5,167 research outputs found

    De-perimeterisation as a cycle: tearing down and rebuilding security perimeters

    Get PDF
    If an organisation wants to secure its IT assets, where should the security mechanisms be placed? The traditional view is the hard-shell model, where an organisation secures all its assets using a fixed security border: What is inside the security perimeter is more or less trusted, what is outside is not. Due to changes in technologies, business processes and their legal environments this approach is not adequate anymore.\ud This paper examines this process, which was coined de-perimeterisation by the Jericho Forum.\ud In this paper we analyse and define the concepts of perimeter and de-perimeterisation, and show that there is a long term trend in which de-perimeterisation is iteratively accelerated and decelerated. In times of accelerated de-perimeterisation, technical and organisational changes take place by which connectivity between organisations and their environment scales up significantly. In times of deceleration, technical and organisational security measures are taken to decrease the security risks that come with de-perimeterisation, a movement that we call re-perimeterisation. We identify the technical and organisational mechanisms that facilitate de-perimeterisation and re-perimeterisation, and discuss the forces that cause organisations to alternate between these two movements

    Moving Target Defense for Web Applications

    Get PDF
    abstract: Web applications continue to remain as the most popular method of interaction for businesses over the Internet. With it's simplicity of use and management, they often function as the "front door" for many companies. As such, they are a critical component of the security ecosystem as vulnerabilities present in these systems could potentially allow malicious users access to sensitive business and personal data. The inherent nature of web applications enables anyone to access them anytime and anywhere, this includes any malicious actors looking to exploit vulnerabilities present in the web application. In addition, the static configurations of these web applications enables attackers the opportunity to perform reconnaissance at their leisure, increasing their success rate by allowing them time to discover information on the system. On the other hand, defenders are often at a disadvantage as they do not have the same temporal opportunity that attackers possess in order to perform counter-reconnaissance. Lastly, the unchanging nature of web applications results in undiscovered vulnerabilities to remain open for exploitation, requiring developers to adopt a reactive approach that is often delayed or to anticipate and prepare for all possible attacks which is often cost-prohibitive. Moving Target Defense (MTD) seeks to remove the attackers' advantage by reducing the information asymmetry between the attacker and defender. This research explores the concept of MTD and the various methods of applying MTD to secure Web Applications. In particular, MTD concepts are applied to web applications by implementing an automated application diversifier that aims to mitigate specific classes of web application vulnerabilities and exploits. Evaluation is done using two open source web applications to determine the effectiveness of the MTD implementation. Though developed for the chosen applications, the automation process can be customized to fit a variety of applications.Dissertation/ThesisMasters Thesis Computer Science 201

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    A Comprehensive Cybersecurity Defense Framework for Large Organizations

    Get PDF
    There is a growing need to understand and identify overarching organizational requirements for cybersecurity defense in large organizations. Applying proper cybersecurity defense will ensure that the right capabilities are fielded at the right locations to safeguard critical assets while minimizing duplication of effort and taking advantage of efficiencies. Exercising cybersecurity defense without an understanding of comprehensive foundational requirements instills an ad hoc and in many cases conservative approach to network security. Organizations must be synchronized across federal and civil agencies to achieve adequate cybersecurity defense. Understanding what constitutes comprehensive cybersecurity defense will ensure organizations are better protected and more efficient. This work, represented through design science research, developed a model to understand comprehensive cybersecurity defense, addressing the lack of standard requirements in large organizations. A systemic literature review and content analysis were conducted to form seven criteria statements for understanding comprehensive cybersecurity defense. The seven criteria statements were then validated by a panel of expert cyber defenders utilizing the Delphi consensus process. Based on the approved criteria, the team of cyber defenders facilitated the development of a Comprehensive Cybersecurity Defense Framework prototype for understanding cybersecurity defense. Through the Delphi process, the team of cyber defense experts ensured the framework matched the seven criteria statements. An additional and separate panel of stakeholders conducted the Delphi consensus process to ensure a non-biased evaluation of the framework. The comprehensive cybersecurity defense framework is developed through the data collected from two distinct and separate Delphi panels. The framework maps risk management, behavioral, and defense in depth frameworks with cyber defense roles to offer a comprehensive approach to cyber defense in large companies, agencies, or organizations. By defining the cyber defense tasks, what those tasks are trying to achieve and where best to accomplish those tasks on the network, a comprehensive approach is reached

    An Agent Based Model to Assess Crew Temporal Variability During U.S. Navy Shipboard Operations

