1,175 research outputs found

    Algorithms for distance problems in planar complexes of global nonpositive curvature

    Full text link
    CAT(0) metric spaces and hyperbolic spaces play an important role in combinatorial and geometric group theory. In this paper, we present efficient algorithms for distance problems in CAT(0) planar complexes. First of all, we present an algorithm for answering single-point distance queries in a CAT(0) planar complex. Namely, we show that for a CAT(0) planar complex K with n vertices, one can construct in O(n^2 log n) time a data structure D of size O(n^2) so that, given a point x in K, the shortest path gamma(x,y) between x and the query point y can be computed in linear time. Our second algorithm computes the convex hull of a finite set of points in a CAT(0) planar complex. This algorithm is based on Toussaint's algorithm for computing the convex hull of a finite set of points in a simple polygon and it constructs the convex hull of a set of k points in O(n^2 log n + nk log k) time, using a data structure of size O(n^2 + k)

    Memory-Constrained Algorithms for Simple Polygons

    Get PDF
    A constant-workspace algorithm has read-only access to an input array and may use only O(1) additional words of O(log⁥n)O(\log n) bits, where nn is the size of the input. We assume that a simple nn-gon is given by the ordered sequence of its vertices. We show that we can find a triangulation of a plane straight-line graph in O(n2)O(n^2) time. We also consider preprocessing a simple polygon for shortest path queries when the space constraint is relaxed to allow ss words of working space. After a preprocessing of O(n2)O(n^2) time, we are able to solve shortest path queries between any two points inside the polygon in O(n2/s)O(n^2/s) time.Comment: Preprint appeared in EuroCG 201

    New results on stabbing segments with a polygon

    Get PDF
    We consider a natural variation of the concept of stabbing a set of segments with a simple polygon: a segment s is stabbed by a simple polygon P if at least one endpoint of s is contained in P, and a segment set S is stabbed by P if P stabs every element of S. Given a segment set S, we study the problem of finding a simple polygon P stabbing S in a way that some measure of P (such as area or perimeter) is optimized. We show that if the elements of S are pairwise disjoint, the problem can be solved in polynomial time. In particular, this solves an open problem posed by Loftier and van Kreveld [Algorithmica 56(2), 236-269 (2010)] [16] about finding a maximum perimeter convex hull for a set of imprecise points modeled as line segments. Our algorithm can also be extended to work for a more general problem, in which instead of segments, the set S consists of a collection of point sets with pairwise disjoint convex hulls. We also prove that for general segments our stabbing problem is NP-hard. (C) 2014 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author's final draft

    Convex Tours of Bounded Curvature

    Get PDF
    We consider the motion planning problem for a point constrained to move along a smooth closed convex path of bounded curvature. The workspace of the moving point is bounded by a convex polygon with m vertices, containing an obstacle in a form of a simple polygon with nn vertices. We present an O(m+n) time algorithm finding the path, going around the obstacle, whose curvature is the smallest possible.Comment: 11 pages, 5 figures, abstract presented at European Symposium on Algorithms 199
    • 

    corecore