
Policy Conflict Management in Distributed SDN Environments

by

Sandeep Pisharody

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved May 2017 by the
Graduate Supervisory Committee:

Dijiang Huang, Chair
Gail-Joon Ahn
Violet Syrotiuk
Adam Doupé

ARIZONA STATE UNIVERSITY

August 2017

c© 2017 Sandeep Pisharody

All Rights Reserved

ABSTRACT

The ease of programmability in Software-Defined Networking (SDN) makes it a

great platform for implementation of various initiatives that involve application

deployment, dynamic topology changes, and decentralized network management in

a multi-tenant data center environment. However, implementing security solutions

in such an environment is fraught with policy conflicts and consistency issues with

the hardness of this problem being affected by the distribution scheme for the SDN

controllers.

In this dissertation, a formalism for flow rule conflicts in SDN environments is

introduced. This formalism is realized in Brew, a security policy analysis framework

implemented on an OpenDaylight SDN controller. Brew has comprehensive conflict

detection and resolution modules to ensure that no two flow rules in a distributed SDN-

based cloud environment have conflicts at any layer; thereby assuring consistent conflict-

free security policy implementation and preventing information leakage. Techniques

for global prioritization of flow rules in a decentralized environment are presented,

using which all SDN flow rule conflicts are recognized and classified. Strategies for

unassisted resolution of these conflicts are also detailed. Alternately, if administrator

input is desired to resolve conflicts, a novel visualization scheme is implemented to

help the administrators view the conflicts in an aesthetic manner. The correctness,

feasibility and scalability of the Brew proof-of-concept prototype is demonstrated.

Flow rule conflict avoidance using a buddy address space management technique

is studied as an alternate to conflict detection and resolution in highly dynamic

cloud systems attempting to implement an SDN-based Moving Target Defense (MTD)

countermeasures.

i

: tt̂ st̂

To my daughter Gayathri, my pride and joy . . .

for making it all worthwhile.

F

km
�y�vAEDkAr(s� mA Pl�q� kdAcn।

mA km
Plh�t� B�
mA
 t� s½o_-(vkm
EZ॥

You have a right to perform your prescribed duties, but you are not entitled to the

fruits of your actions. You should never be motivated by the results of your actions,

nor be attached to inaction.

— Srimad Bhagavad Gita 2:47

ii

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my advisor Dr. Dijiang

Huang for years of experienced guidance, constructive feedback, broad knowledge and

unending help; without which this dissertation would not have been possible. To merit

his approval means a great deal to me. I am extremely grateful to my committee

members, Dr. Ahn, Dr. Syrotiuk and Dr. Doupé for their insightful comments, and

critical introspection of my work, which helped me better analyze and improve my

work.

I want to thank my collaborators Abdullah Alshalan, Ankur Chowdhary, Adel

Alshamrani, Janakarajan Natarajan and Iman El Mir for broadening my research

horizons. Thank you to my colleagues in the Secure Networking & Computing (SNAC)

lab at ASU - Dr. Chun-Jen (James) Chung, Dr. Qiuxiang Dong, Duo Lu, Dr. Bing Li,

Yuli Deng, Oussama Mjihil, Bhakti Bohara, Fanjie Lin, Zhen Zeng, Dr. Huijun Wu,

and Dr. Zhijie Wang - for substantive discussions and for providing an environment

that was enjoyable to be a part.

Most of all, my profound gratitude goes to my family for being a pillar of support

through this work, and my life in general. They have been an enduring source of

inspiration for me to pursue a doctorate, making incredible sacrifices over many years

so I might someday have this privilege. My parents showered me with love, put me

through the best education possible and were the perfect role models for me. My

brother showed me the value of hard work, which was something that came in handy

these past few years. My daughter, who unfailingly brought a smile on my face, and

helped me put things into perspective. My lovely wife and muse Shuchi provided me

with crucial inspiration, encouragement when I was down and admonishment when

I was slacking. She shouldered far more than her fair share of the parenting and

household responsibilities, while I immersed myself in pursuit of this degree. Thank

iii

http://www.public.asu.edu/~dhuang8/
http://www.public.asu.edu/~dhuang8/
http://www.public.asu.edu/~gahn1/
http://www.public.asu.edu/~syrotiuk/
http://adamdoupe.com/
http://www.public.asu.edu/~dhuang8/snac.html

you for being so understanding. The loss of our precious time together was the most

painful thing of all.

Thank you to all the scientists that came before, who learned not to accept the

status quo and question everything. Thank you to the ones in uniform, for putting it

all on the line, so I can sit in the peace and comfort of my home and ponder. Thank

you to my buddy Herbie (who’s a good boy, Herbie?) who kept me constant company,

sleeping at my feet as I worked. Thank you for coffee, football (Nebraska Cornhuskers

and Green Bay Packers), Matt Drudge, coffee, RCP, Reddit, coffee, Netflix, Stephen

Colbert, and coffee; for helping me maintain some sort of semblance of sanity during

the last few years.

Finally, thank you to the NSF CyberCorps R©: Scholarship For Service (SFS)

program (NSF-SFS-1129561) for funding my studies and providing me with a stipend

for the last three years making my education possible. Disclaimer - The views and

conclusions contained in this document are my own, and should not be interpreted as

representing the official policies or endorsements, either expressed or implied, of the

U.S. Government.

I want to acknowledge how blessed I have been with the grace of God. Anything

that I have desired in life, I have had an opportunity to attain. I hope to keep striving

to prove myself worthy.

iv

http://www.drudgereport.com
http://www.realclearpolitics.com
http://www.reddit.com

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 Introduction . 1

I Research Objectives & Contributions . 4

II Dissertation Organization . 5

2 Background and State of the Art . 6

I Evolution of Security Infrastructures . 6

II Security Policy Management . 9

III Software-Defined Networks (SDN) . 13

A OpenFlow . 18

B Open Virtual Switch (OVS) . 18

IV Related Work . 19

A Firewall Rule Conflicts . 19

B SDN Security & SDN Policy Management 22

C Distributed SDN Environments . 25

3 Flow Rule Conflicts . 27

I Flow Rules . 27

II Flow Rule Model . 30

III Security Policies using Flow Rules . 31

IV Flow Rule Management Challenges . 32

V Motivating Scenarios . 35

A Case Study 1: Moving Target Defense (MTD) 36

B Case Study 2: VPN Services . 38

v

CHAPTER Page

C Case Study 3: Load Balancing & IDS . 39

VI Flow Rule Conflicts . 39

A Problem Setup . 39

B Conflict Classes . 40

C Cross-layer Policy Conflicts . 47

D Traffic Engineering Flow Rules . 48

4 Distributed SDN Controller Considerations 51

I Challenges in Multiple-Controller Domain . 52

II Controller Decentralization Model . 53

A Clustered Controllers . 54

B Host-based Partitioning . 55

C Hierarchical Controllers . 57

D Application-based Partitioning . 59

E Heterogeneous Partitioning . 60

5 Flow Rule Conflict Resolution . 61

I Conflict Severity Classification . 61

A Tier-1 Conflicts . 61

B Tier-2 Conflicts . 62

C Tier-3 Conflicts . 62

II Conflict Resolution Model . 62

A Intelligible Conflicts . 62

B Interpretative Conflicts . 63

6 BREW: A Security Policy Management Framework in Dis-

tributed SDN Environments . 66

vi

CHAPTER Page

I System Overview & Models . 66

A Design Requirements & Assumptions . 66

B Operating Environment . 67

C Security Model . 68

II System Architecture . 68

A System Modules . 68

B OFAnalyzer Module . 70

C OFProcessor Module . 71

III Implementation . 74

A OpenDaylight (ODL). 75

B Flow Extraction Engine . 78

C Flow Prepping Engine . 80

D Conflict Detection Engine . 82

E Conflict Resolution Engine . 86

F Visualization Engine . 86

IV Evaluation . 88

A Theoretical Evaluation . 89

B Correctness Verification . 90

C Performance Overhead . 91

D Scalability Evaluation . 93

E Effect of Decentralization Strategies . 95

7 Conflict-free Countermeasure Generation for MTD in Dis-

tributed SDN Clouds . 98

I Problem Statement . 98

vii

CHAPTER Page

II Moving Target Defense (MTD) . 101

III System Model . 102

A System Assumptions . 103

B System Components . 103

IV Implementation . 107

V Evaluation of CaCTuS . 109

8 Conclusion . 114

I System Limitations . 116

II Future Work . 116

REFERENCES . 119

APPENDIX

A Flow Rule Match Fields . 132

B Flow Rule Match Fields . 134

C List of Abbreviations . 136

viii

LIST OF TABLES

Table Page

3.1 Flow Table Example. 29

5.1 Security Precedence Priority Multiplier Example.. 64

A.1 Flow Table Match Fields. 133

B.1 Flow Table Actions. 135

ix

LIST OF FIGURES

Figure Page

2.1 Firewall Evolution Timeline. 7

2.2 Policy Hierarchy. 11

2.3 Policy Management Framework.. 12

2.4 Typical Network Implemented Using SDN. 13

2.5 Abstraction in SDN. 14

2.6 OpenFlow Pipeline Processing. 17

2.7 Open vSwitch Architecture. 20

3.1 Policy Conflicts in SDN-based Cloud Caused by MTD. 37

3.2 Policy Conflicts Caused by Different Applications in an SDN-based

Cloud. 38

3.3 Address Space Overlap and Flow Rule Conflicts for Rules with Different

Priorities. 42

3.4 Address Space Overlap and Flow Rule Conflicts for Rules with Same

Priority. 43

3.5 Cross-layer Flow Rule Conflict in SDN Environments. 48

3.6 Meter Band in OpenFlow Specification. 50

4.1 Distributed Controller Classes. 52

4.2 Host-based Partitioning. 56

4.3 Hierarchical Controller Distribution. 58

4.4 Application-based Controller Decentralization. 59

6.1 Flow of Control and Logic Between Brew Sub-Processes. 69

6.2 Data Structure Format. 71

6.3 System Overview Representing Different Brew Modules. 74

6.4 ODL Architecture. 75

x

Figure Page

6.5 MD-SAL Application Development. 76

6.6 ODL Data Stores. 77

6.7 Use of Patricia Trie Data Structure for Octet-wise Representation of

Layer-3 Address. 83

6.8 Conflict Visualization Based on Hierarchical Edge Bundling Showing a

Spiro-graph. 89

6.9 Conflict Visualization Based on Reingold-Tilford Tree. 90

6.10 Topology Used for Brew Correctness Verification. 91

6.11 Network Performance Overhead. 92

6.12 Topology for Scalability Testing (Replicating Stanford University Back-

bone Network). 93

6.13 Increase in Running Time with Increase in Flow Table Size. 94

6.14 Change in Running Time for Brew with k-controllers. 96

6.15 Dependence of Flow Rule Conflict Resolution Times on Decentralization

Strategies for Increasing Number of Flow Rules. 97

7.1 Black-box Model for CaCTuS. 102

7.2 System Logic Flow in CaCTuS. 108

7.3 Change in Probability of Flow Rule Conflicts with Flow Table Size. 110

7.4 Comparison of CaCTuS Running Time with Brew and FlowGuard

Versus Size of Flow Rule Tables. 111

7.5 Network Performance Overhead for CaCTuS. 113

xi

Chapter 1

INTRODUCTION

Pervasiveness of Internet has resulted in nearly 40% of the global population using

this technology to revolutionize the way we do business, socialize, gain knowledge,

and entertain ourselves [1]. This widespread proliferation of the Internet has driven

the need for mechanisms to secure our sensitive data and communication. It has been

obvious for a while that security has no single solution, and defense in depth is a

strategy that has long been in use [2]. Strong security controls coupled with audit,

administrative reviews, and an effective security response plan is the only way anyone

can achieve a holistic defense. An oft ignored but essential component of a security

infrastructure is ensuring that devices are operating the way the administrators expect

them to. For example, consider a firewall. These are foremost amongst the multitude

of security devices that have earned their place in our networks. For firewalls to be an

effective component of the security mechanism, active management of the firewalls,

prevention of conflicts and achieving consistency between the corporate security policy

and the implemented firewall rules are all crucial.

Information security often associates itself with three primary objectives [3]: a) con-

fidentiality or secrecy relates to measures undertaken to ensure information is not

accessible to the unauthorized entities; b) integrity, which is concerned with maintain-

ing the consistency, accuracy, and trustworthiness of information over its life cycle;

and c) availability, which involves ensuring that authorized entities have access to

the information as designed. While the underlying network and technologies used to

deliver the information changes, the objectives of information security remain intact.

This has been true even after the advent of Software-Defined Networking (SDN) in

the mid-2000s.

1

SDN is a transformative approach to network design and implementation, based

on the premise of separating the control of network functions from the network devices

themselves (switches, routers, firewalls, load balancers, etc.). By separating the

control and the data planes, the goal was to unleash the true capability of software

in managing networks and removing the constraints placed on them by hardware.

Using the OpenFlow protocol, SDN switches can leverage the flexibility afforded by

the ability to access header information from several layers of the Open Systems

Interconnection (OSI) stack, allowing it to satisfy functionalities traditionally fulfilled

by a multitude of physical devices. Along with the SDN support of programmable

network interfaces, this flexibility makes SDN an ideal platform for multi-tenant

data center deployments that require flexibility and dynamism in configuration and

deployment. This is especially true in an Infrastructure-as-a-service (IaaS) cloud

where Virtual Machines (VMs) are managed by tenants seeking technological and

financial flexibility. Adoption of Bring Your Own Device (BYOD) architectures in

modern enterprise environments adds further dynamicity and topology changes.

The decoupling of data and control planes in SDN brings about scalability concerns

owing to potential bottlenecks at the controller. Studies suggest that although a

centralized controller can scale for a respectable enterprise network, it would fail for

a data center deployment [4, 5]. While researchers have explored architectures for

decentralizing the SDN architecture [6, 7, 8, 9] they do not completely address flow

rule management across this environment.

The flexibility and programmability of SDN allows for the ability to respond rapidly

to changing user and security requirements and empowers users in a shared tenant

environment to secure their own logical infrastructure in a perceivably private manner.

Any security implementation by the tenant such as Intrusion Detection Systems

(IDS), Intrusion Prevention Systems (IPS), Deep Packet Inspection (DPI), Virtual

2

Private Networks (VPN), Moving Target Defense (MTD) etc., would be accomplished

by installing new flow rules in the SDN-based environment. However, the shared

control plane leaves open the potential for conflicts between flow rules from different

tenants. Further, unlike traditional environments where new rules can get added only

through an administrator, abstraction of the data plane from the control plane leads to

applications being able to introduce new flow rules into the controller through an API.

When done in an adversarial manner or without understanding existing flow rules

and the desired security policy, this could result in potential flow rule conflicts. In a

decentralized SDN-based environment with multiple controllers, the policy conflict

issue is amplified since conflicts could arise due to different controllers not being

in sync, and not having the same view of the environment especially in multi-path

scenarios. To complicate matters further, a dynamically changing network topology

adds its own wrinkles.

Just as firewall conflicts in a traditional network limits effectiveness of a security

infrastructure [10], conflicts between flow rules on the controller limits the effectiveness

and impact of a security implementation in an SDN-based environment1. Amongst

issues that are heightened in an SDN-based cloud environment are issues caused by

flow rule chaining, partial matches and by set-field actions.

Substantial research has attempted to address the problems brought forth above,

significant amongst which are FortNOX [11] and the FlowGuard [12] framework.

While they deal effectively with direct flow violations, they do not tackle conflicts

across addresses over multiple layers. For instance, consider a multi-tenant SDN-based

environment. Often, tenants use flat layer-2 topologies due to latency concerns, and

the ability to conduct inline promiscuous monitoring using layer-2 devices [13]. A

1SDN-based environments are typically prevalent in multi-tenant data center environments or
public cloud deployments. Since architectures of both of these have several common features, cloud
environments and multi-tenant data centers are used interchangeably in this dissertation.

3

natural extension would be to implement layer-2 flow rule policies. The data center

itself might operate with flow rules based on layer-3 addresses. If different policy

enforcement points enforce policies based on addresses in different layers, inconsistent

actions could result. Conflicts across multiple OSI layer addresses or cross-layer

conflicts become severe in an SDN setup where each SDN switch, both physical and

virtual, can be considered to be a distributed firewall instance, each with a different

local view of the environment and policy.

I. Research Objectives & Contributions

In this dissertation, I first classify all potential conflicts in an SDN-based environ-

ment (including the hitherto unstudied cross-layer conflicts [14]). A methodology and

implementation of a controller-based algorithm for extracting flow rules in a distributed

controller environment, and detecting intra- and inter-table flow rule conflicts utilizing

cross-layer conflict checking is detailed. Further, automatic and assisted conflict

resolution mechanisms are discussed, and a novel visualization scheme for conflict

representation is described. This work is implemented in a security policy analysis

framework named Brew, built on an OpenDaylight (ODL) based SDN controller,

that effectively scrubs the flow table in a distributed SDN-based cloud environment,

highlights and resolves potential conflicts. To summarize, I accomplish the following:

• Extend firewall rule conflict classification in a traditional environment to SDN

flow rule conflicts by identifying cross-layer conflicts (which tend to be transient

in nature).

• Includes techniques for global prioritization of flow rules in a decentralized

environment depending on the decentralization strategy.

• Implement a flow rule conflict detection system in a multiple, decentralized

4

controller based SDN-based cloud environment, amongst flow rules implementing

Quality of Service (QoS) requirements.

• Provide strategies for unassisted resolution of flow rule conflicts, with the

recognition that some conflicts may not be resolved without loss of information.

• Present a visualization scheme, implemented to help the administrators view

flow rule conflicts graphically.

Finally, to generate conflict free countermeasures in an address hopping based

MTD solution, knowledge from the conflict classification information and an address

space management module was used. This module was part of a framework called

CaCTuS that generates address hopping MTD countermeasures that are provably

conflict-free.

II. Dissertation Organization

This dissertation is organized as follows. Chapter 2 discusses background informa-

tion about security policy management and SDN that is fundamental to understanding

the rest of this dissertation. It also discusses related work. Chapter 3 provides details

about flow rules, implementing security policies using flow rules, and flow rule man-

agement challenges. It then produces a formalism that defines all flow rule conflicts.

Cross-layer conflicts and traffic management flow rules are also considered. Next,

Chapter 4 discusses distributed SDN controller considerations. Chapter 5 discusses

major conflict resolution techniques. These works are consolidated and presented as

part of a framework called Brew. Brew is described, analyzed and evaluated in Chap-

ter 6. In Chapter 7 a prototype for generation of conflict-free MTD countermeasure is

discussed. Finally, Chapter 8 details conclusions from this dissertation, and lays out a

plan for ongoing and future research.

5

Chapter 2

BACKGROUND AND STATE OF THE ART

In this chapter, background information required to follow concepts covered in this

dissertation, specifically security policy management and SDN are described. A brief

overview of related works is also presented.

I. Evolution of Security Infrastructures

For over two centuries, the term firewall has been used to describe barriers that

prevented or slowed the spread of an undesirable event, with initial use of the word in

its literal sense. A lexicographical study of the term will show that the literal meaning

of this term has faded from our vocabulary in the current information age. This

dissertation uses the term firewall in its new data security connotation. Undoubtedly,

firewalls are the most well understood and widely deployed security device in networks

with near unanimous adoption.

