98,188 research outputs found

    An Efficient Imbalance-Aware Federated Learning Approach for Wearable Healthcare with Autoregressive Ratio Observation

    Full text link
    Widely available healthcare services are now getting popular because of advancements in wearable sensing techniques and mobile edge computing. People's health information is collected by edge devices such as smartphones and wearable bands for further analysis on servers, then send back suggestions and alerts for abnormal conditions. The recent emergence of federated learning allows users to train private data on local devices while updating models collaboratively. However, the heterogeneous distribution of the health condition data may lead to significant risks to model performance due to class imbalance. Meanwhile, as FL training is powered by sharing gradients only with the server, training data is almost inaccessible. The conventional solutions to class imbalance do not work for federated learning. In this work, we propose a new federated learning framework FedImT, dedicated to addressing the challenges of class imbalance in federated learning scenarios. FedImT contains an online scheme that can estimate the data composition during each round of aggregation, then introduces a self-attenuating iterative equivalent to track variations of multiple estimations and promptly tweak the balance of the loss computing for minority classes. Experiments demonstrate the effectiveness of FedImT in solving the imbalance problem without extra energy consumption and avoiding privacy risks.Comment: submitted to IEEE OJCS in Oct. 2023, under revie

    Semi-Supervised Learning for Mars Imagery Classification and Segmentation

    Full text link
    With the progress of Mars exploration, numerous Mars image data are collected and need to be analyzed. However, due to the imbalance and distortion of Martian data, the performance of existing computer vision models is unsatisfactory. In this paper, we introduce a semi-supervised framework for machine vision on Mars and try to resolve two specific tasks: classification and segmentation. Contrastive learning is a powerful representation learning technique. However, there is too much information overlap between Martian data samples, leading to a contradiction between contrastive learning and Martian data. Our key idea is to reconcile this contradiction with the help of annotations and further take advantage of unlabeled data to improve performance. For classification, we propose to ignore inner-class pairs on labeled data as well as neglect negative pairs on unlabeled data, forming supervised inter-class contrastive learning and unsupervised similarity learning. For segmentation, we extend supervised inter-class contrastive learning into an element-wise mode and use online pseudo labels for supervision on unlabeled areas. Experimental results show that our learning strategies can improve the classification and segmentation models by a large margin and outperform state-of-the-art approaches.Comment: Accepted by ACM Trans. on Multimedia Computing Communications and Applications (TOMM

    A novel approach for the effective prediction of cardiovascular disease using applied artificial intelligence techniques

    Get PDF
    Aims: The objective of this research is to develop an effective cardiovascular disease prediction framework using machine learning techniques and to achieve high accuracy for the prediction of cardiovascular disease. Methods: In this paper, we have utilized machine learning algorithms to predict cardiovascular disease on the basis of symptoms such as chest pain, age and blood pressure. This study incorporated five distinct datasets: Heart UCI, Stroke, Heart Statlog, Framingham and Coronary Heart dataset obtained from online sources. For the implementation of the framework, RapidMiner tool was used. The threeā€step approach includes preā€processing of the dataset, applying feature selection method on preā€processed dataset and then applying classification methods for prediction of results. We addressed missing values by replacing them with mean, and class imbalance was handled using sample bootstrapping. Various machine learning classifiers were applied out of which random forest with AdaBoost dataset using 10ā€fold crossā€validation provided the high accuracy. Results: The proposed model provides the highest accuracy of 99.48% on Heart Statlog, 93.90% on Heart UCI, 96.25% on Stroke dataset, 86% on Framingham dataset and 78.36% on Coronary heart disease dataset, respectively. Conclusions: In conclusion, the results of the study have shown remarkable potential of the proposed framework. By handling imbalance and missing values, a significantly accurate framework has been established that could effectively contribute to the prediction of cardiovascular disease at early stages

    A knowledge graph empowered online learning framework for access control decision-making

    Get PDF
    Knowledge graph, as an extension of graph data structure, is being used in a wide range of areas as it can store interrelated data and reveal interlinked relationships between different objects within a large system. This paper proposes an algorithm to construct an access control knowledge graph from user and resource attributes. Furthermore, an online learning framework for access control decision-making is proposed based on the constructed knowledge graph. Within the framework, we extract topological features to represent high cardinality categorical user and resource attributes. Experimental results show that topological features extracted from knowledge graph can improve the access control performance in both offline learning and online learning scenarios with different degrees of class imbalance status

    GLISTER: Generalization based Data Subset Selection for Efficient and Robust Learning

    Full text link
    Large scale machine learning and deep models are extremely data-hungry. Unfortunately, obtaining large amounts of labeled data is expensive, and training state-of-the-art models (with hyperparameter tuning) requires significant computing resources and time. Secondly, real-world data is noisy and imbalanced. As a result, several recent papers try to make the training process more efficient and robust. However, most existing work either focuses on robustness or efficiency, but not both. In this work, we introduce Glister, a GeneraLIzation based data Subset selecTion for Efficient and Robust learning framework. We formulate Glister as a mixed discrete-continuous bi-level optimization problem to select a subset of the training data, which maximizes the log-likelihood on a held-out validation set. Next, we propose an iterative online algorithm Glister-Online, which performs data selection iteratively along with the parameter updates and can be applied to any loss-based learning algorithm. We then show that for a rich class of loss functions including cross-entropy, hinge-loss, squared-loss, and logistic-loss, the inner discrete data selection is an instance of (weakly) submodular optimization, and we analyze conditions for which Glister-Online reduces the validation loss and converges. Finally, we propose Glister-Active, an extension to batch active learning, and we empirically demonstrate the performance of Glister on a wide range of tasks including, (a) data selection to reduce training time, (b) robust learning under label noise and imbalance settings, and (c) batch-active learning with several deep and shallow models. We show that our framework improves upon state of the art both in efficiency and accuracy (in cases (a) and (c)) and is more efficient compared to other state-of-the-art robust learning algorithms in case (b)
    • ā€¦
    corecore