2 research outputs found

    A 16 channel high-voltage driver with 14 bit resolution for driving piezoelectric actuators

    Get PDF
    A high-voltage, 16 channel driver with a maximum voltage of 72 volt and 14 bit resolution in a high-voltage CMOS (HV-CMOS) process is presented. This design incorporates a 14 bit monotonic by design DAC together with a high-voltage complementary class AB output stage for each channel. All 16 channels are used for driving a piezoelectric actuator within the control loop of a micropositioning system. Since the output voltages are static most of the time, a class AB amplifier is used, implementing voltage feedback to achieve 14 bit accuracy. The output driver consists of a push-pull stage with a built-in output current limitation and high-impedance mode. Also a protection circuit is added which limits the internal current when the output voltage saturates against the high-voltage rail. The 14 bit resolution of each channel is generated with a segmented resistor string DAC which assures monotonic by design behavior by using leapfrogging of the buffers used between segments. A diagonal shuffle layout is used for the resistor strings leading to cancellation of first order process gradients. The dense integration of 16 channels with high peak currents results in crosstalk, countered in this design by using staggered switching and resampling of the output voltages

    Optimal Area Allocation for Yield Enhancement of DAC

    Get PDF
    Práce seznamuje s metodami návrhu pro zvýšení výtěžnosti a omezení chyb ve shodných strukturách. Systematické a náhodné chyby jsou shledány zdrojem neshod mezi strukturami. Je představen model náhodných chyb za využití log-normálové hustoty pravděpodobnosti. Pomocí nové metodologie založené na celočíselném pogramování (celočíselné optimalizaci) je navržena optimalizace parametrické výtěžnosti integrovaných obvodů. Je představen algoritmus generování optimální topologie. Topologie je demonstrována na R-2R D/A převodníku a výsledky jsou porovnány s jivým řešením.Recent research in yield enhancement techniques and mitigation of device mismatch is presented. Systematic and random mismatch is studied and identified as the cause of device mismatch. Model based on log-normal PDF is introduced. Optimization of IC parameter yield is suggested and conducted with help of a new methodology based on mathematical programming. An algorithm for the impact based area allocation of critical matched devices is shown as well as algorithms for common centroid layout of different sized devices. Newly developed algorithms are presented on binary weighted R-2R DAC as it is a common IC and comparison to other solutions is given
    corecore