Over the last few decades, firewalls have evolved from mere routers that separated

networks from one another [15] to isolate undesirable events into devices that can

conduct a multitude of actions on incoming traffic based on a security policy. Based

on general functionality and complexity firewalls can be classified as belonging to five

generations: a) first generation devices which began with routers that separated

out different networks, and evolved into devices with basic packet filtering functions;

b) second generation of firewalls which started with devices having capability to

conduct stateful packet inspections, and moved into devices which perform DPI and

application proxy functions; c) third generation screened network firewalls which had

integrated perimeter security components; d) fourth generation firewalls which were

essentially distributed firewall implementations; and e) fifth generation devices, which

6

are programmable middleboxes that can serve in a variety of roles, many of which

include roles satisfied by traditional firewalls. Figure 2.1 shows this evolution and

progression visually.

T
im

e

Application proxy

Stateful packet

inspection

Packet filter

Deep packet

inspection

1
st
 Gen

Integrated perimeter

security

Router

Distributed firewalls

Programmable

middlebox

2
nd

 Gen

3
rd

 Gen

4
th

 Gen

5
th

 Gen

Figure 2.1: Firewall Evolution Timeline.

By design, a firewall is meant to act as a gate of sorts to traffic between the public

Internet and private networks, thereby preventing network mishaps. Conventionally,

they are thought to: a) be at the boundary between two different networks; and

b) be examining every packet traversing this border, irrespective of whether the traffic

inbound, or outbound. Using a set of security policies that have been defined by a

7

network administrator, this firewall determines which packets to allow, and which

to block. These security policies are converted into firewall rules, with each rule

consisting of the network 4-tuple (IP Source Address, IP Destination Address, IP

Source Port, IP Destination Port), network protocol and associated action.

As data networks grow in size and complexity, their risk tolerance decreases. At

the same time, this increasing scale has resulted in specification and management of

firewall policies to become complex and an error-prone task. For instance, a centralized

firewall located at the ingress into the network may have very strict default policies.

If users want to use a service which requires opening new ports on the central firewall,

the administrator may refuse to accommodate him/her due to the massive impact

of one change. The potential of having to add individual rules for running home

grown applications adds complexity to the rule-set, and hence increases the chance

of introducing errors. Moreover, the information threat model has evolved to where

organizations are aware that many of the vulnerabilities and threats are internal in

nature [16]. To counter this new reality, organizations use layered firewalls where

internal environments are separated from one another by using firewalls or related

security devices to reduce malicious activities originating internally. Such a layered

implementation of firewalls requires a separation of security policy controls into trusted,

semi-trusted and untrusted networks.

To try and resolve these problems while affording us all the advantages of firewalls,

Bellovin [17] proposes the use of distributed firewalls. In his solution, the security policy

is still centrally defined. However, enforcing this security policy is the prerogative of

distributed nodes (or endpoints, per Bellovin [17]). Such a distributed firewall model

requires three components: a) a policy language, that states what connections are

permitted and prohibited; b) a system management tool that can change security

policy and enforce it; and c) a secure distribution mechanism that can safely distribute

8

the security policy to all the nodes in the distributed firewall. In his model, a compiler

would translate the security policy from the policy language into some internal format.

The system management tool, which works in a client-server framework, would then

distribute this policy to all the distributed firewall nodes.

In the modern enterprises, it is very common to have multiple firewalls which

decentralize the implementation of the desired security policy [10]. And, as suggested

by Bellovin [17], the security policy is defined and enforced at different locations. Such

a setup allows for the system administrators to remain in control of the security policy,

while freeing them from the pain of consistent implementation of the policy across

multiple devices. Moreover, with the rise of the cloud computing model, multi-tenant

data center environments have witnessed explosive growth. In such environments, the

data center provider would have a central security policy, with each tenant potentially

having their own additional security measures. Managing and implementing these

policies in a consistent manner is challenging.

II. Security Policy Management

Security policy management can be thought of as the framework for specification of

an authentication and authorization policy, and the translation of this policy into infor-

mation that can be used by devices to control access, management of key distribution,

audit of security activities and information leakage [18]. This authorization usually

pertains to permitting or denying access to resources or information [19]. Security

management almost always also includes actions to be taken if any violations are

detected.

Given the rapid growth in the scale of networks being deployed, traditional methods

which rely on trained personnel to implement and manage information security has

become more time consuming, and error-prone [20]. Maintaining a mandated network

9

security scheme for large scale data center networks and distributed environments

is a formidable challenge. It is to this end that several policy-driven management

techniques have been suggested [21]. By separating out security policies from their

low level implementation and enforcement in the network, such methodologies simplify

network management while paving the way for seamless growth of the network [22, 23].

The definition of policy itself is rather ambiguous and is often something of

debate. Policies could be thought of as a specific way to dynamically implement static

requirements [24]. Separating out the policy from the requirement enables them to be

altered and adjusted to the environment or modified to improve performance, all the

while ensuring that they still adhere to the requirement. In fact, the requirement can

be used as a gauge to verify the functionality of the policy. A policy hierarchy that

represents the relationships between different levels of policy abstractions, as shown

in Figure 2.2, is generally accepted to be [3, 25, 26, 27]:

• Requirements, high-level abstract policies or management goals: These are

generally natural language statements such as Service Level Agreements (SLA)

or business goals. They are usually not enforceable at a device level, and are

implemented using a lower abstraction level.

• Specification-level or network-level policies: These are specified by a human

administrator in a precise format to provide abstractions for device-level imple-

mentations. These policies must be specific enough to drive automation.

• Low-level policies or device configurations: These are implemented on the devices

themselves. These are often the bottleneck to both scalability, performance and

interoperability.

The level of policy most relevant to our study is specification-level policy, or network

policy. We adopt the definition of a network policy from the work of Damianou [3].

10

Management

goals

Specification-

level policies

Device

configurations

Less abstraction,

More detail

Figure 2.2: Policy Hierarchy.

Definition 2.1. A network policy consists of rules which define relationships between

network resources and the network elements that provide those resources. Network

policies manage and control the accessibility, reliability and the QoS experienced by

networked applications and users.

The Internet Engineering Task Force (IETF) policy model [28] specifies that

network policies be considered as rules that specify actions to be taken when certain

conditions are met, described by the syntax in Listing 2.1.

Listing 2.1: IETF Network Policy

IF <condition(s)> THEN <action(s)>

While the syntax described follows the Condition-Action paradigm of most Policy

Core Information Model (PCIM) [19] rules, flow rules written in this syntax follow

similar semantics to an obligation [3] in the form of an Event-Condition-Action (ECA)

paradigm [29] from event-driven architectures, with an implicit event trigger in case

of a match. To help determine the action set when multiple conditions are met, most

policies are associated with a priority value. Alternately, instead of specifying an

11

explicit priority, a role-based priority may be assigned to the policies depending on

the origination point of the policy.

A typical policy-based management architecture as per the PCIM is shown in

Figure 2.3. A Policy Manager (PM), serves to facilitate policy formulation, analysis

and verification. Once verified, the policies are stored in a Policy Repository (PR).

The Policy Decision Point (PDP) actively monitors the system for specific events.

When triggered by certain conditions, the Policy Enforcement Point (PEP) comes

into play - to enforce the policy actions.

Policy

Decision

Point

Policy

Retrieval
Event

Policy

Repository

Policy Administration

Point

Policy Enforcement

Point

Manage

Policies

Figure 2.3: Policy Management Framework.

Several issues with regards to policy definition and implementation, such as policy

storage and enforcement in a distributed environment are addressed natively in SDN,

wherein the SDN controller can act as a PR and PDP, while the SDN switches can

act as the PEP. A brief overview on SDN follows.

12

III. Software-Defined Networks (SDN)

The SDN paradigm is based on the premise that separating control of network

functions from the network devices themselves (switches, routers, firewalls, etc.) can

address several limitations associated with today’s vertically integrated, closed and

proprietary networking infrastructure. The adoption of virtualization technologies

in computing, and the convergence of voice, video and data communication to IP

networks fueled the need for such a shift in networking standards [30]. Figure 2.4

shows a typical network implemented using SDN in a data center environment. Four

users have VMs running on the same physical host, with each VM connected to the

same Open Virtual Switch (OVS) (described in Section III.B). Data frames that come

from the VMs are tagged with a VLAN ID or some other ID based on the tunneling

protocol in use, logically separating each of the four users. The OVS then uses flow

rules it gets from the SDN controller to determine how to handle the traffic.

VMVMVM

VMVMVM

VMVMVM

VMVMVM

Virtual

Machines

SDN

Controller

Physical

Network

Internet

OpenFlow

Physical

Server Farm

Physical

Server Farm

OVS

Figure 2.4: Typical Network Implemented Using SDN.

13

The separation of the control and data planes result in network switches becoming

dumb forwarding devices, with control logic being implemented in a centralized1

controller [31]. This not only allows the network administrators a much finer gran-

ularity of control over traffic flow, but also empowers them to respond to changing

network requirements in a dynamic environment [32] in a much more effective manner.

Figure 2.5 shows a simplified view of the SDN architecture.

Infrastructure layer

Network Operating System

Control layer

Southbound API

Application layer

App 1App 1 App 2App 2 App 3App 3 App nApp n
. . .

Northbound API

Figure 2.5: Abstraction in SDN.

1The controller only needs to be logically centralized. This may be implemented in a physically
centralized or distributed system [6].

14

Use of SDN has picked up steam due to the following benefits:

• The traffic patterns culminating from the adoption of cloud systems and big-data

computing do not adhere to the traditional notion of a north-south network.

• Separating network control from the hardware devices eliminates the need to

configure each device individually. Having a central network policy that can be

dispatched to the SDN devices reduces the time-to-deploy thereby enhancing

profits for the data center or service providers.

• Since control is separated from the network devices, administrators can modify

the behavior of the device by pushing software updates to the device, instead

of conducting fork-lift upgrades - once again enhancing profits for data center

providers.

• A singular device can handle the functionalities managed by multiple traditional

network devices. For example, a single device could do switching, routing, load

balancing and security functions. Further, SDN is vendor agnostic, thereby

allowing providers more flexibility.

• SDN can organically provide traffic shaping and administer QoS. In current

networks, provisioning different QoS levels for different applications is a highly

manual process, and can not dynamically adapt to changing network conditions

[33].

• SDN provides a layer of abstraction that allows application managers and

administrators to dissociate from managing the physical hardware. In addition

to having access to virtual disk and memory, SDN virtualizes a network operating

system, abstracting the physical topology of the network from the applications.

15

As shown in Figure 2.5, several applications running on the same physical

hardware could have different views of the network.

There are several definitions for a flow in literature. IP Flow Information eXport

(IPFIX) [34] describes a flow to be a set of IP packets with a set of common properties

passing an observation point in the network during a certain time interval. The typical

properties of a flow include the network 4-tuple <source IP, source port, destination

IP, destination port>, and the layer-4 protocol. A flow table is a listing of rules

managing these flows. Thus, a flow table can, quite simply be thought of as a set of

packet filtering rules. The description of a flow, however, needs to be extended to

include not just the network 4-tuple, but a network 6-tuple which includes the OSI

layer-2 source and destination addresses. Our formal definition of a flow is detailed in

Chapter 3, Section II.

The SDN switches communicate with the controller over a secure TCP connection

on a dedicated control network, separate from the data transfer network. The switches

maintain at least one flow table, consisting of match conditions and associated actions.

An ingress packet is matched against the flow table entries to select the entry that

first matches (or a different rule selection type as discussed in Chapter 3, Section II)

the ingress packet, and the associated instruction is executed. Such an instruction

may explicitly direct the packet to another flow table, where the same process is

repeated. When processing stops, the packet is processed with its associated action

set. Figure 2.6 shows a visual representation of this process.

In addition to being deployed for a variety of traditional functionalities like routing,

security and load balancing, SDN can be used for traffic engineering, end-to-end QoS

enforcement, mobility management, data center implementation and reducing power

consumption. Kreutz et al. [35] groups all these applications into five categories:

a) traffic engineering; b) mobility and wireless; c) measurement and monitoring;

16

Packet in

OpenFlow Switch

Execute

Action Set

Table 0

a
p
p
e
n
d
 t
o

a
c
tio

n
 s

e
t

Send to controller

Drop

Send to controller

Drop

Send to controller

Drop

Table n

Table k

Packet
out

Packet

Packet

Packet

Figure 2.6: OpenFlow Pipeline Processing.

d) security; and e) data center networking. This dissertation emphasizes the application

of SDN for security, and how shoddy flow rule management could cause security issues.

The programmability and flexibility offered by the SDN paradigm brings about

a great potential upside for security processing, primarily because it offers an end-

to-end, service-oriented connectivity model that is not bound by traditional routing

constraints. Centralized, holistic knowledge of the environment means security policies

can consolidate information from a diverse set of devices to deal with various threats.

Policy management in SDN can be based on application, service, organization, and

geographical criteria rather than physical configuration, thereby insulating security

administration from enforcement.

17

A. OpenFlow

OpenFlow, defined by the Open Network Foundation (ONF) [36], is a protocol

between the control and forwarding layers of an SDN architecture, and is by far the

most widespread implementation of SDN. A basic OpenFlow architecture consists

of end hosts, a controller and OpenFlow enabled switches. Note that contrary to

the traditional network nomenclature, an OpenFlow switch is not limited to being a

layer-2 device. The controller communicates with the switches using an OpenFlow

API.

When a packet arrives at an OpenFlow switch, packets are processed as follows:

1. A flow table lookup attempting to match the header fields of the packet in

question to the local flow table is done. If no matching entry is present, then the

packet is sent to the controller for processing. When multiple entries that match

the incoming packet are present in the flow table, the packet with the highest

priority is picked. Details about the match fields and actions are provided in

Chapter 3.

2. Byte and packet counters are updated.

3. Action(s) corresponding to the matching flow rule is(are) appended to the action

set. If a different flow table is part of the execution chain, then processing

continues.

4. Once all flow tables have been processed, execute the action set.

B. Open Virtual Switch (OVS)

Open Virtual Switch (OVS) [37] is open-source implementation of a distributed

programmable virtual multilayer switch. OVS implementations generally consist of

18

flow tables, with each flow entry having match conditions and associated actions.

OVS communicates with the controller using a secure channel, and generally uses the

OpenFlow protocol. OVS has been widely integrated into major cloud orchestration

systems such as OpenStack [38], CloudStack [39] etc., in lieu of the traditional Linux

bridge.

Figure 2.7 represents the main components of OVS. The kernel module receives

the packets from a NIC (physical or virtual). If the kernel module knows how to

handle the packet, it simply follows the instructions. If not, the packet is sent to the

ovs-vswitchd in userspace using NetLink. This determines how the packet should

be handled using the OpenFlow protocol. The ovs-vswitchd communicates with a

ovsdb-server via a socket. The ovsdb-server stores OVS configuration and switch

management data in JSON format. All functions in the userspace can be accomplished

using CLI commands.

OVS and vSwitch are used interchangeably in the remainder of this document.

IV. Related Work

A. Firewall Rule Conflicts

There have been several attempts to classify policy conflicts. Lupu and Morris

[40, 41]. Lupu et al. describe conflict analysis for management policies, using a tool

to conduct offline detection of conflicts in a large-scale distributed system. Eppstein

and Muthukrishnan [42] use a deal with the packet classification and filter conflict

detection problem. They use KD tree [43] to verify if two rules apply different actions

on the same packet. This misses out on some conflict classification types, that involve

sub-optimal rules. Fu et al. [24] manage policies as they apply to IPSec tunnels

in both inter- and intra-domain environments. Hari et al. [44] present a conflict

detection and resolution algorithm using a k-tuple filter that grows linearly. However,

19

UserSpace

Remote (Controller)

Open vSwitch Kernel Module

ovsdb-serverovs-vswitchd

ovsdb ovsdb-tool

ovs-vsctl ovsdb-client

Config DB Operation

ovs-appctlovs-dpctl

Management
(TCP/6632)

OpenFlow
(TCP/6633)

NetLink

Figure 2.7: Open vSwitch Architecture.

the seminal work by Al-Shaer and Hamed [45] is often used to classify firewall conflicts.

In that work, the authors also introduce the Firewall Policy Editor to provide a simple

representation allowing for easy human recognition of firewall rule conflicts. The

authors extend this work into a distributed environment in Firewall Policy Advisor

(FPA) [10], which identifies where to insert new firewall rules to not incur any new

policy conflicts. In FPA, the authors also introduce basic visualization by displaying

simplified versions of complex firewall rules, and show firewall rule conflicts in tabular

format.

Firmato [13] is a firewall management toolkit that helps users separate out security

policy and the underlying network topology. It uses a Model Definition Language

(MDL) to translate the security model into configuration files for Lucent managed

firewalls. Firmato ensures there are no policy conflicts in the system and that the

rules in the firewall are up to date with the security policy. Fireman [46] detects

20

misconfiguration stemming from: a) violations of user-specified security policies;

and b) inconsistencies among firewall rules. It parses firewall configurations and

converts them into an operational semantics representation, which is then sent to the

administrator for decision making. Unlike FPA, Fireman also recognizes inter-firewall

rule conflicts.

FAME [47] is a conflict management environment to detect and resolve conflicts

by using rule based segmentation. In FAME, the authors used a matrix to represent

conflicting and non-conflicting address segments; but fails while trying to represent

larger rule sets.

V. Capretta et al. [48] proposed a formalization of conflict detection for firewalls,

but constrained themselves to only look at rules where the actions are different; thereby

missing out on some conflict classes. Rei [49] is a language based on deontic logic [50]

that defines security policies as possible actions on a resource. All policies in Rei are

free of conflicts due to the presence of meta-policies defined by an administrator, which

are used to resolve conflicts. If a meta-policy that covers the conflict does not exist, by

default the deny action is prioritized. FLIP [51] is a high-level firewall configuration

policy language in which security policies are translated into lower level configuration

to be loaded onto the devices. Since FLIP is a centralized configuration generation

point, the rules generated will be conflict-free due to FLIP preventing overlap of any

kind [52].

Fang [53] is a tool that reads in the vendor specific configuration files and converts

them into an internal representation, which is then be presented to the administrator

in a tabular form in simple text. While it is one of the earliest work in visualization

of rule conflicts, it is devoid of any graphics. While it is a step to making security

configurations vendor agnostic, it does not display any relation between conflicting

rules. The onus is on an experienced administrator to submit the right query that

21

would present the conflict. PolicyVis [54] used overlapping bars to represent conflict

types, and colors to represent the action. However, the conflicts are visible only when

a certain scope is defined. A sunburst visualization is used by Mansmann et al. [55]

to visualize the rule set, but does not provide any visualization for flow rule conflicts.

None of the above works, provide scalable rule conflict visualization that provides

high-level conflict categorization, with granular information provided upon need to

the administrator.

B. SDN Security & SDN Policy Management

While advances in SDN have made it central to deployment of a cloud environment,

security mechanisms in SDN trail its applications. A basic SDN firewall was introduced

as part of Floodlight [56], wherein the first packet in a new flow is sent to the controller

to be matched against a set of flow rules. The resulting action set is then sent to

the OpenFlow switch. The action set is applied for the current flow, and cached for

enforcement on all future flows matching the same conditions. In case of a dynamic

security policy update to the controller, the OpenFlow switches are oblivious to this

situation and could implemented a dated action set. Javid et al. [57] built a layer-2

firewall for an SDN-based cloud environment using a tree topology for a small network

using a POX controller and restricted traffic flow as desired. Suh et al. [58] illustrated

a proof-of-concept version of a traditional layer-3 firewall over an SDN controller. An

application layer firewall using SDN was demonstrated by Shieha [59].

