8,275 research outputs found

    The highD Dataset: A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems

    Full text link
    Scenario-based testing for the safety validation of highly automated vehicles is a promising approach that is being examined in research and industry. This approach heavily relies on data from real-world scenarios to derive the necessary scenario information for testing. Measurement data should be collected at a reasonable effort, contain naturalistic behavior of road users and include all data relevant for a description of the identified scenarios in sufficient quality. However, the current measurement methods fail to meet at least one of the requirements. Thus, we propose a novel method to measure data from an aerial perspective for scenario-based validation fulfilling the mentioned requirements. Furthermore, we provide a large-scale naturalistic vehicle trajectory dataset from German highways called highD. We evaluate the data in terms of quantity, variety and contained scenarios. Our dataset consists of 16.5 hours of measurements from six locations with 110 000 vehicles, a total driven distance of 45 000 km and 5600 recorded complete lane changes. The highD dataset is available online at: http://www.highD-dataset.comComment: IEEE International Conference on Intelligent Transportation Systems (ITSC) 201

    Traffic Justice: Achieving Effective and Equitable Traffic Enforcement in the Age of Vision Zero

    Get PDF

    Synergizing Roadway Infrastructure Investment with Digital Infrastructure for Infrastructure-Based Connected Vehicle Applications: Review of Current Status and Future Directions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The safety, mobility, environmental and economic benefits of Connected and Autonomous Vehicles (CAVs) are potentially dramatic. However, realization of these benefits largely hinges on the timely upgrading of the existing transportation system. CAVs must be enabled to send and receive data to and from other vehicles and drivers (V2V communication) and to and from infrastructure (V2I communication). Further, infrastructure and the transportation agencies that manage it must be able to collect, process, distribute and archive these data quickly, reliably, and securely. This paper focuses on current digital roadway infrastructure initiatives and highlights the importance of including digital infrastructure investment alongside more traditional infrastructure investment to keep up with the auto industry's push towards this real time communication and data processing capability. Agencies responsible for transportation infrastructure construction and management must collaborate, establishing national and international platforms to guide the planning, deployment and management of digital infrastructure in their jurisdictions. This will help create standardized interoperable national and international systems so that CAV technology is not deployed in a haphazard and uncoordinated manner

    Carpooling Liability?: Applying Tort Law Principles to the Joint Emergence of Self-Driving Automobiles and Transportation Network Companies

    Get PDF
    Self-driving automobiles have emerged as the future of vehicular travel, but this innovation is not developing in isolation. Simultaneously, the popularity of transportation network companies functioning as ride-hailing and ride-sharing services have altered traditional conceptions of personal transportation. Technology companies, conventional automakers, and start-up businesses each play significant roles in fundamentally transforming transportation methods. These transformations raise numerous liability questions. Specifically, the emergence of self-driving vehicles and transportation network companies create uncertainty for the application of tort law’s negligence standard. This Note addresses technological innovations in vehicular transportation and their accompanying legislative and regulatory developments. Then, this Note discusses the implications for vicarious liability for vehicle owners, duties of care for vehicle operators, and corresponding insurance regimes. This Note also considers theoretical justifications for tort concepts including enterprise liability. Accounting for the inevitable uncertainty in applying tort law to new invention, this Note proposes a strict and vicarious liability regime with corresponding no-fault automobile insurance

    Future Outlook of Highway Operations with Implementation of Innovative Technologies Like AV, CV, IoT and Big Data

    Get PDF
    In the last couple of decades, there has been an unparalleled growth in number of people who can afford motorized vehicles. This is increasing the number of vehicles on roads at an alarming rate and existing infrastructure and conventional methods of traffic management are becoming inefficient both on highways and in urban areas. It is very important that our highways are up and running 24/7 as they not only provide a passage for human beings to move from one place to another, but also are the most important mode for intercity or international transfer of goods. There is an utter need of adapting the new world order, where daily processes are driven with the help of innovative technologies. It is highly likely that technological advancements like autonomous or connected vehicles, big data and the Internet of things can provide highway operators with a solution that might resolve unforeseeable challenges. This investigative exploratory research identifies and highlights the impact of new technological advancements in the automotive industry on highways and highway operators. The data for this research was collected on a Likert scale type online survey, from different organizations around the world (actively or passively involved in highway operations). The data was further tested for its empirical significance with non-parametric binomial and Wilcoxon signed rank tests, supported by a descriptive analysis. The results of this study are in line with theoretical and conceptual work done by several independent corporations and academic researchers. It is evident form the opinions of seasoned professionals that these technological advancements withhold the potential to resolve all potential challenges and revolutionize highway operations

    Automated driving and autonomous functions on road vehicles

    Get PDF
    In recent years, road vehicle automation has become an important and popular topic for research and development in both academic and industrial spheres. New developments received extensive coverage in the popular press, and it may be said that the topic has captured the public imagination. Indeed, the topic has generated interest across a wide range of academic, industry and governmental communities, well beyond vehicle engineering; these include computer science, transportation, urban planning, legal, social science and psychology. While this follows a similar surge of interest – and subsequent hiatus – of Automated Highway Systems in the 1990’s, the current level of interest is substantially greater, and current expectations are high. It is common to frame the new technologies under the banner of “self-driving cars” – robotic systems potentially taking over the entire role of the human driver, a capability that does not fully exist at present. However, this single vision leads one to ignore the existing range of automated systems that are both feasible and useful. Recent developments are underpinned by substantial and long-term trends in “computerisation” of the automobile, with developments in sensors, actuators and control technologies to spur the new developments in both industry and academia. In this paper we review the evolution of the intelligent vehicle and the supporting technologies with a focus on the progress and key challenges for vehicle system dynamics. A number of relevant themes around driving automation are explored in this article, with special focus on those most relevant to the underlying vehicle system dynamics. One conclusion is that increased precision is needed in sensing and controlling vehicle motions, a trend that can mimic that of the aerospace industry, and similarly benefit from increased use of redundant by-wire actuators
    • …
    corecore