8,765 research outputs found

    A 16 channel high-voltage driver with 14 bit resolution for driving piezoelectric actuators

    Get PDF
    A high-voltage, 16 channel driver with a maximum voltage of 72 volt and 14 bit resolution in a high-voltage CMOS (HV-CMOS) process is presented. This design incorporates a 14 bit monotonic by design DAC together with a high-voltage complementary class AB output stage for each channel. All 16 channels are used for driving a piezoelectric actuator within the control loop of a micropositioning system. Since the output voltages are static most of the time, a class AB amplifier is used, implementing voltage feedback to achieve 14 bit accuracy. The output driver consists of a push-pull stage with a built-in output current limitation and high-impedance mode. Also a protection circuit is added which limits the internal current when the output voltage saturates against the high-voltage rail. The 14 bit resolution of each channel is generated with a segmented resistor string DAC which assures monotonic by design behavior by using leapfrogging of the buffers used between segments. A diagonal shuffle layout is used for the resistor strings leading to cancellation of first order process gradients. The dense integration of 16 channels with high peak currents results in crosstalk, countered in this design by using staggered switching and resampling of the output voltages

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    On the suitability and development of layout templates for analog layout reuse and layout-aware synthesis

    Get PDF
    Accelerating the synthesis of increasingly complex analog integrated circuits is key to bridge the widening gap between what we can integrate and what we can design while meeting ever-tightening time-to-market constraints. It is a well-known fact in the semiconductor industry that such goal can only be attained by means of adequate CAD methodologies, techniques, and accompanying tools. This is particularly important in analog physical synthesis (a.k.a. layout generation), where large sensitivities of the circuit performances to the many subtle details of layout implementation (device matching, loading and coupling effects, reliability, and area features are of utmost importance to analog designers), render complete automation a truly challenging task. To approach the problem, two directions have been traditionally considered, knowledge-based and optimization-based, both with their own pros and cons. Besides, recently reported solutions oriented to speed up the overall design flow by means of reuse-based practices or by cutting off time-consuming, error-prone spins between electrical and layout synthesis (a technique known as layout-aware synthesis), rely on a outstandingly rapid yet efficient layout generation method. This paper analyses the suitability of procedural layout generation based on templates (a knowledge-based approach) by examining the requirements that both layout reuse and layout-aware solutions impose, and how layout templates face them. The ability to capture the know-how of experienced layout designers and the turnaround times for layout instancing are considered main comparative aspects in relation to other layout generation approaches. A discussion on the benefit-cost trade-off of using layout templates is also included. In addition to this analysis, the paper delves deeper into systematic techniques to develop fully reusable layout templates for analog circuits, either for a change of the circuit sizing (i.e., layout retargeting) or a change of the fabrication process (i.e., layout migration). Several examples implemented with the Cadence's Virtuoso tool suite are provided as demonstration of the paper's contributions.Ministerio de EducaciĂłn y Ciencia TEC2004-0175

    A Breakdown Voltage Multiplier for High Voltage Swing Drivers

    Get PDF
    A novel breakdown voltage (BV) multiplier is introduced that makes it possible to generate high output voltage swings using transistors with low breakdown voltages. The timing analysis of the stage is used to optimize its dynamic response. A 10 Gb/s optical modulator driver with a differential output voltage swing of 8 V on a 50 Ω load was implemented in a SiGe BiCMOS process. It uses the BV-Doubler topology to achieve output swings twice the collector–emitter breakdown voltage without stressing any single transistor

    Hydrothermally extracted nanohydroxyapatite from bovine bone as bioceramic and biofiller in bionanocomposite