FRESCO [70] allows for the implementation of security services in an OpenFlow

environment by providing reusable modules accessible through a Python API. To

address conflicts that might arise in an OpenFlow environment, FRESCO introduces a

Security Enforcement Kernel (SEK) that prioritizes rules to assist in conflict resolution,

but does not tackle complex flow rule inconsistencies. FortNOX [11] is an extension

22

to the NOX controller that implements role-based and signature based enforcement to

ensure applications running on the controller do not circumvent the existing security

policy, thereby enforcing policy compliance. In FortNOX, reusable modules are used

to protect the flow installation mechanism against adversaries, but conflict analysis

is conducted only between a new flow rule and existing rules, without considering

dependencies within flow tables. Thus, implementing FortNOX in a distributed

environment would be challenging. Decision making in FortNOX seems to follow a

least permissive strategy instead of making a decision keeping the holistic nature

of the environment in mind. Moreover, it uses only layer-3 and layer-4 information

for conflict detection, which we believe is incomplete since SDN flow rules could use

purely layer-2 addresses for decision making. In addition, FortNOX would not be able

to handle partial flow rule conflicts.

In their work, Cholvy and Cuppens [62] conduct consistency analysis of security

policies, focusing on access control policy. Much of their study focuses on defining and

ensuring security policy consistency based on deontic logic, like Rei. But paradoxes

do exist in deontic logic [63] and hence such work would be beneficial only in a

complementary manner to any security implementation involving network devices

such as firewalls.

Natarajan et al. [71] study two different conflict detection techniques for flow rules.

The first approach internally represents flow rules using a combination radix trie and

a hash, which are then used to identify conflicts. The second approach is an ontology

based detection system. However, the authors do not discuss conflicts in distributed

environments, or how to resolve any conflicts.

FlowChecker [64] identifies intra-switch conflicts within a single flow table using

Binary Decision Diagrams (BDD) [65]. Certain conflicts in SDN networks can also be

determined by expanding the work of Gu et al. [66] in detecting anomalies in network

23

traffic tailored to a SDN environment. However, these would be limited to detecting

network invariants that can be detected by comparing current network traffic with a

baseline distribution.

Pyretic [67], a high-level language written in Python courtesy the Frenetic project

[68], allows users to write modular applications. Modularization ensures that rules

installed to perform one task do not override other rules. Using a mathematical

modeling approach to packet processing, Pyretic compares the list of rules as functions

that use a packet as an input, and have a set of zero or more packets as output. Given

its mathematical base, Pyretic deals effectively with direct policy conflicts, by placing

them in a prioritized rule set much like the OpenFlow flow table. However, indirect

security violations or inconsistencies in a distributed SDN environment cannot be

handled by Pyretic without a flow tracking mechanism such as the one discussed by

Fayazbakhsh et al. [69].

VeriFlow [72] is a proposed layer between the controller and switches which conducts

real time verification of rules being inserted. It uses search rules based on Equivalence

Classes (ECs) to maintain relationships and determine which policies would be affected

in case of a change. Thus, it can verify that flow rules being implemented have no

errors due to their dependence on faulty switch firmware, control plane communication,

reachability issues, configuration updates on the network, routing loops, etc. Like

VeriFlow, NetPlumber [73] sits between the controller and switches. Using header

space analysis [74], it ensures that any update to a policy is compared to all dependent

policies to prevent and report violations.

FlowGuard [12] is a security tool specifically designed to resolve security policy

violations in an OpenFlow network. FlowGuard examines incoming policy updates

and determines flow violations in addition to performing stateful monitoring. It uses

several strategies to refine policies, most of which include rejecting a violating flow.

24

Research in SDN security enforcement such as AVANT-GUARD [60] allow for

development of security enforcement kernels, and threat detection to applications. In

Sphinx [61], the authors extend attack detection in SDN to include a broader class

of attacks including untrusted switches and hosts. However, these security solutions

implicitly assume the presence of a conflict-free security policy for implementation,

and do not address the problem of conflicting flow rules.

Since a flow can be defined using addresses in multiple layers, policy checking

approaches in SDN should differ from traditional approaches by being able to consider

indirect security violations, partial violations or cross-layer conflicts. However, none

of the works discussed above tackle these problems. Moreover, they appear not to

fully leverage the SDN paradigm that lets flow rules do traffic shaping in addition

to implementing accept/deny security policy. To that end, we propose Brew, a

framework that considers cross-layer dependencies while ensuring conflict-free policies

in a distributed SDN-based environment. Additionally, Brew analyzes traffic shaping

policies including rate limiting policies along with security policies to detect and

resolve direct, indirect and partial conflicts.

C. Distributed SDN Environments

Distributed controller environments in SDN are widely studied. Onix [6] facilitates

distributed control in SDN by providing each instance of the distributed controller

access to holistic network state information through an API. HyperFlow [8] synchro-

nizes the network state among the distributed controller instances while making them

believe that they have control over the entire network. Kandoo [75] is a framework

tailored for a hierarchical controller setup. It separates out local applications that

can operate using the local state of a switch, and lets the root controller handle

applications that require network-wide state. DISCO [76] is a distributed control

25

plane that relies on a per domain organization, and contains an east-west interface

that manages communication with other DISCO controllers. It is highly suitable for a

hierarchically decentralized SDN controller environment. ONOS [77] is an OS that

runs on multiple servers, each of which acts as the exclusive controller for a subset

of switches and is responsible for propagating state changes between the switches it

controls.

Dixit et al. [9] presented an approach to dynamically assign switches to the con-

trollers in a multiple controller environment in in real-time. The balanced placement of

controllers can reduce the cost and the overhead for dynamic assignment of controllers.

Bari et al. [78] also presented a technique to dynamically place controllers depending

on the changes of number of flows in the network. Controller placement problems have

been studied extensively from a performance perspective [4, 79, 78, 80], and based

on resilience [81, 82, 83, 84, 85]. Several of these works serve as groundwork for the

controller decentralization strategies that are employed during the implementation of

the Brew framework.

26

Chapter 3

FLOW RULE CONFLICTS

I. Flow Rules

OpenFlow v1.3.1 specifications [86] describe a flow rule to consist of the following

fields:

• Priority which describes the precedence of the rule, and is defined in the range

[1, 65535]. Higher priority values are preferred over lower values. If left unspeci-

fied, the priority field defaults to 32768.

• Match fields which consist of protocol specific header information, hardware

addresses, and metadata that is used to match incoming flows. In all, the basic

class in OpenFlow 1.3.1 can match thirty-nine different values, amongst which

thirteen values are required to be handled by all switches. These are: a) ingress

port; b) Ethernet source address; c) Ethernet destination address; d) Ethernet

type; e) IPv4 source address; f) IPv4 destination address; g) IPv6 source address;

h) IPv6 destination address; i) IPv4 or IPv6 protocol number; j) TCP source

port; k) TCP destination port; l) UDP source port; and m) UDP destination

port. The complete list of match fields is shown in Table A.1 in Appendix A.

• Packet counters which keep track of the number of packets that utilize the flow

rule, and are updated each time a packet match is detected. About forty different

counters are specified in the OpenFlow 1.3.1 specification.

• An action set that contains instructions on what to do when a matching flow

is detected. Associated actions can: a) forward packets through a specified

port; b) flood the packet on all ports; c) change QoS; d) encapsulate; e) encrypt;

27

f) rate limit; g) drop the packet; and h) be customized using various set-field

actions. The action sets are carried between flow tables, in cases where pipeline

processing of flow tables is in effect. The complete list of match fields is shown

in Table B.1 in Appendix B.

• Timeouts which specify the maximum amount of time or idle time before a

switch would consider the flow rule expired.

• A cookie value chosen by the controller. This value is not visible to the switches,

and therefore not used when processing packets. It may however, be used by

the controller to filter flow statistics, flow modification and flow deletion.

Since packet counters, timeouts and cookie values are not central to handling flow

rule conflicts, in the remainder of this dissertation, we limit discussion of flow rules to

priority, match fields and actions set fields. Table 3.1 shows a sample flow table rules

with the selected fields present. The data in the table has been written to be human

readable. The mapping of the columns is as follows: a) Rule #, present only to refer

to the rules in this dissertation and not present in OpenFlow; b) Priority; c) Source

MAC, which is specified using the Ethernet source address field; d) Destination MAC,

which is specified using the Ethernet destination address field; e) Source IP, which

is specified using the IPv4 source address field; f) Destination IP, which is specified

using the IPv4 destination address field; g) Protocol, which is specified using the IPv4

protocol field; h) Source Port, which is specified using either the TCP source field or

the UDP source field; i) Destination Port, which is specified using either the TCP

destination field or the UDP destination field; and j) Action, which is specified in the

action set but simplified here to just forward and drop. All required fields, ignored in

Table 3.1 can be assumed to be wildcarded.

28

R
u
le

#
P

ri
or

it
y

S
ou

rc
e

D
es

t
S
ou

rc
e

D
es

t
P

ro
to

co
l

S
ou

rc
e

D
es

t
A

ct
io

n

M
A

C
M

A
C

IP
IP

P
or

t
P

or
t

1
51

*
*

10
.5

.5
0.

0/
24

10
.2

11
.1

.6
3

tc
p

*
*

fo
rw

ar
d

2
50

*
*

10
.5

.5
0.

5
10

.2
11

.1
.6

3
tc

p
*

80
fo

rw
ar

d

3
52

*
*

10
.5

.5
0.

5
10

.2
11

.1
.0

/2
4

tc
p

*
*

fo
rw

ar
d

4
53

*
*

10
.5

.5
0.

0/
24

10
.2

11
.1

.6
3

tc
p

*
*

d
ro

p

5
54

*
*

10
.5

.5
0.

5
10

.2
11

.1
.6

3
tc

p
*

*
d
ro

p

6
51

*
*

10
.5

.5
0.

0/
16

10
.2

11
.1

.6
3

tc
p

*
*

d
ro

p

7
55

*
*

10
.5

.5
0.

5
10

.2
11

.1
.0

/2
4

tc
p

*
10

00
-1

00
7

d
ro

p

8
57

11
:1

1:
11

:1
1:

11
:a

b
11

:1
1:

aa
:a

a:
11

:2
1

*
*

*
*

*
fo

rw
ar

d

9
58

*
*

*
*

tc
p

*
80

d
ro

p

T
a
b
le

3
.1

:
F

lo
w

T
ab

le
E

x
am

p
le

.

29

II. Flow Rule Model

In order to formally create a model that describes flow rules in an SDN-based

cloud environment, an address n is defined in Definition 3.4.

Definition 3.1. A frame space of a rule r is the subset of all possible 6-byte hexadec-

imal numbers representing OSI layer-2 (MAC) addresses, and is expressed as a 2-tuple

(εs, εd) with subscript s denoting source and d denoting destination addresses.

Definition 3.2. A packet space of a rule r is the subset of all possible 32-bit numbers

representing OSI layer-3 (IPv4) addresses, and is expressed as a 2-tuple (ζs, ζd) with

subscript s denoting source and d denoting destination addresses.

Definition 3.3. A segment space of a rule r is the subset of all possible 16-bit numbers

representing OSI layer-4 (TCP/UDP) addresses, and is expressed as a 2-tuple (ηs, ηd)

with subscript s denoting source and d denoting destination addresses.

Definition 3.4. An address space n of a rule r is the 6-tuple representing the frame

space, packet space and segment space, and is expressed as (εs, εd, ζs, ζd, ηs, ηd), with

subscript s denoting source and d denoting destination addresses. An address space is

interchangeably called an address in this dissertation.

If N is the universal set of address spaces, we have:

Definition 3.5. A flow rule r is a function f : N → N that transforms n to n′, where

n′ is (ε′s, ε
′
d, ζ
′
s, ζ
′
d, η
′
s, η
′
d) together with an associated action set a, that can have any of

the values from Appendix B. Thus,

r := f(n) a

The set-field capabilities in the action fields of the rules ensures that any, all

or none of the fields in n may be modified as a result of the transform function f .

30

Considering cases where the action set a is a pointer to a different flow table, we

can apply the transform function on the result of the original transform function n′.

Formally, if r := f(n) a; f(n) = n′ and a := g(n′) a′ then,

r := g(f(n)) a′

Thus, multiple rules applied in succession to the same input address space can

simply be modeled as a composite function. It must be noted that the complexity of

the flow rule composition function would be exponential in nature, since each flow

rule could have multiple actions, each of which themselves could recursively lead to

multiple actions.

III. Security Policies using Flow Rules

Due to the ability to alter headers from multiple layers of the OSI stack, flow

rules in the OpenFlow protocol can inherently be used for traffic forwarding, routing

and traffic shaping. Research has shown that, in addition to traffic manipulation

functionalities, most security policies can be transferred into flow entries and deployed

on OpenFlow devices [87].

While several security mechanisms implemented in traditional environments depend

on routing traffic through middleboxes [88, 89, 90], it has been demonstrated that

integrating processing into the network is just as effective [91]. The centralized control

in the SDN paradigm makes can make this integration simple and elegant. Models to

implement traditional security functions such as firewall rules, an IDS and Network

Address Translation (NAT) rules in software have been demonstrated to be successful

[92, 93, 94]. SIMPLE, a framework that achieves OpenFlow based enforcement of

middlebox policies has been demonstrated in [95]. Contextual meaning to assist in

the implementation of middlebox policies using FlowTags was demonstrated in [69].

31

Further, an OpenFlow based multi-level security system that implements desired

security policies using flow rules to accomplish network traffic monitoring as well as

verification of packet contents has been successfully implemented [96]. François et al.

survey these and several other security implementations using OpenFlow [97] .

Four of the most generic security related policies are firewall, IPS/IDS, load

balancing and NAT rules, each of which can be expressed using the flow rule tuple.

A typical firewall rule, that blocks all Telnet traffic can be specified in OpenFlow as

follows. Note that nw_proto=6 signifies TCP.

Listing 3.1: Firewall Rule Using OpenFlow.

priority =51, nw_proto=6, tp_dst =23, actions=drop

Similarly, a load balancer policy, IPS/IDS policy or a NAT policy could be

implemented by modifying the layer-3 source or destination address to send the flow

to a specific device as follows:

Listing 3.2: Load Balancer Rule Using OpenFlow.

priority =51, nw_src =10.5.50.5 , nw_dst =10.211.1.1 , actions=mod_nw_dst
=10.211.1.63 , output :3

IV. Flow Rule Management Challenges

Unlike traditional firewall rules, flow rules can match more than just OSI layer-3 and

layer-4 headers making them inherently more complex by virtue of having additional

variables to consider. Since wildcard rules are allowed in OpenFlow, a partial conflict1

of a flow policy could occur, thereby adding complexity to the resolution of conflicting

flow rules.

As discussed in Section I, actions that can be applied on a match include forwarding

to specific ports on the switch, flooding the packet, changing its QoS levels, dropping

1caused when there is a partial overlap in the address spaces of the rules, as described in Section VI

32

the packet, encapsulating, encrypting, rate limiting or even customizable actions

using various set-field actions. The set-field functionality is a double-edged

sword. One the one hand, it provides flexibility and allows the OpenFlow protocol to

define complex virtual paths for traffic, and helps assert granular control. Cross-layer

interaction is bolstered by virtue of having flow rules using set-field actions to

change packet headers at several layers dynamically. But it also introduces significant

management challenges, such as the origin binding problem [69, 98].

OpenFlow specifications on how a flow match is determined are ambiguous, with

the specifications stating that an incoming packet is compared against the match

fields in priority order, and the first complete match is selected [86]. However, when

the OFPFF_CHECK_OVERLAP flag is not set in the controller, multiple flow entries with

the same priority can be set, in which case, the selected flow entry is explicitly

undefined [86]. This is often the case in multi-tenant data centers, since setting the

OFPFF_CHECK_OVERLAP flag would result in capping the size of each flow table to

65, 535 entries. When multiple matching rules with the same priority are encountered,

directions on how to deal with the issue are unclear, and not standard across different

implementations. While some implementations install sensible behavior such as more

specific flows taking precedence over less specific flows, this is not specified in the

OpenFlow specification [86], and not implemented in OVS. For instance, the only

constraint OVS places requires flow descriptions to be in normal form, i.e., a flow

can specify details for a particular layer header only if the protocol field in its lower

layers are populated. That is, if the layer-2 protocol type dl_type is wildcarded,

indicating use of any layer-3 protocol, then the flow rule can not specify layer-3 IPv4

source and destination addresses. But, this requirement only does not prevent conflict

causing scenarios. Furthermore, research has shown that despite there being clear

prioritization rules in OpenFlow, certain hardware OpenFlow switches ignore priorities

33

and treat rules installed later as more important [99]. Needless to say, ambiguity is

highly undesirable in any security implementation, and preventing conflicts in flow

rules is key.

Security implementations using SDN leverage the ability to make dynamic changes

to the network and system configurations to have a lean, agile and secure environ-

ment. Since this usually results in environments that are constantly in flux, ensuring

synchronization of the flow rules on all the distributed controllers is challenging. As

and when the logical topology changes, the flow rules in place must be modified in

accordance to ensure policy compliance. Additionally, ensuring that the changing flow

rules are always in line with the security policy of the organization is not trivial [100].

Finally, flow rules in an SDN environment can be generated by any number of

applications rather than just from an administrator. While this can reduce the workload

on the administrator and help with chronic complexity management, there exists a

potential for misplaced priorities between some of the flow rule generation points.

Besides, an application acting maliciously can wreak havoc across the environment

if not detected early enough [101]. Having multiple applications with the ability to

concurrently update flow rules can lead to unexpected conditions if the holistic nature

of the environment is not considered. For example, consider a load balancing and

a DPI application running on the controller. If the DPI detects an intrusion on a

node, it would attempt to migrate traffic off it. However, if the load balancer was

responsible for allocating new incoming connections to the device with the fewest

number of active connections, it might effectively sabotage the attempts of the DPI

program.

To summarize, flow rule management is more complex than rule management in a

traditional environment because:

• Match conditions cover more fields than in traditional environments.

34

• The set-field actions lead to cross-layer interaction in SDN flows.

• Flow rule priority field is not unique, and there is no standard on how to handle

flow rules with the same priority.

• Ensuring synchronicity of rules in a multiple controller environment is not trivial

when the topology is constantly changing.

• There are multiple generation points for flow rules, and there exist potential for

some of the generation points to not have the same priorities as the administrator.

V. Motivating Scenarios

One of the major benefits of using SDN to implement a cloud environment is the

ability to have multiple applications run on the SDN controller, each of which has

complete knowledge of the cloud environment. This can be leveraged by the cloud

provider to provide Security-as-a-Service (SaaS). A few potential examples of services

in a SaaS suite are Firewalls, VPN, IDS, IPS, MTD, etc. Implementing a management

system that only specifies security policies without tackling topological interaction

amongst constituent members has always been a recipe for conflicts [24].

With the SDN controller having visibility into the entire system topology along with

the policies being implemented, several of the conflict causing scenarios in traditional

networks were handled. However, there are several instances where conflicts can

creep into the flow table such as policy inconsistencies caused by: a) service chain

processing where multiple flow tables that handle the same flow might have conflicting

actions; b) VPN implementations that modify header content could result in flow rules

being inadvertently being applied to a certain flow; c) flow rule injection by different

modules (using the northbound API provided by the controller) could have conflicting

actions for the same flow; d) matching on different OSI layer addresses resulting in

35

different actions; and e) administrator error. This list, while incomplete, goes to show

how prevalent policy conflicts in SDN-based cloud environments could be.

Three distinct case studies in an SDN-based cloud environment where the security

of the environment is put at risk due to flow rule conflicts are discussed next. The

first scenario serves as an example where rules from different applications conflict

with each other, and the second scenario serves as an example where rules from a

single module might cause conflicts due to the dynamism in the environment. The

last scenario once again discusses how inconsistent view of the network state results

in different applications inserting flow rules with incomplete information.