    Get PDF
    Understanding the factors that affect human performance variability as well as their temporal impacts is an essential element in fully integrating and designing complex, adaptive environments. This understanding is particularly necessary for high stakes, time-critical routines such as those performed during nuclear reactor, air traffic control, and military operations. Over the last three decades significant efforts have emerged to demonstrate and apply a host of techniques to include Discrete Event Simulation, Bayesian Belief Networks, Neural Networks, and a multitude of existing software applications to provide relevant assessments of human task performance and temporal variability. The objective of this research was to design and develop a novel Agent Based Modeling and Simulation (ABMS) methodology to generate a timeline of work and assess impacts of crew temporal variability during U.S. Navy Small Boat Defense operations in littoral waters. The developed ABMS methodology included human performance models for six crew members (agents) as well as a threat craft, and incorporated varying levels of crew capability and task support. AnyLogic ABMS software was used to simultaneously provide detailed measures of individual sailor performance and of system-level emergent behavior. This methodology and these models were adapted and built to assure extensibility across a broad range of U.S. Navy shipboard operations. Application of the developed ABMS methodology effectively demonstrated a way to visualize and quantify impacts/uncertainties of human temporal variability on both workload and crew effectiveness during U.S. Navy shipboard operations

    Defense in Depth of Resource-Constrained Devices

    Get PDF
    The emergent next generation of computing, the so-called Internet of Things (IoT), presents significant challenges to security, privacy, and trust. The devices commonly used in IoT scenarios are often resource-constrained with reduced computational strength, limited power consumption, and stringent availability requirements. Additionally, at least in the consumer arena, time-to-market is often prioritized at the expense of quality assurance and security. An initial lack of standards has compounded the problems arising from this rapid development. However, the explosive growth in the number and types of IoT devices has now created a multitude of competing standards and technology silos resulting in a highly fragmented threat model. Tens of billions of these devices have been deployed in consumers\u27 homes and industrial settings. From smart toasters and personal health monitors to industrial controls in energy delivery networks, these devices wield significant influence on our daily lives. They are privy to highly sensitive, often personal data and responsible for real-world, security-critical, physical processes. As such, these internet-connected things are highly valuable and vulnerable targets for exploitation. Current security measures, such as reactionary policies and ad hoc patching, are not adequate at this scale. This thesis presents a multi-layered, defense in depth, approach to preventing and mitigating a myriad of vulnerabilities associated with the above challenges. To secure the pre-boot environment, we demonstrate a hardware-based secure boot process for devices lacking secure memory. We introduce a novel implementation of remote attestation backed by blockchain technologies to address hardware and software integrity concerns for the long-running, unsupervised, and rarely patched systems found in industrial IoT settings. Moving into the software layer, we present a unique method of intraprocess memory isolation as a barrier to several prevalent classes of software vulnerabilities. Finally, we exhibit work on network analysis and intrusion detection for the low-power, low-latency, and low-bandwidth wireless networks common to IoT applications. By targeting these areas of the hardware-software stack, we seek to establish a trustworthy system that extends from power-on through application runtime

    Policy Conflict Management in Distributed SDN Environments

    Get PDF
    abstract: The ease of programmability in Software-Defined Networking (SDN) makes it a great platform for implementation of various initiatives that involve application deployment, dynamic topology changes, and decentralized network management in a multi-tenant data center environment. However, implementing security solutions in such an environment is fraught with policy conflicts and consistency issues with the hardness of this problem being affected by the distribution scheme for the SDN controllers. In this dissertation, a formalism for flow rule conflicts in SDN environments is introduced. This formalism is realized in Brew, a security policy analysis framework implemented on an OpenDaylight SDN controller. Brew has comprehensive conflict detection and resolution modules to ensure that no two flow rules in a distributed SDN-based cloud environment have conflicts at any layer; thereby assuring consistent conflict-free security policy implementation and preventing information leakage. Techniques for global prioritization of flow rules in a decentralized environment are presented, using which all SDN flow rule conflicts are recognized and classified. Strategies for unassisted resolution of these conflicts are also detailed. Alternately, if administrator input is desired to resolve conflicts, a novel visualization scheme is implemented to help the administrators view the conflicts in an aesthetic manner. The correctness, feasibility and scalability of the Brew proof-of-concept prototype is demonstrated. Flow rule conflict avoidance using a buddy address space management technique is studied as an alternate to conflict detection and resolution in highly dynamic cloud systems attempting to implement an SDN-based Moving Target Defense (MTD) countermeasures.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    • …
    corecore