. Additionally, our result implies improved average-case bounds for the All-Pairs Shortest-Paths (APSP) problem on sparse graphs, and it yields the first theoretical average-case analysis for the "Approximate Bucket Implementation" of Dijkstra\u27s SSSP algorithm (ABI-Dijkstra). Futhermore, we give constructive proofs for the existence of graph classes with random edge weights on which ABI-Dijkstra and several other well-known SSSP algorithms require superlinear average-case time. Besides the classical sequential (single processor) model of computation we also consider parallel computing: we give the currently fastest average-case linear-work parallel SSSP algorithms for large graph classes with random edge weights, e.g., sparse rondom graphs and graphs modeling the WWW, telephone calls or social networks.In dieser Arbeit untersuchen wir die Laufzeiten von Algorithmen fĂŒr das KĂŒrzeste-Wege Problem (Single-Source Shortest-Paths, SSSP) auf Graphen mit n Knoten, M Kanten und nichtnegativen zufĂ€lligen Kantengewichten. Alle bisherigen SSSP Algorithmen benötigen auf gerichteten Graphen superlineare Zeit. Wir stellen den ersten SSSP Algorithmus vor, der auf beliebigen gerichteten Graphen mit zufĂ€lligen Kantengewichten eine beweisbar lineare average-case-KomplexitĂ€t O(n+m)aufweist. Sind die Kantengewichte unabhĂ€ngig, so wird die lineare Zeitschranke auch mit hoher Wahrscheinlichkeit eingehalten. Außerdem impliziert unser Ergebnis verbesserte average-case-Schranken fĂŒr das All-Pairs Shortest-Paths (APSP) Problem auf dĂŒnnen Graphen und liefert die erste theoretische average-case-Analyse fĂŒr die "Approximate Bucket Implementierung" von Dijkstras SSSP Algorithmus (ABI-Dijkstra). Weiterhin fĂŒhren wir konstruktive Existenzbeweise fĂŒr Graphklassen mit zufĂ€lligen Kantengewichten, auf denen ABI-Dijkstra und mehrere andere bekannte SSSP Algorithmen durchschnittlich superlineare Zeit benötigen. Neben dem klassischen seriellen (Ein-Prozessor) Berechnungsmodell betrachten wir auch Parallelverarbeitung; fĂŒr umfangreiche Graphklassen mit zufĂ€lligen Kantengewichten wie z.B. dĂŒnne Zufallsgraphen oder Modelle fĂŒr das WWW, Telefonanrufe oder soziale Netzwerke stellen wir die derzeit schnellsten parallelen SSSP Algorithmen mit durchschnittlich linearer Arbeit vor

    -

    Get PDF
    We study the performance of algorithms for the Single-Source Shortest-Paths (SSSP) problem on graphs with n nodes and m edges with nonnegative random weights. All previously known SSSP algorithms for directed graphs required superlinear time. Wie give the first SSSP algorithms that provably achieve linear O(n-m)average-case execution time on arbitrary directed graphs with random edge weights. For independent edge weights, the linear-time bound holds with high probability, too. Additionally, our result implies improved average-case bounds for the All-Pairs Shortest-Paths (APSP) problem on sparse graphs, and it yields the first theoretical average-case analysis for the "Approximate Bucket Implementation" of Dijkstra's SSSP algorithm (ABI-Dijkstra). Futhermore, we give constructive proofs for the existence of graph classes with random edge weights on which ABI-Dijkstra and several other well-known SSSP algorithms require superlinear average-case time. Besides the classical sequential (single processor) model of computation we also consider parallel computing: we give the currently fastest average-case linear-work parallel SSSP algorithms for large graph classes with random edge weights, e.g., sparse rondom graphs and graphs modeling the WWW, telephone calls or social networks.In dieser Arbeit untersuchen wir die Laufzeiten von Algorithmen fĂŒr das KĂŒrzeste-Wege Problem (Single-Source Shortest-Paths, SSSP) auf Graphen mit n Knoten, M Kanten und nichtnegativen zufĂ€lligen Kantengewichten. Alle bisherigen SSSP Algorithmen benötigen auf gerichteten Graphen superlineare Zeit. Wir stellen den ersten SSSP Algorithmus vor, der auf beliebigen gerichteten Graphen mit zufĂ€lligen Kantengewichten eine beweisbar lineare average-case-KomplexitĂ€t O(n+m)aufweist. Sind die Kantengewichte unabhĂ€ngig, so wird die lineare Zeitschranke auch mit hoher Wahrscheinlichkeit eingehalten. Außerdem impliziert unser Ergebnis verbesserte average-case-Schranken fĂŒr das All-Pairs Shortest-Paths (APSP) Problem auf dĂŒnnen Graphen und liefert die erste theoretische average-case-Analyse fĂŒr die "Approximate Bucket Implementierung" von Dijkstras SSSP Algorithmus (ABI-Dijkstra). Weiterhin fĂŒhren wir konstruktive Existenzbeweise fĂŒr Graphklassen mit zufĂ€lligen Kantengewichten, auf denen ABI-Dijkstra und mehrere andere bekannte SSSP Algorithmen durchschnittlich superlineare Zeit benötigen. Neben dem klassischen seriellen (Ein-Prozessor) Berechnungsmodell betrachten wir auch Parallelverarbeitung; fĂŒr umfangreiche Graphklassen mit zufĂ€lligen Kantengewichten wie z.B. dĂŒnne Zufallsgraphen oder Modelle fĂŒr das WWW, Telefonanrufe oder soziale Netzwerke stellen wir die derzeit schnellsten parallelen SSSP Algorithmen mit durchschnittlich linearer Arbeit vor
    corecore