A. Case Study 1: Moving Target Defense (MTD)

Traditional approaches to addressing security issues in a dynamic, distributed

environment concerned themselves with implementing security through individual com-

ponents, and not considering security holistically. This leads to two critical weaknesses:

a) defense against insider attack is minimal; and thus b) when perimeter defenses fail,

internal systems are ripe for the picking. As a counter, security applications that

implement MTD is a topic that is hotly researched.

MTD techniques have been devised as a tactic wherein security of a cloud environ-

ment is enhanced by having a rapidly evolving system with a variable attack surface,

giving defenders an information advantage [102]. An effective countermeasure used

in MTD is network address switching [103], which can be accomplished in SDN with

great ease. Since an MTD application could dynamically and rapidly inject new flow

rules into an environment, it could lead to conflicts between the new and old flow

rules.

In the data center network shown in Figure 3.1, we have Tenant A hosting a web

farm. Being security conscious, only traffic on TCP port 443 is allowed into the IP

36

addresses that belong to the web servers. When an attack directed against host A2

has been detected, the MTD application responds with countermeasures and takes

two actions: a) a new web server (host A3) is spawned to handle the load of host A2;

and b) the IP for host A2 is migrated to the Honeypot network and assigned to host

Z1.

Data Center

Internet

Offload

A2 to A3

Host A1 Host A2

Host A3

Host Z1

Tenant A

HoneyPot

OVS1

OVS2

Quarantine A2's IP

VM VM

VM

VM

Controller

Figure 3.1: Policy Conflicts in SDN-based Cloud Caused by MTD.

To run forensics, isolate and incapacitate the attacker, the Honeypot network

permits all inbound traffic, but restricts egress traffic to other sections of the data

center. These actions result in new flow rules being injected into the flow table that:

a) permits all traffic inbound to the IP that originally belonged to host A2, but now

belongs to host Z1; b) modifies an incoming packet’s destination address from host

A2 to host A3 if the source is considered to be a non-adversarial source; c) stops all

37

outbound traffic from the IP that originally belonged to host A2, but now belongs to

host Z1 to the rest of the data center; and d) permits traffic on port 443 to host A3.

The original policy allowing only port 443 to the IP of host A2, and the new policy

allowing all traffic to the IP address of host Z1 are now in conflict.

B. Case Study 2: VPN Services

Tenant A

VMVMVM VMVMVM VMVMVM

Tenant B

VMVMVM VMVMVM VMVMVM
Controller

Data Center

Internet

OVS1

OVS2

VPN

..........

DPI Module

VPN Module

Figure 3.2: Policy Conflicts Caused by Different Applications in an SDN-based
Cloud.

In a multi-tenant hosted data center, the provider could have layer-3 rules in

place to prevent certain tenants from sending traffic to one another for monetization,

compliance or regulatory reasons or even due to technical reasons. Hosts in two

different tenant environments, Tenant A and Tenant B, can establish a layer-2 tunnel

(either as a host-to-host tunnel or a site-to-site tunnel) between themselves to do single

38

hop communication or to encrypt communication between them as shown in Figure 3.2.

If another application running on the controller inserts policies to implement DPI, all

traffic originating from Tenant A destined to Tenant B will be dropped, since they are

encrypted and fail the DPI standards. Clearly, there is an inherent conflict between

flow rules inserted by different applications running on the SDN controller, leading to

a shoddy user experience.

C. Case Study 3: Load Balancing & IDS

As introduced in Section IV and similar to the scenario in Case Study #2, consider

an SDN-based data center environment where a load balancing application as well as

an IDS application run on the SDN controller. Upon detecting intrusions, the IDS

could implement a countermeasure that offloads traffic from the compromised node.

However, the load balancing application which routes new connections based on their

active load might start redirecting new traffic to the compromised node, since the

system would infer that the compromised node has the least amount of load.

VI. Flow Rule Conflicts

A. Problem Setup

When a packet arrives at an OVS, its match fields are compared to the match

fields of the rules in the flow table. There are multiple ways a rule could be selected,

namely: a) First match, where the first rule that matches the specified fields of the

packet is selected; b) Best match, where the entire firewall rule set is examined to

determine the rule that provides the tightest bounds to the specified fields; c) Deny

take precedence, where any rule with a deny action is automatically preferred over

other actions; and d) Most/Least specific take precedence, where the rule with the

most/least specific match for the match fields [104]. The first match selection is by far

39

the most prevalent way to select a matching flow rule. In this dissertation, we assume

all selections to be based on first match selection, with rules ordered by priority. When

multiple rules with the same priority exist, the newest rule has precedence.

B. Conflict Classes

Consider a flow table F containing rule set {r1, r2, ..., rn}. We can represent a flow

rule ri using the tuple (pi, εi, ζi, ηi, ρi, ai), where a) pi is the priority. b) εi is the frame

space of the rule. c) ζi is the packet space of the rule. d) ηi is the segment space of

the rule. e) ρi is the OSI layer-4 protocol. f) ai is the action set for the rule.

For all devices, including SDN devices or traditional firewalls, we deal with two

main problems:

• Packet Classification Problem: In a firewall with rule set R, for an incoming

packet Πin with address 6-tuple nin and protocol ρin, the packet classification

problem [42], seeks to find out the set Rm ⊆ R where Rm = {ri |(ri ∈ R) ∧ (ni =

nin) ∧ (ρi = ρin)}. The problem can be further extended to determine rule

rx = (px, nx, ρx, ax) ∈ Rm such that px > py ∀ ry ∈ Rm.

• Conflict Detection Problem: The conflict detection problem [42] seeks to find

rules ri, rj such that ri, rj ∈ R and (ni = nj) ∧ (ρi = ρj) ∧ (ai 6= aj ∨ pi 6= pj).

We formally define the set operations on addresses at each OSI layer. Let ξ ∈

{ε, ζ, η} be a 2-tuple (ξs, ξd) denoting an address at OSI layer-2, layer-3 or layer-4,

with subscript s denoting the source address and d denoting the destination address.

Then the following definitions apply.

Definition 3.6. ξi ⊆ ξj if and only if they refer to the same OSI layer, and ξsi ⊆

ξsj ∧ ξdi ⊆ ξdj.

40

Definition 3.7. ξi 6⊆ ξj if and only if they refer to the same OSI layer, and ξsi 6⊆

ξsj ∨ ξdi 6⊆ ξdj.

Definition 3.8. ξi ⊂ ξj if and only if they refer to the same OSI layer, and (ξsi ⊂

ξsj ∧ ξdi ⊆ ξdj) ∨ (ξsi ⊆ ξsj ∧ ξdi ⊂ ξdj).

Definition 3.9. Address Intersection ξi ∩ ξj produces a tuple (ξsi ∩ ξsj, ξdi ∩ ξdj) if

and only if ξi and ξj refer to the same OSI layer.

Definition 3.10. Conflict detection problem [42] seeks to find rules ri, rj such that

ri, rj ∈ R and (ni ∩ nj 6= ∅) ∧ (ρi = ρj) ∧ (ai 6= aj ∨ pi 6= pj).

Definition 3.11. Flow rule address space ni ⊆ nj iff εi ⊆ εj ∧ ζi ⊆ ζj ∧ ηi ⊆ ηj;

Since flow rules in an SDN-based cloud environment are clearly a super-set of rules

in a traditional firewall environment, work on flow rule conflicts are an extension of

the work on firewall rule conflicts. While several works have classified firewall rule

conflicts [40, 44, 42, 46]; the seminal work by Al-Shaer and Hamed [45] is often used

to classify firewall rule conflicts in a single firewall environment. The classifications

used in the work of Al-Shaer and Hamed [45] are extended to formally classify flow

rule conflicts, and further adapted to suit a distributed environment.

Knowing that OpenFlow specifications clarify that if a packet matches two flow

rules, only the flow rule with the highest priority is invoked, the classification of

different conflicts in SDN environments are detailed in the remainder of this Section.

The conflict classification is visually represented in Figure 3.3 and Figure 3.4. Figure 3.3

shows the address space overlap and flow rule conflicts for rules with different priorities,

and Figure 3.4 shows the address space overlap for flow rules with the same priority.

41

i

j

j

i

ji

Redundancy

ShadowingDifferent action

GeneralizationDifferent action

CorrelationDifferent action

Overlap

No conflictAny action

Same action

Same action

Imbrication
Same/Different

action

Address

Space

of Rule i

Address

Space

of Rule j

Key:

i

i

i

j

j

j

Priority of Rule i < Priority of Rule j

ji

Figure 3.3: Address Space Overlap and Flow Rule Conflicts for Rules with Different
Priorities.

42

Address

Space

of Rule i

Address

Space

of Rule j

Key:

i

j

ji

Redundancy

CorrelationDifferent action

No conflictAny action

i j

Same action

Imbrication
Same/Different

action
i

i

i

j

j

j

Priority of Rule i = Priority of Rule j

j

i

i j OverlapSame action

i

j

j

i

Figure 3.4: Address Space Overlap and Flow Rule Conflicts for Rules with Same
Priority. 43

1) Redundancy: A rule ri is redundant to rule rj iff: a) address space ni ⊆ nj;

b) protocol ρi = ρj; and c) action ai = aj. For example, consider rules 1 and 2 from

Table 3.1, shown below for easy reference. Rule 2 has an address space that is a subset

to the address space of rule 1, with matching protocol and actions. Hence, rule 2 is

redundant to rule 1. Redundancy does not pose a serious issue, but instead, is more

of an optimization and efficiency problem.

Listing 3.3: Flow Rules with Redundancy Conflict.

<flow_id=1> priority =51, nw_src =10.5.50.0/24 , nw_dst =10.211.1.63 ,
nw_proto=6, actions=output :3

<flow_id=2> priority =50, nw_src =10.5.50.5 , nw_dst =10.211.1.63 ,
nw_proto=6, tp_dst =80, actions=output :3

2) Shadowing: A rule ri is shadowed by rule rj iff: a) priority pi < pj; b) address

space ni ⊆ nj; c) protocol ρi = ρj; and d) action ai 6= aj. In such a situation, rule

ri is never invoked since incoming packets always get processed using rule rj, given

its higher priority. Shadowing is a serious issue since it shows a conflict in a security

policy implementation [45]. For example, rule 4 has the same address space as rule 1,

with the same protocol, but conflicting actions. But, the priority of rule 4 is higher

than that of rule 1, which results in rule 1 never being invoked. Hence, rule 1 is

shadowed by rule 4.

Listing 3.4: Flow Rules with Shadowing Conflict.

<flow_id=1> priority =51, nw_src =10.5.50.0/24 , nw_dst =10.211.1.63 ,
nw_proto=6, actions=output :3

<flow_id=4> priority =53, nw_src =10.5.50.0/24 , nw_dst =10.211.1.63 ,
nw_proto=6, actions=drop

3) Generalization: A rule ri is a generalization of rule rj iff: a) priority pi < pj;

b) address space ni ⊇ nj; and c) action ai 6= aj. In this case, the entire address space

44

of rule rj is matched by rule ri [45]. As shown below, rule 1 is a generalization of rule

5, since the address space of rule 5 is a subset of the address space of rule 1, with

the same protocols, but different actions. Note that if the priorities of the rules are

swapped, it will result in a shadowing conflict. In traditional firewall management

practices, it was common practice to add such rules for administrators to isolate a

smaller portion of the traffic managed separately from a larger set of traffic.

Listing 3.5: Flow Rules with Generalization Conflict.

<flow_id=1> priority =51, nw_src =10.5.50.0/24 , nw_dst =10.211.1.63 ,
nw_proto=6, actions=output :3

<flow_id=5> priority =54, nw_src =10.5.50.0 , nw_dst =10.211.1.63 ,
nw_proto=6, actions=drop

4) Correlation: Classically, a rule ri is correlated to rule rj iff: a) address space

ni 6⊆ nj ∧ ni 6⊇ nj ∧ ni ∩ nj 6= ∅; b) protocol ρi = ρj; and c) action ai 6= aj [45]. As

shown below, rule 3 is correlated to rule 4.

Listing 3.6: Different Priority Flow Rules with Correlation Conflict.

<flow_id=3> priority =52, nw_src =10.5.50.5 , nw_dst =10.211.1.0/24 ,
nw_proto=6, actions=output :2

<flow_id=4> priority =53, nw_src =10.5.50.0/24 , nw_dst =10.211.1.63 ,
nw_proto=6, actions=drop

Since multiple SDN flow rules can have the same priority, we make the following

addition to the correlation conflict to satisfy requirements in an SDN environment: A

rule ri is correlated to rule rj iff: a) priority pi = pj; b) address space ni ∩ nj 6= ∅;

c) protocol ρi = ρj; and d) action ai 6= aj. Thus, the correlation conflict now

encompasses all policies that have the different actions, overlapping address spaces

and the same priority. Scenarios where address spaces of two flow rules are subsets or

supersets, which would have been categorized as generalization and shadowing in a

45

traditional environment are classified as a correlation if the priorities of the two flows

are the same. For example, in Table 3.1, rule 6 is correlated to rule 1.

Listing 3.7: Same Priority Flow Rules with Correlation Conflict.

<flow_id=1> priority =51, nw_src =10.5.50.0/24 , nw_dst =10.211.1.63 ,
nw_proto=6, actions=output :3

<flow_id=6> priority =51, nw_src =10.5.50.0/16 , nw_dst =10.211.1.63 ,
nw_proto=6, actions=drop

5) Overlap: A rule ri overlaps rule rj iff: a) address space ni 6⊆ nj ∧ ni 6⊇

nj ∧ ni ∩ nj 6= ∅; b) protocol ρi = ρj; and c) action ai = aj. An overlap rule is similar

to a correlation; but with the same action set. Note that the overlap conflict holds

irrespective of the priority of the rules in question. This overlap can be seen between

rule 6 and rule 7 in Table 3.1, shown below.

Listing 3.8: Flow Rules with Overlap Conflict.

<flow_id=6> priority =51, nw_src =10.5.50.0/16 , nw_dst =10.211.1.63 ,
nw_proto=6, actions=drop

<flow_id=7> priority =55, nw_src =10.5.50.5 , nw_dst =10.211.1.0/24 ,
nw_proto=6, tcp_dst =0x03e8 /0xfff8 , actions=drop

6) Imbrication: The criteria discussed above does not cover all potential conflicts

in SDN environments. Consider the case of flow rules where: a) only layer-3 header

fields are used as a condition (rule 1-7 in Table 3.1); b) only layer-2 header fields

are used as a condition for decision (rule 8); and c) only layer-4 header fields are

used as a condition (rule 9). Even though using our definitions there is no overlap

in address space, and hence there should be no conflict, a packet could match more

than one of these rules. We classify such policy conflicts as imbricates, and address

them by introducing the concept of reconciliation (described in Chapter 6) which

maps all headers to the same layer. Currently, all cross-layer conflicts are classified as

imbrication. They are examined in further detail in Section VI.C.

46

C. Cross-layer Policy Conflicts

As opposed to a traditional network, flow rules in SDN, could have matches

on multiple header fields, thereby resulting in indirect dependencies. For example,

consider traffic originating from Host A destined to Host B in Figure 3.5. This flow

would clearly match both the flow rules shown in Listing 3.9. Rule with cookie

value 0x2b0b would match on the layer-2 source, and layer-3 destination address;

while rule with cookie value 0x2b3a would match on the layer-2 source, and layer-2

destination address. Since both the rules have the same priority, the action taken by

the controller would be inconsistent. As mentioned earlier, since there is no direction

in the specification on how to deal with such a scenario, different controllers may deal

with these conflicts in a different manner. A flawed approach to tackle this problem

would be to expand the address space from layer-3 and layer-4 to include layer-2

addresses, and determine rule conflicts as in a traditional environment. However, since

there exists an indirect dependency between the layer-2 and layer-3 addresses, an

apples-to-apples comparison impossible. Moreover, flow rules could exist that do not

specify all the header fields adding another wrinkle.

Further, such conflicts between rules based on addresses over multiple OSI layers

are more complex than the other conflict classifications, since they are transient in

nature. For example, the mapping between a layer-2 MAC address and layer-3 IP

addresses in Figure 3.5 might result in a conflict between two flow rules at time t1 in

the layer-3 address space. But if the IP-MAC address mapping changes, there may not

be an address space overlap between the two rules at time t2. This makes imbrication

conflicts hard to find and even harder to resolve.

47

OVS0

10.211.1.93

11:11:aa:aa:11:11

10.211.1.63

11:11:aa:aa:11:21

OVS1

Controller

A

10.5.50.10

11:21:11:11:11:ab

VMVMVM VMVMVM

B

10.5.50.5

11:11:11:11:11:ab

OVS2

C

VMVMVM VMVMVM

D

Figure 3.5: Cross-layer Flow Rule Conflict in SDN Environments.

Listing 3.9: Flow Rule Conflict Based on Addresses in Different OSI Layers.

cookie =0x2b0b , duration =926.421s, table=0, n_packets =1378, n_bytes
=271308 , idle_age =77, priority =100 dl_type =0x800 dl_src
=11:11:11:11:11: ab nw_dst =10.211.1.63 actions=NORMAL

cookie =0x2b3a , duration =949.733s, table=0, n_packets =622, n_bytes
=957, idle_age =144, priority =100, dl_type =0x800 dl_src
=11:11:11:11:11: ab dl_dst =11:11: aa:aa :11:21 actions=drop

D. Traffic Engineering Flow Rules

Traffic engineering (TE) generally includes analysis of network traffic to enhance

performance at operational and resource levels [105]. In data center and cloud

service provider environments, QoS and resilience schemes are also considered as

major TE functions, especially since several applications not only have bandwidth

requirements, but also require other QoS guarantees [106]. Given the holistic network

view that the SDN controller possesses, TE mechanisms in SDN can be much more

48

efficient and intelligent, when compared to traditional IP-based mechanisms. Research

on SDN based TE has tackled the tradeoffs between latency and load balancing,

focusing on: a) controller load balancing2 [6, 8, 75, 107, 108]; b) switch load balancing

[109, 110, 111, 112, 113]; and c) the use of multiple flow tables. Our focus is determining

how any implementation of TE functions in SDN environments using flow rules might

conflict with security policies. We steer clear of considering controller and switch

load balancing issues dealing with TE, and look at how implementing TE policies

that direct traffic along certain paths, and implementing QoS for certain flows might

interfere with security policy concerning the same flows.

OpenFlow specifications enable packets belonging to certain flows to be directed

to a queue of an egress port. However, using queues to implement QoS requires that

some configuration be done on the switches themselves, in addition to the controller.

The snippet below shows creation of a QoS queue on an OVS that rate limits the

maximum rate of this QoS policy to 1 Mbps, while setting the maximum rate to 5

Mbps.

Listing 3.10: QoS Using Rate Limiting.

$ ovs -vsctl set port eth0 qos=@newqos -- --id=@newqos create qos
type=linux -htb other -config:max -rate =1000000 other -config:max -
rate =5000000

Further QoS related additions in OpenFlow enable the setting of rate limiting

functions. These utilize meter table entries, which define per-flow meters that measure

rate of packets assigned, and enable controlling that rate. Meters are associated

directly with flow entries, as opposed to different queues of egress ports, and contain:

a) an identifier; b) the specified way to process the packet; and c) counters. Use of

the meter table, as shown in Figure 3.6, to establish a game theory based security

2Multiple controller scenarios are discussed in Chapter 4

49

framework was demonstrated by Chowdhary et al. [114], wherein the rate sub-field

of band field in meter table was used to establish rate limiting for non-cooperating

actors. Their work shed light on novel ways to use TE to implement security.

Our approach to tackling conflicts while using either of these two QoS scenarios is

abecedarian, wherein only the forward/deny aspect of the rule is considered in the

detection and resolution of conflicts.