    Get PDF
    Bones have an extraordinary capacity to restore and regenerate in case of minor injury. However, major injuries need orthopedic surgeries that required bone implant biomaterials. In this study, n-HAP powder was extracted from bovine bone by hydrothermal and calcined at different calcination temperatures (600-1100°C) without the use of solvents. The n-HAP powders produced were used to fabricate two types of biomaterials (HAP bioceramics and PLA/n-HAP bionanocomposite). The raw-HAP and calcined n-HAP powder samples were compacted into green bodies and were sintered at various temperatures (1000-1400°C) to produce HAP bioceramics. The best calcined n-HAP was mixed with PLA by melt mixing and injection moulding to fabricate PLA/n-HAP bionanocomposite. Characterizations of the n-HAP powder, n-HAP bioceramics and PLA/n-HAP bionanocomposite samples were done by Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transforms infrared (FTIR), Field emission scanning electron microscopy (FESEM), Energy-dispersive x-ray spectroscopy (EDX), X-ray fluorescence (XRF) spectroscopy, universal testing machine (UTM) and melt flow index (MFI) analyses. TGA data revealed that n-HAP was thermally stable at 1300ÂșC. The extracted n-HAP powder was highly crystalline and crystallite size was in the range of 10-83 nm as confirmed by XRD. Density and hardness of the n-HAP bioceramics increased as sintering temperature increased and showing maximum values at a temperature of 1400°C. The results of PLA/n-HAP bionanocomposite revealed that the higher n-HAP loaded (at 5wt%), the lower the tensile strength of bionanocomposite due to poor interfacial adhesion. The interfacial adhesion was improved by loading of 1.0 wt% maleic anhydride (MAH) as a compatibilizer. The biocompatibility of bionanocomposite was evaluated in simulated body fluids (SBF). The results showed that apatite layers were grown on the surfaces of both biomaterials. Therefore, both biomaterials formulated shall be promising medical biomaterials for orthopedic applications

    Modeling and performance of a 100-element pHEMT grid amplifier

    Get PDF
    A 100-element hybrid grid amplifier has been fabricated, The active devices in the grid are custom-made pseudomorphic high electron mobility transistor (pHEMT) differential-pair chips. We present a model for gain analysis and compare measurements with theory. The grid includes stabilizing resistors in the gate. Measurements show the grid has a peak gain of 10 db when tuned for 10 GHz and a gain of 12 dB when tuned for 9 GHz. The maximum 3-dB bandwidth is 15% at 9 GHz. The minimum noise figure is 3 dB. The maximum saturated output power is 3.7 W, with a peak power-added efficiency of 12%. These results area significant improvement over previous grid amplifiers based on heterojunction bipolar transistors (HBT's)

    Compact low-power calibration mini-DACs for neural arrays with programmable weights

    Get PDF
    This paper considers the viability of compact low-resolution low-power mini digital-to-analog converters (mini-DACs) for use in large arrays of neural type cells, where programmable weights are required. Transistors are biased in weak inversion in order to yield small currents and low power consumptions, a necessity when building large size arrays. One important drawback of weak inversion operation is poor matching between transistors. The resulting effective precision of a fabricated array of 50 DACs turned out to be 47% (1.1 bits), due to transistor mismatch. However, it is possible to combine them two by two in order to build calibrated DACs, thus compensating for inter-DAC mismatch. It is shown experimentally that the precision can be improved easily by a factor of 10 (4.8% or 4.4 bits), which makes these DACs viable for low-resolution applications such as massive arrays of neural processing circuits. A design methodology is provided, and illustrated through examples, to obtain calibrated mini-DACs of a given target precision. As an example application, we show simulation results of using this technique to calibrate an array of digitally controlled integrate-and-fire neurons.Gobierno de España TIC1999-0446-C02-02, TIC2000-0406-P4-05, FIT-07000/2002/921, TIC2002-10878-EEuropean Union IST- 2001-3412

    Design of Analog CMOS Circuits for Batteryless Implantable Telemetry Systems

    Get PDF
    A wireless biomedical telemetry system is a device that collects biomedical signal measurements and transmits data through wireless RF communication. Testing medical treatments often involves experimentation on small laboratory animals, such as genetically modified mice and rats. Using batteries as a power source results in many practical issues, such as increased size of the implant and limited operating lifetime. Wireless power harvesting for implantable biomedical devices removes the need for batteries integrated into the implant. This will reduce device size and remove the need for surgical replacement due to battery depletion. Resonant inductive coupling achieves wireless power transfer in a manner modelled by a step down transformer. With this methodology, power harvesting for an implantable device is realized with the use of a large primary coil external to the subject, and a smaller secondary coil integrated into the implant. The signal received from the secondary coil must be regulated to provide a stable direct current (DC) power supply, which will be used to power the electronics in the implantable device. The focus of this work is on development of an electronic front-end for wireless powering of an implantable biomedical device. The energy harvesting front-end circuit is comprised of a rectifier, LDO regulator, and a temperature insensitive voltage reference. Physical design of the front-end circuit is developed in 0.13um CMOS technology with careful attention to analog layout issues. Post-layout simulation results are presented for each sub-block as well as the full front-end structure. The LDO regulator operates with supply voltages in the range of 1V to 1.5V with quiescent current of 10.5uA The complete power receiver front-end has a power conversion efficiency of up to 29%
    • 

    corecore