Match

Fields
Priority Counters

Instruction

Set

Meter

Identifier

Meter

Band
Counter

Band

Type
Rate Counter

Type

Specific Info

Timeout Cookie

Figure 3.6: Meter Band in OpenFlow Specification.

50

Chapter 4

DISTRIBUTED SDN CONTROLLER CONSIDERATIONS

SDN was designed with a centralized control plane in mind. This empowers

the controller with a complete network-wide view and allows for the development

of control applications and for easier policy enforcement. Centralizing the control

plane in SDN is fraught with scalability challenges associated with the SDN controller

being a bottleneck [4]. Benchmarking tests on an SDN have shown rapid increase

in the performance of a single controller, from about 30, 000 responses per second

using NOX [115] in 2009 to over 1, 350, 000 responses per second for Beacon [108] in

2013. But with data center architectures dealing with 100 GB network traffic (equal

to about 130 Million Packets Per Second (MPPS) [116]), a single controller would

still not scale well enough to be deployed in a cloud environment [5]. Further, large

production environments still demand performance and availability [77]. Distributing

the controller responsibilities to multiple devices/applications, while maintaining

logical centralization is an obvious solution. Figure 4.1 shows a representation of

major different distributed controller categories; namely clustered and hierarchical.

While the OpenFlow protocol supports multiple controller environments, the

controllers themselves need to be able to: a) allow a switch to establish communication

with them; and b) have mechanisms in place to process handover, fail overs, etc.

OpenFlow shields itself from the complexities of a multiple controller environment,

and just requires the controller to have one of three roles - OFPCR_ROLE_MASTER,

OFPCR_ROLE_EQUAL or OFPCR_ROLE_SLAVE1.

1The Master and Slave roles are self-explanatory. Equal role and Master role are exactly the
same, with the difference that only one controller can be Master at a time, while multiple controllers
can share the Equal role.

51

Clustered Hierarchial

Figure 4.1: Distributed Controller Classes.

Moving to a distributed controller environment essentially splits the roles of the

SDN controller between multiple devices that communicate with the switches, and a

data store that retains complete environment knowledge.

I. Challenges in Multiple-Controller Domain

Several studies have attempted to study distributed SDN controllers (see Chapter 2,

Section IV). However, despite their attempt at distributing the control plane, they

require a consistent network wide view in all the controllers. Maintaining synchroniza-

tion and concurrency in a highly dynamic cloud environment is problematic. Since

the SDN switches look to the controllers for answers while handling unfamiliar flows,

knowing which controller to ask is important. Moreover, the controllers themselves

need to have methodologies to decide who controls which switch, and who reacts to

which events. And most of all, consistency in the security policies present on the con-

troller is paramount - the absence of which might result in attackers using application

hopping across multiple partitions of the SDN environment without permissions.

52

Since one of the primary motivations behind SDN was a centralized control plane

that has complete knowledge of the environment, maintaining a complete picture after

dividing the network into multiple sub-networks requires information aggregation.

This could be challenging, especially when the environments are dynamic.

While designing a distributed controller architecture, the implications of controller

placement needs to be considered carefully. For example, security policies in a mesh

controller architecture would have to ensure minimal address space overlap; while in a

hierarchical architecture, it may be acceptable for the lower level (leaf) controllers

to share address spaces. In environments where latency is a concern, the distance

between controllers and the switches needs to be minimized.

Finally, studies also suggest that distributed control planes are not adaptable to

heterogeneous and constrained network deployments [76]. This removes a certain

amount of desired design flexibility from the SDN setup.

II. Controller Decentralization Model

Choosing a decentralized control architecture is not trivial. There are several

controller placement solutions, and factors such as the number of controllers, their

location, and topology impact network performance [117]. Three major issues need to

be elucidated [118] while determining the decentralization architecture:

• Efficient east and westbound APIs need to be developed for communication

between SDN controllers.

• The latency increase introduced due to network information exchange between

the controllers need to be kept to a minimum.

• The size and operation of the controller back-end database needs to be evaluated.

53

Since the key piece of information required for accurate flow rule conflict detection

(and resolution, as will be described in Chapter 5) is the priority value of the flow rule

p, the key challenge in extending flow rule conflict resolution from a single controller

to a distributed SDN-based cloud environment lies in associating global priority values

to flow rules. Definition 4.1 defines global priority.

Definition 4.1. A global priority p′ of a rule ri is value in the range [1, 65535], as

determined by weighing the priority value p by the rule origination point’s position

in the global distribution scheme. Alternately, p′ could be obtained using a static

mapping scheme from p.

To illustrate Definition 4.1, consider flow rule as shown with a priority value of 51.

If this flow rule originated in a controller or application with a weight of 2, its global

priority would be 102.

Listing 4.1: Global Priority Determination.

priority =51, nw_src =10.5.50.5 , nw_dst =10.211.1.1 , actions=output :3

global_priority =102, priority =51, nw_src =10.5.50.5 , nw_dst
=10.211.1.1 , actions=output :3

The strategies to associate these global priority numbers to flow rules in different

decentralization scenarios differ drastically. We classify five different multiple controller

scenarios, and the global priority assignment logic followed by our framework for each

of them.

A. Clustered Controllers

The clustered SDN controller is the simplest of the multiple controller environments.

It is ideal for smaller networks, where one controller can process all events and run all

applications. Clustering adds a layer of defense against the controller being a single

point of failure by having one or more controllers in an active/standby scenario. Since

54

all the controllers run the same applications and communicate with all the data plane

devices, the global priority assigned to the rules would be equal to the priority of the

rule.

Flow rule conflict classification and resolution in clustered controllers is handled

exactly like in a single controller environment, owing to a lack of partitioning of

data plane devices or applications. Hence, discussion of clustered controllers as a

decentralization strategy is limited in the rest of this dissertation.

B. Host-based Partitioning

Host-based partitioning is most like a traditional layered network architecture,

where an SDN controller handles the functionalities of an access layer switch, combined

with the intelligence of a router and access control server. The SDN-based cloud

environment is separated into domains, where each domain is controlled by a single

controller. As shown in Figure 4.2, the tenant infrastructure in multi-tenant data

center environment could be considered a domain that is handled by one controller.

All the controllers present in the environment would maintain global knowledge of the

environment by communicating with each other using east-west communication APIs.

Running on the assumption that the controller knows best about the main it is

responsible for, flow rules which contain match conditions with addresses local to

the controller are preferred. For example, the rule with cookie value 0xa added onto

Controller 1 permits DNS traffic into host 10.211.1.5, which we assume, is an address

assigned to Tenant A. If the rule with cookie value 0xb is added on Controller 2, the

two conflicting flow rules will be known to all the controllers owing to the controllers

sharing their information.

55

Tenant A

Controller 1

Tenant 2

Controller 2

Tenant n

Controller n

A
p
p

 1

A
p
p

 2

A
p
p

 n

A
p
p

 1

A
p
p

 2

A
p
p

 n

A
p
p

 1

A
p
p

 2

A
p
p

 n

Figure 4.2: Host-based Partitioning.

Listing 4.2: Conflicting Flow Rules in Host-based Partitioning.

cookie =0xa, priority =100, nw_dst =10.211.1.5 , nw_proto =17, udp_dst
=53, actions=output :1

cookie =0xb, priority =100, nw_dst =10.0.0.0/8 , nw_proto =17, udp_dst
=53, actions=drop

To help select the rule most applicable to the tenant, we assign weights to the flow

rules such that the ones originating from the controller assigned to the specific domain

(Controller 1, in our example) is considerably higher. The weight itself is dependent

on the environment, and can be assigned by an administrator. Assuming a weight of

10 for the local controller, we now have global priorities as shown in the modified flow

rules below. The global priority value can then be used for conflict resolution.

Listing 4.3: Assigning Global Priority in Host-based Partitioning.

global_priority =1000 , cookie =0xa, priority =100, nw_dst =10.211.1.5 ,
nw_proto =17, udp_dst =53, actions=output :1

global_priority =100, cookie =0xb, priority =100, nw_dst =10.0.0.0/8 ,
nw_proto =17, udp_dst =53, actions=drop

56

Host-based partitioning is popular in several cloud deployments, owing to its

simplicity. In DragonFlow [119], for example, an instance of the controller runs on

every compute node in the OpenStack [38] cloud. Partitioning in DragonFlow is based

on the node it runs on, and not purely tenant-based. Thus, an instance of DragonFlow

would manage the OVS and flow rules that are associated with hosts running on

the same compute node. The different DragonFlow instances in the cloud share

information by communicating with a shared back-end database. Partitioning schemes

such as those employed by DragonFlow are intuitive and most like decentralization

strategies used in traditional environments.

C. Hierarchical Controllers

Hierarchical controller distribution is a variant of host-based partitioning, where

some controllers handle a subset of data plane devices, while others only communicate

with control plane devices. The controllers that communicate with the data plane

devices can be thought of as leaf-level controllers, while higher-level controllers com-

municate solely with other controllers. Figure 4.3 shows a hierarchical distribution of

controllers. Further, the partitioning may not be strictly host-based, as administrators

could decide to run certain applications on leaf-level controllers, and other applications

on higher-level controllers. For example, a DHCP application could reside on the leaf

controller while a NAT application could reside on the root controller.

Since higher-level controllers do not communicate with data plane devices, except

in cases when leaf-level controllers fail, control channel communication is streamlined.

Leaf-level nodes can obtain global information by communicating with the higher-level

controller, eliminating the need to talk with every other leaf controller. Since the root

controller would have holistic knowledge of the environment, in case of conflicts flow

rules originating from the root controller are preferred.

57

Tenant 1

Controller 1

Controller 0

Tenant n

Controller n
A

p
p

 1

A
p
p

 n

App 0

A
p
p

 1

A
p
p

 n

Figure 4.3: Hierarchical Controller Distribution.

Revisiting the example from host-based partitioning scheme, consider that the rule

with cookie value 0xa added onto Controller 1, while the rule with cookie value 0xb is

added on Controller 0. While Controller 1 might still permit DNS traffic into the host

at IP 10.211.1.5, the root level controller might have an IDS application running on it

that detected a DDoS attack, and dropped all DNS traffic to the devices on 10.0.0.0/8

subnet. Once again, we use a weight of 10, but this time for the rule on Controller 0,

thereby ensuring the conflict resolution algorithm drops the attack traffic.

Listing 4.4: Assigning Global Priority in Hierarchical Partitioning.

global_priority =100, cookie =0xa, priority =100, nw_dst =10.211.1.5 ,
nw_proto =17, udp_dst =53, actions=output :1

global_priority =1000 , cookie =0xb, priority =100, nw_dst =10.0.0.0/8 ,
nw_proto =17, udp_dst =53, actions=drop

Hierarchical controllers may also be used if there is a specific structure to the

network, such as a two-tier structure. In such situations, hierarchy at the controller

level can help to manage flows for different tiers in the network. However, coordination

needs to be addressed to ensure efficiency in flow management.

58

D. Application-based Partitioning

Application-based partitioning, as shown in Figure 4.4 implements decentralization

by having different applications run on different instances of the controller. As with

host-based partitioning, the flow rules generated by the different applications would

be known to the other controllers using the east-west communication APIs. Each

data plane device in this scenario would communicate with every controller in the

environment.

Data Plane

Controller 1

Controller 2

Controller n

App 1

App 2

App n

Figure 4.4: Application-based Controller Decentralization.

Associating global priority values in application-based decentralization is straight-

forward. It could be done by assigning a weight to each application [11] using which

the global priorities of flow rules generated by all applications can be determined. For

example, consider Controller 1 with security applications running on it, and Controller

2 with QoS and traffic shaping applications running on it. If security applications are

prioritized with a higher weight than traffic shaping applications, flow rules with the

59

same priority generated by applications on Controller 1 and Controller 2 will end up

with the rule generated by Controller 1 having a higher global priority.

An alternate strategy to assign global priority values would be to allocate ranges

for flow rules created by applications. For example, it could be decided that any NAT

rule generated by the NAT application on the controller must be within a priority

of 40, 000 and 42, 000. Thus a global priority for a NAT rule would be generated by

mapping the priority originally in the range [1, 65535] to a global priority in the range

[40000, 42000].

E. Heterogeneous Partitioning

In a heterogeneous decentralized environment, appealing aspects of each of the

above decentralization scenarios are combined to obtain the optimal situation for

meeting the requirements. Careful consideration needs to be taken to identify the

priorities of applications and controllers before deployment, to have a conflict resolution

strategy.

60

Chapter 5

FLOW RULE CONFLICT RESOLUTION

In this Chapter, the considerations for flow rule conflict resolution are discussed.

First, the flow rule conflict types discussed in Chapter 3 are categorized based on

their difficulty of resolution. A conflict resolution model that addresses automatic

resolution of the flow rule conflicts are presented next.

I. Conflict Severity Classification

Based on their potential for causing damage, as well as their difficulty to resolve,

the flow rule conflicts formalized above can be classified into the following tiers:

A. Tier-1 Conflicts

Imbrication conflicts stem from flow rules using addresses in multiple layers. Since

mapping between different layers is of transient nature in dynamic SDN environments,

these conflicts are transient as well. Any resolution technique used to resolve these

conflicts is, at best, made taking the current system state into account. Such a

resolution might induce the system to be in a highly compromisable state at a future

time, which could be exploited by attackers. To illustrate, consider once again, the

topology in Figure 3.5. If a layer-2 policy and a layer-3 policy that constrains traffic

between hosts A and D are present, one of the conflict resolution strategies might

select the layer-2 flow rule. However, if the mapping between the layer-2 and layer-3

addresses change, the conflict resolution decision might be rendered invalid.

61

B. Tier-2 Conflicts

Conflicts classified as generalization and correlation stem from overlapping address

spaces and incompatible actions. These conflicts stem from attempts at combining

and oversimplifying flow rules. By making the address spaces used in the flow rules as

fine-grained as possible, tier-2 conflicts can be eliminated.

C. Tier-3 Conflicts

Conflicts categorized as redundancy and overlap result from rules with overlapping

address spaces but the same resulting action. The shadowing conflict stems from rules

which are never invoked. In case of redundancy and overlap, the action remains the

same, so choosing any either flow rule would result in the same action on the packet.

Shadowed rules are never invoked owing to their lower priority. Thus, we content

that while it is not ideal that these conflicts exist in the system, their presence in the

system is not a security threat but an optimization issue.

II. Conflict Resolution Model

The different flow rule conflicts can be broadly categorized into Intelligible and

Interpretative conflicts. The resolution strategies for each of these two categories

are markedly different, and are detailed in the remainder of this Section. Tier-1 and

Tier-2 conflicts are interpretative in nature, while Tier-3 conflicts are intelligible in

nature.

A. Intelligible Conflicts

Flow rules that conflict with each other in the Redundancy and Overlap classifica-

tions all have the same action they can be resolved without the loss of any information.

Rules that have shadowing conflicts can simply be removed, without affecting any

62

packet. In other words, the resolution algorithm can guarantee that any packet that is

permitted by the controller prior to resolving the conflict will continue to be permitted

after conflict resolution. And similarly, any packet that is being blocked prior to

conflict resolution will continue to be blocked after the conflict resolution is put in

place. Intelligible conflicts are resolved easily by eliminating the rules that are not

applied, or by combining and optimizing the address spaces in the rules to avoid the

conflict [120].

It could be argued that creative design of rules by administrators result in flow

rules that deliberately conflict to optimize the number of rules in the flow table,

especially when it comes to traffic shaping policies. However, such optimization

strategies stem out of legacy network management techniques, and do not hold true

in dynamic, large-scale cloud environments where the flow table enforcing the policies

in the environment could have millions of rules.

B. Interpretative Conflicts

Conflicts that fall into Generalization, Correlation and Imbrication classification

cannot be intuitively resolved without any loss of information, and are interpretative

in nature. As opposed to intelligible conflicts, it is not guaranteed that any packet

permitted by the controller prior to resolving the conflict will be permitted after

conflict resolution. Since interpretative conflict resolution is lossy in nature, the

resolution strategies are not a one size fits all and need to be adapted per the cloud

environment in question. Removing these conflicts is a complex problem [121].

A few different resolution strategies that could be applied to resolving these conflicts

are discussed below. The global priority of the rule is assigned depending on the

controller decentralization strategy discussed in Chapter 4. Resolution strategies for

Tier-1 conflicts are shaky at best. Since these conflicts are transient in nature, an

63

additional decision needs to be made as to the time duration for which the conflict

resolution strategy is valid. We look at four different strategies.

1) Least Privilege: In case of any conflict, flow rules that have a deny action are

prioritized over a QoS or a forward action. If conflicts exist between a higher and

lower bandwidth QoS policy, the lower QoS policy is enforced. The least privilege

strategy is traditionally the most popular strategy in conflict resolution [122].

2) Module Security Precedence: Since flow rules in an SDN-based cloud environment

can be generated by any number of modules that run on the controller, an effective

strategy that can be put in place is to have a security precedence for the origin of the

flow rule [11]. Thus, a flow rule originating from a security module is prioritized over

flow rule from an application or optimization module. The weighted global priorities

are calculated as discussed in the application-based partitioning scheme discussed

in Chapter 4, Section II. Table 5.1 shows sample precedence and associated global

priority weight values for a few generic applications that might run in an SDN-based

cloud.

Application Precedence Global Priority Weight

Virtual Private Network 1 3

Deep Packet Inspection 2 2.5

Network Address Translation 3 2

Quality of Service 4 1.5

Domain Name Service 5 1

Table 5.1: Security Precedence Priority Multiplier Example.

3) Environment Calibrated: This strategy incorporates learning strategies in the

environment to make an educated decision on which conflicting flow rule really needs

64

to be prioritized. Over time, if a picture can be formed about the type of data

that a certain tenant in a multi-tenant data center usually creates/retrieves, or of

the applications and vulnerabilities that exist in the tenant environment, or of the

reliability of the software modules inserting the flow rule; the conflict resolution module

may be able to prioritize certain flow rules over others. However, these techniques

falter while dealing with a dynamic cloud.

A more deliberate approach might involve quantitative security analysis of the

environment with each of the conflicting rules, and picking the safest option. Metrics

originally proposed by Joh and Malaiya [123] and validated by Lippmann et al.

[124] provide a quantitative measurement of the probability of the Cyber Key Terrain

(CKT) [125] being compromised. Interpretative conflict resolution could be as simple as

determining which of the conflicting policies would reduce the compromise probability.

4) Administrator Assistance: Administrators that are willing to give up automatic

conflict resolution have the option to resolve conflicts manually, so they can judge

each conflict independently. Visual assistance tools incorporated as part of the Brew

framework assist the administrator make a decision, and are detailed in [126].

65

Chapter 6

BREW: A SECURITY POLICY MANAGEMENT FRAMEWORK IN

DISTRIBUTED SDN ENVIRONMENTS

In this chapter, a system overview, architecture detail for the Brew security policy

management framework is provided. In addition, implementation details for the

framework on an OpenDaylight (ODL) SDN controller is furnished.

I. System Overview & Models

This section describes the design requirements, assumptions, operating environment

as well the security model for Brew.

A. Design Requirements & Assumptions

Brew satisfies the following design requirements:

• The flow rule set that is generated as output should be without any conflicts.

This includes the need to detect conflicts in a security implementation, both

intra-flow table and inter-flow table, and resolve conflicts that might result due

to changing security requirements.

• Cross-path policy discrepancy must be addressed: Policy consistency across all

possible paths between the source (external or internal) and the destination is

required, thereby ensuring that no matter what route is taken by a packet, the

same security rules apply.

• A highly desirable feature is automation, since the human element is more likely

to introduce error. Ideally, human intervention should be required only in case

of zero-day type situations where an intelligent decision needs to be made.

66

• Implementation should include a mechanism to safely distribute the security

policies to all implementation points.

• The implementation should be able to adapt to a dynamic network topology

and real-time updates, without compromising the overall security policy of the

enterprise or operation. This requirement is especially important as one of the

motivating goals behind SDN was being able to modify a network topology as

demanded by the conditions.

Two major assumptions are made during implementation and testing of the

framework, both pertaining to administrator trust:

• The administrator workstation is secure and uncompromised. No rogue agent is

present on the workstation that can poison the flow tables. This implicit trust

placed on the administrator masks potential issues that might arise in when the

conflict resolution strategy looks to the administrator for resolution.

• The administrator has a global view of the environment and acts in good faith

to resolve conflicts between conflicting tenants.

B. Operating Environment

The environment is any data network installation based on SDN principles, such

as an IaaS cloud. In an IaaS cloud, VMs are managed by tenants. Changing business

needs, changing security concerns or simply implementing new applications may result

in new policies that must be implemented on packets traversing the network. When

new policies are applied, it is necessary to check and resolve conflicts with existing

rules as well as enterprise security policies and business SLAs.

67

C. Security Model

Brew seeks to alleviate concerns regarding security policy conflicts in SDN envi-

ronments. However, security challenges that are not addressed in Brew include:

• The southbound interface between the controller and switches are vulnerable

to threats that could degrade the availability, performance and integrity of the

network.

• Attacks that consume controller resources would impact the conflict detection

and resolution algorithms, which run on the controller.

• Verification of flow rule generating applications is not done. It is assumed that

verified applications are generating candidate flow rules.

II. System Architecture

A. System Modules

The Brew framework uses an intuitive model to help resolve conflicts in flow rules

in a distributed SDN-based cloud environment. Brew runs as an application on the

controller, consisting of two inter-related modules, the OFAnalyzer and OFProcessor,

that together achieve conflict free flow tables. Both modules operate at the control

plane level, i.e., their operations are uninhibited by either the physical topology

or the logical topology as seen by the different tenants. The OFAnalyzer font-end

has two sub-processes - Flow extraction engine, and a visualization engine. The

OFProcessor back-end has three sub-processes - flow prepping, conflict detection

and conflict resolution. Figure 6.1 shows the flow of control and logic between these

sub-processes.

68

OFProcessor
(Back End)

OFAnalyzer
(Front End)

updates

Candidate flow rule

Flow TableFlow TableFlow Table

Flow

Extraction

Flow

Prepping

Conflict

Detection

Conflict

Resolution
Visualization

Figure 6.1: Flow of Control and Logic Between Brew Sub-Processes.

The OFAnalyzer module serves as the font-end of Brew, with a listening engine for

new/modified flow rules being introduced into the system as well as flow rules that

are being removed. A visualization engine serves the processed conflict data back to

the administrator. In the automatic resolution mode, the visualization engine serves

the conflict resolution details to the administrator.

The OFProcessor is responsible for the back-end processing in Brew. The processing

is broadly compartmentalized into prepping, conflict detection and conflict resolution.

The modules that accomplish these tasks are detailed in the remainder of this section.

69

B. OFAnalyzer Module

The OFAnalyzer module acts as the interface between the SDN controller and the

OFProcessor back-end. It performs two important tasks: a) flow extraction; and

b) visualization.

1) Flow Extraction Engine: The flow extraction engine intercepts any new or

updated flow rule that is being injected into the controller from different modules.

These rules, called candidate flow rules, are defined in Definition 6.1. In a distributed

controller scenario, candidate flow rules into every controller are obtained to have

complete knowledge of all possible flow rules that are present in the environment.

These rules are then aggregated for purposes of processing. In addition, the flow

extraction engine does a periodic pull of all the flow rules present on the data switches

to ensure it has complete knowledge of all the flow rules present in the environment.

Definition 6.1. A candidate flow rule is a flow rule that an application or an

administrator wants to insert into the flow table. It has not been completely processed

and vetted, and hence is not eligible to be sent to any of the switches. A flow removal

attempt would also be considered as a candidate flow rule before it has been processed.

Next, the global priority of candidate flow rules are computed by weighing the

priority of the rule based on the decentralization strategy that has been employed as

discussed in Chapter 4. Thus, the priority assigned by the flow extraction engine may

differ from the priority of the flow rule present in the flow table.

The default OpenFlow rule specifications do not provide us all the information

needed to detect and resolve flow rule conflicts. Thus, a data structure with four

additional fields is added to each flow rule. These 24 bits of information shown in

Figure 6.2, are: a) One bit identifying if the rule in question has been tagged as a

70

reconciled rule (required for imbrication detection); b) seven bits identifying the SDN

controller to which the rule is going to be inserted; and c) sixteen bits for a global

priority of the flow rule (to be used for flow rule conflict resolution).

Armed with these additional bits of information, detection and resolution of

conflicts between the candidate flow rule and flow rules currently present in the flow

table is now possible. Control is handed off to the flow prepping engine.

Reconciled?
Origin

Controller

Global

Priority
OpenFlow Match Fields + Actions

1 bit

7 bits

16 bits

Figure 6.2: Data Structure Format.

2) Visualization Engine: The visualization engine in Brew is a module under the

DLUX UI [127] that performs a REST Request to obtain the flow rules present in

the environment, along with the conflict information from the OFProcessor in JSON

format. JavaScript conversion routines aggregate and transform this information using

various visualization techniques.

In an automatic conflict resolution mode, no conflicts would be available to be

presented in the GUI. In such scenarios, the Visualization engine could be repurposed

to store and present resolved conflicts in a time bounded manner.

C. OFProcessor Module

The OFProcessor module handles the back-end logic of Brew. Its functionalities

are compartmentalized as flow rule prepping, conflict detection and conflict resolution.

71

The candidate flow rules are atomized and the reconciled bit in the data structure

shown in Figure 6.2 is determined. Conflict detection and conflict resolution strategies

follow the discussion in Chapter 3 and Chapter 5.

1) Flow Prepping Engine: Since OpenFlow permits chained flow rules by having

an action for a match redirect to a different flow table, to correctly identify conflicts

between flow rules, flow rules are atomized by processing the chains and ensuring that

only the atomic actions of forward and drop remain. The atomization process itself

follows along the lines of ipchain processing in Unix with modifications based on the

formal model described in Chapter 3. Since QoS and packet counters can be processed

along with the forward and drop actions, flow rules with QoS and traffic engineering

actions are mapped to the forward action. There are two important considerations

made here:

• While the actions for a flow rule can include any drop, forward, flood, set QoS

parameters, change several header fields, or redirect to a different flow table, we

process the actions and generically classify them into two categories; forward

and drop. For example, implementing an IP mapping rule in OpenFlow would

change the IP address headers and forward onto a different flow table that

forwards the traffic. Such a chain is processed to include the address translation

information and the final atomic action of the flow rule is set to forward.

• For rules which have multiple actions, the rules are duplicated to generate rules

with identical priority and match conditions with a single action.

Flow rules which have only layer-2 addresses as its match conditions are next

mapped to their layer-3 addresses using a process called reconciliation. A transient

1-to-1 mapping between the layer-2 and layer-3 addresses is obtained by doing an

72

ARP table lookup. The layer-3 addresses are then populated in the corresponding

address fields in the flow rule. In cases where a mapping is not found, the layer-3

address fields is left unpopulated. Rules that have only layer-4 match conditions are

also processed in a similar manner.

2) Conflict Detection Engine: As the name suggests, this process is responsible for

detecting any conflicts that might exist between the prepped candidate flow rule set,

and the rules that currently populate the flow rule table. In addition to identifying

the conflict, it also classifies conflicts based on the categories described in Chapter 3.

Determining the existence of address space overlap between flow rules is the first

step in deciding if a conflict exists between two flow rules. The address space overlap

is detected using a Patricia trie lookup [128] based algorithm. The Patricia trie itself

has been employed for routing table lookups within the BSD kernel since the 4.3 Reno

release, and has been used previously with great success [71, 129] owing to it being

an efficient search structure for finding IP string matches [130] with a good balance

between running time (lookup and update) and memory space requirement. An octet

wise Patricia trie lookup is conducted to look for IP address range overlap between

the new rules being inserted and existing rules in the flow table in a fast and efficient

manner. Once an address space overlap is determined, evaluating if a conflict exists

between the flow rules can be accomplished in constant time using simple comparison

operations.

3) Conflict Resolution Engine: Once the flow rule conflicts have been detected, the

conflict resolution module is invoked. Intelligible conflicts are resolved automatically.

In case of interpretative conflicts which cannot be resolved without loss of information,

the administrators can decide the resolution strategy (discussed in Chapter 5), which

then employs the global priority value to resolve conflicts.

73

III. Implementation

Brew was implemented on an OpenDaylight (ODL) [131] SDN controller. Sec-

tion III.A describes the ODL controller with information pertinent to Brew. By

modularizing the functionality of Brew into the front-end OFAnalyzer interface (cus-

tomized to ODL), and a back-end OFProcessor, as shown in Figure 6.3, flexibility

to have the same OFProcessor back-end work with different SDN controller specific

OFAnalyzer interfaces in the future is maintained.

OFProcessor

ODL Controller

OVS 1

Flow Table ...

OVS n

Flow Table

...

OFAnalyzer

Java DTO

OpenFlow

Brew

Conflict

Detection

Conflict

Resolution
Flow Prepping

Flow

Extraction

Patricia
Trie

Visualization
HashMap

JSON

Figure 6.3: System Overview Representing Different Brew Modules.

74

Prior to examining the implementation of each sub-process in detail, it is important

to have a basic understanding of the ODL controller, and associated tools.

A. OpenDaylight (ODL)

ODL is an open-source project under the Linux Foundation [132]. Applications

running on the ODL controller use a Service Abstraction Layer (SAL) to communicate

with different types of devices using a variety of communication protocols, and provide

RESTful APIs for use by external applications. ODL was chosen as the controller

in this implementation because of its large open-source development community, as

well as indications during decision making that ODL would be adopted as an industry

standard. This work extends the stable Lithium version of the controller. Figure 6.4

shows the ODL architecture including the different modules.

DLUX

AAA-AuthN Filter

OpenDaylight APIs (REST)

Service Abstract Layer (SAL)

(Plugin Manager, Capability Abstraction, Flow Programming, Inventory, etc.)

OpenFlow OVSDB

...

NETCONF...

Orchestration

Layer

Orchestration

Layer

ControllerController

ControllerController

Data plane

Elements

Data plane

Elements

Basic network functions + Loadable modules

Figure 6.4: ODL Architecture.

The ODL project repository, available at [133] follows a microservices architecture

to control applications, protocols, plugins and interfaces between providers and cus-

tomers. It uses YANG data structures along with shared data stores and messaging

75

infrastructure to implement a Model Driven SAL (MD-SAL) approach to solving more

complex problems. This model helps keep the controller as lightweight as possible,

providing users with the ability to install protocols and services as needed. As of

this dissertation, the ODL ecosystem has implementations for Switching, Routing,

Authentication, Authorization and Accounting (AAA), a DLUX based Graphical User

Interface (GUI) and support for protocols such as OpenFlow, NETCONF, BGP/P-

CEP, SNMP, CAPWAP. Additionally, it interfaces with OpenStack [38] and OVS

through the OVSDB Integration Project [134]. This modularization and separation of

functionality has been implemented per the Open Services Gateway Initiative (OSGi)

specification, and as such provides for service object initiation, dynamic module

handling and graceful exit.

MD-SAL

Application

YANG model

Application

Model data

Controller

Model
REST API

OpenFlow

A
p
p

lic
a

tio
n
s

Figure 6.5: MD-SAL Application Development.

ODL uses Apache Karaf [135] as its OSGi container. Applications1 in Karaf are

independent of each other, and can be started, stopped or restarted without affect-

1Interchangeably called bundles or features. Karaf command line uses the keyword feature

76

ing other applications. Brew uses the l2switch, openflowplugin, openflowjava,

yangtools, netconf and dlux features. RESTCONF [136] provides a RESTful API

to perform Create, Retrieve, Update and Delete (CRUD) operations using NETCONF,

which itself is a means to configure network elements in a vendor agnostic manner

using the YANG modeling language. Figure 6.5 shows the relationship between the

different protocols and modeling languages in a MD-SAL development paradigm [126].

A new application development requires defining the application’s model using YANG.

ODL maintains two different data stores, as shown in Figure 6.6. Classified

broadly on the type of data maintained in them, they are: a) configuration data

store; and b) operational data store. Since the data is stored in a tree format, the

configuration and operational data stores are interchangeably called the configuration

and operational trees.

vSwitch n

Flow Table 1

ODL Controller

Configuration

Tree

Operational

Tree

......

Flow Table 2

...

Flow Table n

......

R
u
le

 1

R
u
le

 2

R
u
le

 n ...

vSwitch 1

......

Figure 6.6: ODL Data Stores.

The configuration data store on each ODL controller contains data that describes

the changes to be made to the flow rules on the switches. It represents the intended

state of the system, and is populated by administrators, or applications on the

controller. The configuration data store contains information about every device

77

present in the environment, flow tables associated with the devices, and the flow

rules in every flow table. To give administrators and other applications the ability to

populate this data store, it has read/write permission. The operational data store

matches the configuration data store in structure, but contains information that the

controller discovers about the network through periodic queries. It represents the

state of the system as understood by the data plane components in the environment.

As opposed to the configuration data store, the operational data store has read-only

permissions. The use of dual data stores is primarily to maintain global knowledge

of the environment while supporting a multiple controller scenario. For example, if

Controller 1 has a new flow rule that is used by an OVS to direct traffic, Controller

2 would learn of this flow rule when it populates its operational data store with all

the flow rules present in the environment. This would happen irrespective of the

communication between the two controllers.

B. Flow Extraction Engine

ODL provides RESTful APIs to add to, remove from, and update flows in the

configuration data store, and to view the operational data store. These APIs can be

accessed by the administrator through a Web UI, CLI, or other RESTful clients like

POSTMAN [137], and by other applications running on the controller through the

same APIs. The flow rules are then sent to the switches using the OpenFlow protocol.

Brew modifies the native behavior of ODL. It listens for potential changes being

piped into the system using the RESTful APIs, and processes them. Natively, appli-

cations running on the controller attempt to add flows using the RESTful APIs for

the controller. When the flow is successfully added to the configuration data store on

the controller, a dataChanged notification is issued to the Flow Programmer service.

78

The flow extraction engine in Brew defines an object pointing to the Flow.class

under opendaylight-flow-types.yang model in ODL. This object is used to register

as a listener in the DataBrokerService Document Object Model (DOM) tree, which

enables the object to learn about changes to the configuration data store when the

onDataChanged function from the Flow Programmer Service returns true. The required

data is received using a Java Data Transfer Object (DTO). The flows extracted are

structured as shown in Listing 6.1 using Algorithm 1, and stored in a local HashMap.

Listing 6.1: Extracted Flow Rule Structure.

grouping flow {
container match {

uses match:match;
}
container instructions {

uses instruction -list;
}
<snip >
}

}

grouping match {
<snip >
container "ethernet -match" {

uses "ethernet -match -fields ";
}
container "ip-match" {

uses "ip -match -fields ";
}
choice layer -3-match {

case "ipv4 -match" {
uses "ipv4 -match -fields ";

}
case "ipv4 -match -arbitrary -bit -mask"{

uses "mask:ipv4 -match -arbitrary -bitmask -fields ";
}
case "arp -match" {

uses "arp -match -fields ";
}
case "tunnel -ipv4 -match" {

uses "tunnel -ipv4 -match -fields ";
}

}
<snip >

}

79

The flow extraction engine extracts flow rules from both the configuration and

operational data stores maintained by ODL. As discussed in Section III.A, since

flow rules sent by all applications reside in configuration data store before they are

sent to the devices, and the flow rules existing in the environment are present in

the operational data store, listening to flow rules from both data stores helps the

OFAnalyzer maintain a complete view of the flow rules present in the environment,

especially in a distributed controller scenario. The source controller of the rules is

noted so as to eliminate duplication. In addition, the flow extraction engine also

listens for candidate flow rules from different applications running on the controllers,

and stores them in the HashMap.

Once the flows have been extracted, each flow is given a unique identifier, making

it easier to track the flow when analyzing conflicts, and for visualization purposes.

The HashMap is then passed to the OFProcessor. This process is repeated for every

controller present in the system.

In Algorithm 1, if the DTO contains elements of a candidate flow, its header fields

are extracted. In addition, new fields of the data structure shown in Figure 6.2 is

added to the flow rule fields. If the flow rule is configured using only layer-2 headers

or layer-4 headers, then it is marked as being reconciled. This tag is then used in the

conflict detection engine for determining the imbrication conflict.

C. Flow Prepping Engine

When the instruction set of a flow entry does not contain a redirection to another

flow table, OpenFlow pipeline processing stops and the actions in the action set

are executed. The actions are applied in the pre-determined order, per OpenFlow

specifications [86] as follows: a) copy TTL inwards; b) pop all tags on the packet;

c) push-MPLS tag onto the packet; d) push-PBB tag onto the packet; e) push-VLAN

80

Algorithm 1: Flow Extraction Engine

Input :Rule c, Controller C, Strategy s

Output : procRule r

Procedure FlowExtract()

1 r ← c

2 if c.l3match == ∅ then

3 if !c.l2match == ∅ then

4 r.reconciled← TRUE

5 r.origController ← C

6 r.globalPriority ← getGlobalPriority(r.priority, C, s)

7 return r

tag onto the packet; f) copy TTL outwards; g) decrement TTL; h) apply all set-field

actions to the packet; i) apply QoS actions; j) apply group actions; and k) forward

the packet on the specified port. Trivially, anytime the final action is a deny, the

remainder of the tags do not matter. However, an action set can only contains a

maximum of one action of each type, unless defined as an Apply-Actions instruction.

Unlike the action set, the actions of an Apply-Actions list are executed in the order

specified by the list, and are applied immediately to the packet.

The flow prepping engine is primarily responsible for converting the candidate

flow rule hashmap into a format that the flow rule conflict detection module expects.

Knowing the processing preference of an OpenFLow action set, in the ODL based

implementation the flow prepping engine atomizes the flow rule action sets, and stores

the flow rule match address into a Patricia trie data structure.

Flow rule atomization involves the following steps:

• If a flow rule has an Apply-Actions list, then traverse the entire flow table

pipeline and append to the actions set. If the flow rule uses a simple action set,

then the complete chain of actions is compiled by processing the entire pipeline.

81

• Once the complete set of actions for a flow rule is determined, a duplicate flow

rule with identical priority is created for each action, such that all rules have

only one action.

• The flow rule actions, are next converted to one of two terminal actions - deny

and forward. All actions aside from an explicit deny are considered to be a

forward action, albeit with potentially modified header values.

Next, the address used in layer-3 match for each of the flow rules are stored in a

Patricia trie data structure. Each edge in the Patricia trie is labeled with a bit, with

each leaf node corresponding to the stored string. This string would be a concatenation

of bits on a path from the root to this node. The trie provides storage and processing

efficiency in due to its ability to collapse chains of nodes that have only one child

simply by indicating how many bits should be skipped (i.e., what the length of the

collapsed chain is). Each source and destination layer-3 address is stored into an octet

wise Patricia trie. Thus each flow rule will have eight different tries associated with it2.

To preserve semantic information, the leaf nodes in the Patricia trie store the unique

identifier for every flow rule that has a match for that specific octet. Figure 6.7 shows

the data structure being used to store the data set {1, 61, 63, 128, 223, 241, 248}.

D. Conflict Detection Engine

The Patricia trie data structure is used as shown in Algorithm 2 to determine

and classify conflicts. Since we know that the layer-3 addresses are fixed length, we

can follow along a path from the root to a matching node to obtain flow entries

that match the layer-3 address space (packet space) of the flow being processed. In

cases of wildcard matches, all child nodes of the matching node will represent flow

2Assuming an IPv4 based environment. An IPv6 environment would be modeled with one Patricia
trie per hextet/quartet in each address

82

00

0000011111

11 01

1

00000001

01111111

1000 0001 1

6163

128

223

241248

Figure 6.7: Use of Patricia Trie Data Structure for Octet-wise Representation of
Layer-3 Address.

entries conflicting with the input flow. All detected conflicts are classified as shown in

Figure 3.3 and Figure 3.4. Since we formally describe any overlaps involving reconciled

rules as imbrication conflicts, we classify them as such and process them separately

from non-reconciled rules.

Consider a single candidate flow rule r that is being processed by the conflict

detection engine. First and foremost, the engine checks if the reconciled flag of r

is unset. A Patricia trie search is done to determine if there is any flow rule in the

existing table that has overlapping addresses. This search itself is the intersection of

the results of eight different Patricia trie searches.

After the search space has been winnowed, a pairwise comparison is done between

the flow rule r and γ, from the winnowed flow table set. If r and γ have differing

layer-4 protocols, then no conflict exists between those rules, and the loop continues

to the next rule in the winnowed flow table. If it has been determined that r and γ

have the same protocol, the overlap in their address spaces is determined.

83

Algorithm 2: Conflict Detection Engine

Input :Rule r, FlowTable f

Output : Conflict-free FlowTable f ′

Procedure ConDet()

1 if !r.reconciled then

2 F ← SearchPatricia(r.l3addr)

3 while Rule γ ∈ F do

4 if r.protocol ! = γ.protocol then

5 return AddFlow (f, r)

6 else if r.addr ⊆ γ.addr then

7 if r.action == γ.action then

8 return ConRes (r, γ, f, Redundancy)

9 else if r.priority == γ.priority then

10 return ConRes (r, γ, f, Correlation)

11 else if r.priority < γ.priority then

12 return ConRes (r, γ, f, Shadowing)

13 else if γ.addr ⊆ r.addr then

14 if r.action == γ.action then

15 return ConRes (r, γ, f, Redundancy)

16 else if r.priority == γ.priority then

17 return ConRes (r, γ, f, Correlation)

18 else if r.priority > γ.priority then

19 return ConRes (r, γ, f,Generalization)

20 else if r.addr ∩ γ.addr ! = ∅ then

21 if r.action == γ.action then

22 return ConRes (r, γ, f, Overlap)

23 else

24 return ConRes (r, γ, f, Correlation)

25 else

26 while Rule γ ∈ f do

27 if r.protocol == γ.protocol then

28 if r.addr ∩ γ.addr ! = ∅ then

29 return ConRes (r, γ, f, Imbrication)

30 return AddFlow (f, r)

84

Classification of the conflicts looks at the following conditions:

• If r has an address space that is a subset of γ and their actions are the same, a

redundancy conflict has been detected.

• If r has an address space that is a subset of γ and their actions are different

then their relative global priorities determine the conflict. If priority of r is lower

than γ the conflict is classified as shadowing, but if they have the same priority

then the conflict is classified as a correlation.

• If γ has an address space that is a subset of r and their actions are the same, a

redundancy conflict has been detected.

• If γ has an address space that is a subset of r and their actions are different

then their relative global priorities determine the conflict. If priority of γ is

lower than r the conflict is classified as generalization, but if they have the same

priority then the conflict is classified as a correlation.

• If r and γ have overlapping address spaces but neither is a subset of the other,

then similar action between the two flow rules will be classified as an overlap

and different actions are classified as correlation.

Once the conflicts have been identified, the conflict detection engine encodes this

information using CSV, with each comma separated value showing the unique identifier

of the rule that has a conflict, and the type of conflict. The snippet in Listing 6.2

shows the results from using rule #1 and rule #2 from Table 3.1 as a candidate flow

rule to the flow table consisting of rules #3 through rule #9.

Listing 6.2: Detected Conflicts Encoded as a CSV

1, 3. overlap; 4. shadow; 5. shadow; 6. correlation; 7. generalization;
9. correlation

2, 3. generalization; 4. generalization; 5. generalization; 6.
generalization; 7. generalization; 9. generalization

85

E. Conflict Resolution Engine

Once the conflicts between different flow rules have been detected, the conflict

resolution process attempts to resolve these. The intelligible conflicts are resolved

trivially and the interpretative conflicts are resolved using the resolution strategy

that was determined by the administrator. Since resolution of interpretative conflicts

is lossy, Brew has a manual mode, where administrator input using the conflict

visualization functionality offered in the OFAnalyzer to help guide an informed

decision. Visualization aids such as Figure 6.8 and Figure 6.9 assist administrators in

making an educated decision regarding resolution of interpretative conflicts.

F. Visualization Engine

Visualization of conflict data from the OFProcessor was performed using D3.js

JavaScript [138] and JSON libraries [139]. Results from the OFProcessor are obtained

as a list of JSON objects, and are prepared for visualization using JavaScript con-

version routines. Multiple visualization schemes then display this information to the

administrator in a manner of his/her choosing, with a goal to display the information

in a manner that is both intuitive and concise. The visualization engine is implemented

as a module under the DLUX [127] user interface.

A hierarchical edge bundling [140] is used to represent the rule relationships using

D3.js. This scheme highlights the overall relationship between all the flow entries

while simultaneously reducing clutter. Figure 6.8 shows an example of the hierarchical

edge bundling structure showing conflicts in a flow table, with the color of link

distinguishing between the relationship between the rules. By hovering over the rule

numbers that populate the perimeter of the circle in Figure 6.8, all flow rules that

conflict that specific rule are highlighted. The color schemes indicate the priority of

86

Algorithm 3: Conflict Resolution Engine

Input :Rule r, Rule γ, FlowTable f , String ConflictType

Output : Conflict-free FlowTable f ′

Procedure ConRes()

1 if ConflictType == Shadowing || ConflictType == Redundancy then

2 return f

3 else if ConflictType == Correlation then

4 if γ.globalPriority > r.globalPriority then

5 r.addr ← r.addr − γ.addr

6 f ′ ← AddFlow (f, r)

7 else

8 f ′ ← RemoveFlow (f, γ)

9 γ.addr ← γ.addr − r.addr

10 f ′ ← AddFlow (f, r)

11 f ′ ← AddFlow (f, γ)

12 else if ConflictType == Generalization then

13 f ′ ← RemoveFlow (f, γ)

14 γ.addr ← γ.addr − r.addr

15 f ′ ← AddFlow (f, γ)

16 f ′ ← AddFlow (f, r)

17 else if ConflictType == Overlap then

18 r.addr ← r.addr + γ.addr

19 f ′ ← RemoveFlow (f, γ)

20 f ′ ← AddFlow (f, r)

21 else if ConflictType == Imbrication then

22 if γ.globalPriority > r.globalPriority then

23 r.addr ← r.addr − γ.addr

24 f ′ ← AddFlow (f, r)

25 else

26 f ′ ← RemoveFlow (f, γ)

27 γ.addr ← γ.addr − r.addr

28 f ′ ← AddFlow (f, r)

29 f ′ ← AddFlow (f, γ)

30 return f ′

87

the conflicting rules. Rules highlighted in green have higher priority than the selected

rule, indicating to the administrator that modifying this rule would not affect the

others. Rules in red have a lower priority than the selected rule, serving to remind the

administrator that any change to this rule would affect packet processing. Clicking on

a rule number would provide details on the conflicts by loading the Reingold-Tilford

tree [141] for that rule. Figure 6.9 shows a screenshot of an interactive Reingold-Tilford

tree that presents the conflict details for a single flow rule in an aesthetically pleasing

and tidy fashion. Hovering over the leaves of the tree would display more details

about the rules, so the administrator can now make an informed decision by cross

checking with those rules. Based on the assumption that the administrator is familiar

with the coloring scheme described above, the administrator would learn details about

the conflicts in red, by clicking on the rule number, and attempt to resolve them first

(assuming administrator based resolution). Further details about the implementation

of the visualization engine is detailed by Natarajan [126].

IV. Evaluation

The modules described in Section III were implemented in JAVA. The L2Switch

project was employed to connect the ODL Lithium controller to the OVS. While OVS

and ODL Lithium support both OpenFlow 1.0 and OpenFlow 1.3, testing was done

only using OpenFlow 1.3. Our implementation correctly identifies flow rule conflicts

and classifies them. Both intelligible and interpretative conflicts are automatically

resolved using the least privilege resolution strategy.

Brew was evaluated experimentally using a 2.5 GHz Intel Core i7 machine with eight

dedicated cores and 16 GB DDR3 memory. The system was hardware virtualization

enabled (VT-x), and running Ubuntu 14.04 OS running Linux kernel 3.1.

88

Figure 6.8: Conflict Visualization Based on Hierarchical Edge Bundling Showing a
Spiro-graph.

A. Theoretical Evaluation

Both the conflict detection and resolution algorithms grow in a linear in time,

except for the Patricia trie lookup and insertion time. The time complexity of a

lookup on a Patricia trie depends on the length of the string (constant in our case)

and the number of flow rules; for a total runtime of O(n) [128], where n is the number

of entries in the flow table. In an environment with n atomic flow rules existing in

the environment; and k new candidate atomic flow rules introducing change into the

environment, Brew would have a run time of O(n.k).

89

Figure 6.9: Conflict Visualization Based on Reingold-Tilford Tree.

B. Correctness Verification

OFAnalyzer was evaluated for correctness by providing it with several of rules

that were known to have conflicts. Brew correctly identified flow rule conflicts and

classified them, including transient cross-layer conflicts. The relationship between the

different conflicts were displayed using the visualization techniques discussed. The

classification was manually verified to be accurate.

A simple network with topology consisting of eight virtual hosts in different VLANs,

connected to seven different OVS was implemented on Mininet [142], a tool used to

create rich topologies and instantiate OVS and virtual hosts, using a python script.

Figure 6.10 shows the topology used. A singular ODL controller acted as the SDN

controller. The l2switch project in ODL uses openflowplugin to communicate

between the OVS and the controller using the OpenFlow protocol.

90

H0
10.5.50.5

11:11:11:11:11:ab

H0
10.5.50.5

11:11:11:11:11:ab

H1
10.5.50.6
11:21:11:11:11:ab

H1
10.5.50.6
11:21:11:11:11:ab

H3
10.5.50.8
11:41:11:11:11:ab

H3
10.5.50.8
11:41:11:11:11:ab

H2
10.5.50.7

11:31:11:11:11:ab

H2
10.5.50.7

11:31:11:11:11:ab

H4
10.211.1.61

11:11:aa:aa:11:11

H4
10.211.1.61

11:11:aa:aa:11:11

H5
10.211.1.62
11:21:aa:aa:11:11

H5
10.211.1.62
11:21:aa:aa:11:11

H6
10.211.2.61

11:11:bb:bb:11:11

H6
10.211.2.61

11:11:bb:bb:11:11

H7
10.211.2.62
11:21:bb:bb:11:11

H7
10.211.2.62
11:21:bb:bb:11:11

S3

S2S1 S0
S4

S5

S6

Figure 6.10: Topology Used for Brew Correctness Verification.

A flow rule table consisting of 100 flow rules was implemented to obtain the desired

security policy and constrain traffic flow. The test dataset had all conflicts present in

an effort to have Brew identify it correctly. The frequency of the different types of

conflicts in this dataset was as follows: a) Shadowing - 10%; b) Redundancy - 10%;

c) Correlation - 20%; d) Overlap - 20%; e) Generalization - 20%; and f) Imbrication -

20%. Manual verification showed that all present conflicts were detected by Brew.

C. Performance Overhead

Once correctness of our work was verified and validated, we analyzed the perfor-

mance overhead of conducting inline rule conflict analysis. Once again, the topology

shown in Figure 6.10 was used for the experiment. The different link bandwidths were

enforced using the tc command on Linux. This setup allows us a fine-grained control

on the network. A large text file of size 1 GB was sent from host A to host D, with a

script attempting to add flow rules into the environment. Figure 6.11 shows the time

taken to transfer the file when flow rules were: a) inserted in a native environment,

without the Brew module running; b) inserted with Brew running, but the rules

91

Figure 6.11: Network Performance Overhead.

themselves were conflict free; c) inserted with Brew running, and had intelligible

conflicts; and d) inserted with Brew running, and had interpretative conflicts which

were resolved using least privilege resolution strategy. Each test was run 100 times,

and the transfer time was averaged to obtain the file transfer time for each case, with

the error bars indicating the range of the time taken.

As expected, when interpretative conflicts were to be resolved, the transfer took

longer, due to additional computational needs on the system. Scrutinizing the data

showed that the identification and resolution of intelligible conflicts earlier on in

the chained processing added to this impact. However, the presence of the Brew

module itself caused about 10% increase in transfer time (average of 100 test runs).

92

In large SDN-based cloud environments, this trade-off would be acceptable since

having a conflict free flow table will not only ensure greater confidence in security, but

also optimal packet forwarding processing times. However, in small to medium size

environments, this overhead could be substantial enough to deter adoption.

D. Scalability Evaluation

The same input file that was used for verifying correctness (containing 100 atomic

flow rules), on the topology shown in Figure 6.10 revealed the processing time of about

5.6 µs per rule.

Switches (Distribution)

Backbone

Operational Zone (Access)

Figure 6.12: Topology for Scalability Testing (Replicating Stanford University
Backbone Network).

Next, a real-world topology was used to test scalability. The Stanford University

backbone network [74] was used as a representative mid-size enterprise network. The

network consists of fourteen access-layer3 routers connected using ten distribution

3lowest level of the Cisco three-tier networking model [143]

93

switches to two backbone routers. The snapshot of the routing tables and configuration

files showed over 12,900 routes, 757,000 forwarding entries, 100 VLANs and 900 access-

list rules. This network was replicated in Mininet using OVS to replace all the switches

and routers, but retaining the connectivity information, as shown in Figure 6.12.

Translating all relevant rules into equivalent OpenFlow rules resulted in approximately

8, 900 atomic flow rules, which were then used to run scalability tests. These 8, 900

flow rules were used as the source to extrapolate and generate flow rule tables of size

10, 000 to 100, 000. The extrapolation process randomly picked out the rules from the

8, 900 atomic flow rule set.

Figure 6.13: Increase in Running Time with Increase in Flow Table Size.

94

With an input file containing about 10, 000 atomic flow rules, the processing time

was about 5.6 ms. Rules were further replicated and inserted into the system to observe

growth of computation time. Figure 6.13 shows results from our experiment runs using

different input flow table sizes. Ten different test runs were conducted on flow tables

of size varying from 10, 000 to 100, 000 rules, and the resulting running times were

averaged to get the results in the plot. The results clearly show a O(n) running time

and reveals that Brew effectively identifies flow rule conflicts, and takes corrective

action in spite of the large data sets. Comparative running times for FlowGuard

are obtained from [12]. Run times for FortNox are not available and the algorithm

complexity is not discussed, but evaluation appears to suggest linear growth; albeit

considerably slower (approximately 8 ms per 1, 000 flow rules, as opposed to 0.56

ms per 1, 000 flow rules for our system). Running time evaluation for VeriFlow also

appears to be linear, but considerably greater, with 1 ms per 10 flow rules.

Interestingly, none of the conflicts detected from the Stanford topology was cate-

gorized as Imbrication. This can be attributed to all the rules using layer-3 addresses

for matching, as is customary in traditional environments.

E. Effect of Decentralization Strategies

We studied the impact of the distributed environment on policy conflict detection

and resolution using two different experiments. First, we changed the controllers from

a single controller to 2, 5, and 10 using the host-based partitioning scheme. Using

the same Stanford backbone network data set [74], the effect of moving from a single

controller to a decentralized controller was studied. At each data point of 20, 40, 60, 80

and 100 thousand total rules, the controllers were assigned flow rules equally. As

expected, the running time increased with an increase in the number of controllers,

with Brew taking more than twice as much as it did in a single controller environment.

95

Figure 6.14: Change in Running Time for Brew with k-controllers.

However, with an increase in the number of flow rules, the running time in a distributed

controller environment asymptotically approached the single controller scenario, as

shown in Figure 6.14. This is attributed to each controller having to deal with fewer

flow rules as the number is increased. The graph also confirms the intuitive fact that

with increasing number of flow rules, having more controllers improves performance.

Next, we tested a distributed controller scenario using the application partitioning

paradigm. Flows were injected into the controller with weighted priorities giving

flows generated from a simulated security application highest preference. The OF-

Analyzer extracted flows from the different controllers, and the OFProcessor used

the global priorities to make decisions as expected. Similar tests were also run using

96

Figure 6.15: Dependence of Flow Rule Conflict Resolution Times on Decentralization
Strategies for Increasing Number of Flow Rules.

the hierarchical controller paradigm with results matching expectations. Figure 6.15

shows the running times for the conflict detection algorithm over the same input set

of flow rules running on an application partitioning, host partitioning and hierarchical

distribution strategies. While all scenarios show a near linear growth in running times

with the number of flow rules in the table, the host-based partitioning scenario was

noticeably faster. We attribute this to the presence of a distributed mesh control

plane for the application and hierarchical/heterogeneous partitioning scenarios while

having a hierarchical control plane in the host-based controller partitioning scenario.

97

Chapter 7

CONFLICT-FREE COUNTERMEASURE GENERATION FOR MTD IN

DISTRIBUTED SDN CLOUDS

Techniques that assess the security state of the entire environment, and proactively

make changes to reduce the likelihood of being compromised are known broadly as

MTD initiatives. MTD techniques are facilitated by platforms that provide flexible and

programmable features, and SDN is ideal for this effort. The ease of programmability in

SDN makes it a great platform for implementations involving application deployment,

dynamic topology changes, and decentralized network management in a multi-tenant

data center environment. Implementing MTD measures in an SDN-based environment,

however, leads to scenarios where conflicts could occur between newly inserted or

modified flow rules to the existing policies. Verifying and resolving these conflicts

are time consuming, and gets even harder in a distributed SDN environment, making

it unsuitable in highly dynamic environments. In this work, we provide a flow rule

conflict avoidance mechanism that eliminates this problem in MTD implementations

in highly dynamic SDN environments. Our appliance, named CaCTuS, is implemented

on an OpenDaylight controller and ensures that no two flow rules have conflicts at

any layer, thereby ensuring system stability. Evaluation results show that CaCTuS

could craft MTD countermeasures that were provably conflict free with rules in the

existing flow table, with an acceptable 3% run time overhead.

I. Problem Statement

MTD [144, 145] is a transformative approach to security of multi-tenant cloud

environment that leverages dynamism to create an environment with a changing attack

surface. By presenting attackers with an unpredictable target, cloud service providers

98

hope to make it difficult for an exploit to have the desired malicious behavior [146].

The flexibility and programmability afforded in the SDN paradigm can be conformed

to achieve a dynamic defensive strategy based MTD [147] by systematically selecting

countermeasures to prevent or mitigate attacks [148, 149].

In an IaaS cloud, VMs are managed by tenants and may contain various vulnerabil-

ities, thus making them easy targets for attackers. Chung et al. [150] present an MTD

approach to automate an iterative three-step procedure to counter network attacks:

a) network intrusion detection; b) threat analysis; and c) countermeasure selection

and deployment. Chowdhary et al. [102] use an attack graph based vulnerability

analysis model to enumerate all possible attack scenarios, allowing the cloud system

to select countermeasures before identified vulnerabilities are exploited. While policy

conflicts between the proposed countermeasures and existing rule set is checked, and

resolved, the temporal nature of such changes and its timeliness is not considered.

In other words, since verifying and deploying the countermeasure takes a non-zero

amount of time, the system should have strategies in place to reduce the time to verify

and deploy a countermeasure and ensure the system is safe from scenarios where it

attempts to implement countermeasures faster than the system can propagate the

changes through the environment.

The dynamism in MTD gives rise to the need for a framework to accurately, and

in a timely fashion, examine the complex relationships between various hosts and

ensure that any changes made to the environment do not conflict with security policies.

While the timeliness challenge in MTD is actively explored [151], the discussion of

timeliness is limited to ensuring that the MTD system should evolve faster than time

for reconnaissance. Timeliness for system stability is ignored. In other words, ensuring

that the system stabilizes at a fast-enough rate that customers and users do not feel

the adverse effects of the underlying system changes is not researched in any detail.

99

Further, in case of an SDN-based cloud environments where each countermeasure

is implemented using accompanying flow rule changes, timeliness is dependent on:

a) verifying that the flow rules do not conflict with existing flow rules; b) adding the

flow rules to the controller; and c) propagating the changes to the OVS. Since the last

two factors are organic to any SDN environment, reducing the time required for system

stabilization requires ensuring that the generated countermeasures do not conflict with

existing flow rules, thereby eliminating the need to run the conflict-checking process.

Since the best of these algorithms are linear in nature to with number of flow rules in

the table, in large distributed clouds, conflict checking of policies is time consuming.

Tackling the timeliness issue in implementing MTD countermeasures in SDN

environments is a two-fold problem. First, ensuring a conflict-free environment is time

consuming. And second, there is no proven way to resolve cross-layer policy conflicts.

Since there are no current solutions that address either of these issues, an ideal solution

would seek to avoid the problem in the first place. As the adage goes, prevention is

better than cure. Thus, the MTD system should seek to produce countermeasures

that are provably conflict-free with current security policies.

A final consideration in implementing MTD countermeasures to SDN environments

involves usability. If the implemented MTD countermeasure were to impact the

functionality of the system or affect user experience because of either the technique

being used, or because of the overhead, its adoption will be limited [151]. To that

end, ensuring that the system stabilizes before introducing new changes into the

environment is paramount. To summarize, through this work the following challenges

need to be addressed:

• Reduce the time to deploy countermeasures in an MTD system by ensuring

that the network address dynamism is within allowed ranges that guarantee no

address space overlap.

100

• Propose a mapping schema between layer-2 and layer-3 to pre-empt and resolve

the cross-layer conflicts.

• Ensure that the environment stabilizes and passes user traffic prior to a new

countermeasure being implemented.

II. Moving Target Defense (MTD)

MTD techniques are a proactive approach to security of multi-tenant cloud envi-

ronment that leverages the dynamism in computer systems to create an environment

that has a changing attack surface, with the basic idea being either: a) hiding system

properties that are required by attackers to leverage an exploit; or b) alter system

properties periodically that makes all previous reconnaissance done by attackers moot.

Existing Moving Target Defense schemes can be broadly classified into [152]: a) di-

versity based MTD; and b) dynamicity based MTD. The first class essentially seeks to

enlarge the attack surface while the latter consists of moving the attack surface at

runtime to force a re-evaluation by the attacker. This work pertains to the latter.

Dynamicity based MTD techniques introduce temporal changes to the environ-

ment, which has the effect of rendering previous reconnaissance done by attackers

useless. Network based MTD schemes are discussed in [153, 154, 155] but they require

coordination from the communicating parties, and hence are not suitable for a cloud

environments that are gaining an ever larger share of the market. Antonatos et

al. propose a network address space randomization scheme to offer an IP hopping

approach [156] to protect against hitlist worms. Al-Shaer proposes a more generalized

system that enables IP randomization [157] to keep attackers from knowing the true

location of the systems. Address space randomization was then customized for an

SDN environment [149]. Duan et al. present random route mutation technique which

enables random changes of the routes in a network [158].

101

While analyzing MTD schemes, Hobson et al. [151] identifies timeliness as an

important challenge. This is a two-pronged challenge, requiring the MTD system

to evolve faster than time for reconnaissance, and at the same time ensuring that

the system stabilizes at a fast enough rate that customers and users do not feel the

adverse effects of the dynamicity. This work focuses on a timeliness aware SDN-based

implementation of network dynamicity based MTD systems, where the dynamicity is

introduced by IP randomization.

III. System Model

In this section, details of the conflict-free countermeasure generation framework,

including design considerations, assumptions, system models and architecture details

are discussed. The functionalities were implemented into a holistic conflict-free coun-

termeasure generation suite called CaCTuS (Conflict-free Countermeasure generaTion

Suite). Figure 7.1 shows the black-box model for CaCTuS. Section III.B provides a

detailed system level description and Section IV provides implementation details of

CaCTuS.

CaCTuS

A
d
d

re
ss

 S
p
a
c
e

M
a

n
a
g

e
m

e
n
t

M
o

d
u
le

R
e
s
o
u

rc
e

M
a

p
p
in

g

M
o

d
u
le

Flow Rule Conflict

Resolution

Module

Countermeasure

Generation

Module

Ingress Flow Table

SysLoad

MTD Trigger
Egress

Flow Table

Figure 7.1: Black-box Model for CaCTuS.

102

A. System Assumptions

This work considers only address hopping based network MTD approach. The

assumptions made are:

• The network address change is transparent to benign users, who do not feel any

impact from the network dynamicity.

• There exists an authentication mechanism between applications that need to

access the API from the address space management module. Since this work fo-

cused on establishing functionality, optimal authentication mechanisms were not

considered. However, without an authentication mechanism in place, exposing

the available address space to tenant applications could be misused by malicious

insiders.

• There exists a mechanism to obfuscate the relationship between the layer-3

address and the systems present in the data center to prevent reconnaissance

done by external adversaries. This could be accomplished by having a NAT type

service at the egress of the data center network.

B. System Components

In this Section, the components that help achieve conflict-free countermeasure

generation using a modularized approach are discussed. The system consists of five

interrelated modules, namely an Address Space Management Module (ASMM), a

Resource Mapping Module (RMM), a Countermeasure Generation Module (CGM)

and a Flow Rule Conflict Resolution Module (FCRM).

1) Address Space Management Module (ASMM): The ASMM is primarily respon-

sible for allocating layer-3 addresses to requesters in contiguous blocks. While the

103

implementation in CaCTuS uses IPv6 specifically, it can just as easily by converted to

an IPv4 implementation. Algorithm 4 shows the logical details of the ASMM.

The address space allocation itself uses the Buddy memory allocation [159] algo-

rithm to manage the address space. Borrowing from the memory allocation technique,

the network address space is divided into blocks, of specific size n. Each block has

2n available addresses. Instead of attempting to conserve address spaces, just as in

memory allocation, a block is always split into two equal blocks that are both half the

size of the larger block. This, in effect, creates two blocks that are unique buddies to

each other. When both the buddy blocks are not being used, they are merged together

to form the larger block they were split from. In this implementation, the value is set

as n = 2, giving a block size of 4 IPs, thus, leading to a total of 30 orders1 for IPv4.

When using IPv6 in the address management module, where the address space is 2128,

gave us 126 possible orders.

When the CGM requests a new address space, the ASMM looks for two pieces

of information, i.e. the number of addresses required, and list of current address

space being used. Similar to the Buddy memory allocation algorithm, if a contiguous

address space of an equal or larger size is available, it is provided to the GCM. If

not, a block larger than the requested address space is split into half. This process

continues recursively until a suitable address space is found.

2) Resource Mapping Module (RMM): Functions of the RMM involve implementing

a mapping function between layer-2 addresses and layer-3 addresses, or maintaining a

large MAC-address table. However, deviating from traditional practices, a preset layer-

3 address is assigned to every possible layer-2 address. As seen in Chapter 5, resolving

cross-layer conflict is challenging, owing to the transient nature of the mapping between

1Order is an integer such that the size of a block of order α is proportional to 2α

104

Algorithm 4: Address Space Management Module (ASMM)

Procedure ASMM()
Input : requestSize x, currentBlock B

Output : addressSpace A

1 if B == NULL then

2 AllocateL3Address(x)

3 else

4 x← x+B.size

5 FreeL3Address (B)

6 AllocateL3Address(x)

Procedure AllocateL3Address()
Input : requestSize x

Output : addressSpace A

1 reqBlock ← x/blockSize

2 while slot do

3 if slot.size ≤ reqBlock ∗ 2 then

4 if slot.size ≥ reqBlock then

5 slot.useStatus← 1

6 return slot

7 else

8 if slot.size ≥ reqBlock then

9 while slot.size ≥ reqBlock do

10 addSlot(slot.startAddress, slot.size/2)

11 addSlot(slot.startAddress+ slot.size/2, slot.size/2)

12 delSlot(slot.startAddress, slot.size)

13 slot.size← slot.size/2

14 slot.useStatus← 1

15 return slot

Procedure FreeL3Address()
Input : addressSpace slot

1 slot.useStatus← 0

2 flag ← 1

3 while flag do

4 if slot.buddy.useStatus == 0 then

5 combineBuddy(slot.startAddress, slot.size)

6 else

7 flag ← 0

105

layer-2 and layer-3 addresses. However, by removing the transient nature of that

relationship, conflict resolution and conflict prevention becomes a manageable problem.

This is accomplished by strictly using IPv6 for layer-3 addresses.

IPv6 specifications call for a 64-bit interface identifier that is either automatically

generated from layer-2 address, or assigned manually. The interface identifier address

is assigned manually, albeit using the layer-2 address. The 48-bit layer-2 address is

turned into a 64 interface identifier by inserting FF:FE in the middle, as per IPv6

convention. However, the address is not made globally unique by flipping the 7th

most significant bit, since this work only uses the addresses locally, with a mapping

back to IPv4 at egress.

3) Countermeasure Generation Module (CGM): A countermeasure is an action or a

series of actions intended to thwart attacks or make the system sturdier against attacks,

wherein network configurations and traffic policies are changed. When needed, one (or

more) candidate countermeasures are chosen amongst many potential countermeasures

for deployment after weighing attributes such as cost, time to deploy, and potential

impact to system performance or availability [148]. While common network-based

countermeasures involve actions on several OSI layers, this work is limited to network

address hopping.

When invoked on schedule, the CGM uses input from the ASMM to generate

countermeasures that are conflict-free. With regards to the current flow rules, any

selected address change can have: a) overlapping address space, but different flow

rule action; b) disjoint address space, but same flow rule action; c) disjoint address

space and different flow rule action. In the latter two situations, it is guaranteed that

the environment remains free of flow rule conflicts since the address space is disjointed.

In situations where the same address space is returned from the ASMM, the CGM

106

requests a new address space. This simple asynchronous check was introduced to

alleviate concerns in a distributed controller scenario, where due to the controller code

the ASMM might not be in sync.

When the system is under attack, the CGM can quickly introduce change into the

environment, with the trade-off that conflicts may be introduced into the environment.

These conflicts may be resolved at a later time using the Brew framework from

Chapter 6.

4) Flow Rule Conflict Resolution Module (FCRM): Since flow rules with conflicting

actions are avoided, the FCRM only has to reconfigure the conflicting flow rules to

remove address space overlaps. The Brew framework discussed in Chapter 6 serves as

the FCRM.

IV. Implementation

Figure 7.2 shows the logic flow in the system, implemented in an SDN environment

using ODL controller. The CMG module generates the flow rules required that would

implement MTD. MTD countermeasures in the system are invoked in one of two

different ways: a) if the time since the implementation of the last MTD measure is

above a certain threshold; or b) an attack trigger has been set due to the environment

detecting it is under attack. The strategy in both cases is not markedly different.

However, when the system is under attack, the CGM picks the MTD countermeasure

most likely to stop the attack without concern for its potential to cause conflict.

Thus, the system prioritizes the implementation of any MTD strategy over finding

the optimal strategy. When the system is not under attack, the system utilizes the

ASMM to generate an MTD solution over address spaces that guarantee no conflict.

107

Start

Is Timer >
Timer

Threshold
AttackTrigger?

SysLoad <
Load Threshold

ConflictFree?Get Address
Space (ASMM)

Generate MTD
Countermeasure

(CGM)

Implement MTD
Countermeasure

Reset Timer

Adjust Timer
Threshold

ConflictFree
= True

ConflictFree
= False

No No

Yes
Yes

Resolve Flow Rule
Conflicts (FCRM)

No

No

Yes

Figure 7.2: System Logic Flow in CaCTuS.

In dynamic SDN environments, a potential issue is countermeasure bounce. Analo-

gous to a flickering light bulb, situations may arise in which the system may react to

a transient attack event by reconfiguring from state S0 to a different state S1, only

to encounter another event and attempt to revert to the original state S0. Since the

system stabilization after each reconfiguration takes a minimum of non-zero time t,

such a scenario would cause system instability potentially placing the system in a

death spiral. This situation is handled by implementing a wait timer for generation of

new countermeasures. While this value is currently configurable, learning this value

108

for an environment using machine learning techniques is has great potential.

In situations where the best MTD measure was not implemented due to either

the system being under attack, the potential for conflicts being present in the system

exists. These are addressed by the FCRM by combining/splitting out flow rules that

are affected by the conflicts.

V. Evaluation of CaCTuS

Evaluation of CaCTuS was done in a multi-faceted manner. First, the hypothesis

that generating multiple flow rules would result in address space overlap which in turn

would lead to flow rule conflicts was tested. Next, the effectiveness and correctness of

CaCTuS was evaluated. Following that, the running time for CaCTuS was compared

to flow rule conflict resolution mechanisms, and the effect of block size on computation

time and address space utilization was studied. Finally, the overhead due to CaCTus

was measured in an environment using file transfer time as the metric, and a comparison

was made to the overhead added by the Brew module. The results show the promise

CaCTuS holds in a highly dynamic SDN environment implementing address hopping

as an MTD strategy.

The first experiment evaluated the prevalence of address space overlaps during

countermeasure generation. To effectively demonstrate the probability of conflict,

IPv4 was used instead of IPv6, since an address space collision using IPv6 address

space would require about 2.6× 1018 flow rules for a 1% collision (birthday paradox).

The result is shown in Figure 7.3.

109

Figure 7.3: Change in Probability of Flow Rule Conflicts with Flow Table Size.

The next experiment focused on the effectiveness of the flow rule conflict prevention.

The topology shown in Figure 6.10 was implemented on Mininet using a python script.

ODL Lithium was used as the OpenFlow controller and the L2Switch project was

employed to connect to the OVS. Since the test topology consisted of only eight hosts,

the network address space was limited to having only 16 possible addresses. Given

the simplified system, it is expected that flow rules use overlapping address spaces

about half the time. Correctness was provably demonstrated over the course of 100

test runs, when CaCTuS produced MTD schemes without any conflicts, while natively

47 of the 100 runs produced flow rules using an overlapping address space.

110

Next, the running time of CaCTuS was compared against flow rule conflict detection

tools and plotted in Figure 7.4. CaCTuS compares favorably to Brew (discussed in

Chapter 6) and FlowGuard [12] at larger number of flow rules. This appears intuitive

when looked into in conjunction with results from Figure 7.3 since the probability

of conflicts occurring in a system rise exponentially with an increase in the number

of flow rules. Experiments performed were based on a real-world network topology

derived from the Stanford network as obtained by Kazemian et al. [74]. The ASMM

module grew in a O(log n) manner. As with Brew, the experiments were run on a 2.5

GHz Intel Core i7 machine with 16 GB DDR3 memory.

Figure 7.4: Comparison of CaCTuS Running Time with Brew and FlowGuard Versus
Size of Flow Rule Tables.

111

With an input file containing about 10, 000 flow rules, the processing time was

about 11 ms. Rules were further replicated and inserted into the system to observe

growth of computation time. Ten different test runs were conducted on flow tables

of size varying from 10, 000 to 100, 000 rules, and the resulting running times were

averaged to get the results in the plot. Error bars indicate the max-min value from

the different runs.

The next experiment consisted of evaluating the effect of address block size in

the ASMM, to computation time, and total space utilization. Once again, for testing

purposes, we utilized IPv4 instead of IPv6, with block sizes of 2, 4 and 8. We tested

the computation time and total space utilization for 100 thousand, 500 thousand

and 1 million randomly generated address spaces. The results reaffirmed what has

been known about the Buddy Algorithm and showed that the smaller the block size,

the higher the total space utilization. However, smaller block size also accounted for

higher computational overhead. Thus, selecting the optimum block size is dependent

on user preferences.

The final consideration was performance overhead of the CaCTuS module. Using

transfer of a large 1GB file between hosts A and D in Figure 6.10 as the parameter,

CaCTuS was compared to Brew to measure the overhead to file transfer time. Figure 7.5

shows the time taken to transfer the file in cases where the rules being inserted

a) natively; b) through Brew; and c) through CaCTuS. Each test was run 100 times,

and the transfer time was averaged to obtain the file transfer time for each case, with

the error bars indicating the range of the time taken. CaCTuS added about a 3%

increase in transfer time (average of 100 test runs), which is markedly better than

Brew.

112

Figure 7.5: Network Performance Overhead for CaCTuS.

113

Chapter 8

CONCLUSION

Network trends such as the ever-increasing number of mobile users, BYOD en-

vironments, increased focus on addressing insider threats and the need to control

flow of information between tenants in a hosted data center environment pose a new

set of challenges that can be addressed by SDN. Recent advances in SDN creates a

unique opportunity to enable complex scientific applications to run on a dynamic

and tailored infrastructure that includes compute, storage and network resources.

This approach provides the performance advantages of strong infrastructure support

with little management and deployment costs. With several threat vectors for SDN

environments already identified, and new threats being developed/discovered every

day, comprehensive security implementation in SDN environments is an issue that

needs to be dealt with actively and urgently [118].

To effectively implement security policies, it is often necessary to use several sets of

rules on firewalls and other security devices. The presence of multiple devices, especially

in a multi-vendor distributed environment leads to conflicts in configuration, which

very likely degrade the network security policy and leave room for error. Identifying

and removing these conflicts is a serious and complex problem [121]. Multi-tenant

data center environments where there are multiple origination points for higher level

security policies exacerbates this problem.

Traditional approaches to addressing security issues in such dynamic and distributed

environments tried to implement security on individual components, and did not

consider security holistically. In a multi-tenant SDN-based cloud environment, the

presence of various such security applications and network nodes interacting with each

other makes it extremely difficult to manage policies and track policy conflicts.

114

In this dissertation, a formalism is presented to describe and classify all potential

flow rule conflicts in an SDN-based environment including the introduction of a

new class that describes cross-layer flow rule conflicts. A methodology that realizes

this formalism is presented, and implemented using a controller-based algorithm

in a framework called Brew. Flow rules in a distributed controller environment are

extracted, and intra- and inter-table flow rule conflicts are detected utilizing cross-layer

conflict checking. Further, security enforcement is augmented by including strategies

to resolve conflicts in an SDN-based cloud environment. Automatic and assisted

conflict resolution mechanisms are addressed and a novel visualization scheme for

conflict representation is presented. The run time complexity for the framework is

linear, and hence scalable to large SDN-based clouds. However, realizing the need for

flow rule conflict avoidance to overcome the timeliness factor for network based MTD,

CaCTuS seeks to produce non-overlapping address spaces thereby ensuring that MTD

countermeasures being implemented into a system are demonstrably conflict free.

To summarize, this dissertation describes work done to:

• Extend firewall rule conflict classification in a traditional environment to SDN

flow rule conflicts by identifying cross-layer conflicts (which tend to be transient

in nature).

• Include techniques for global prioritization of flow rules in a decentralized

environment depending on the decentralization strategy.

• Detects flow rule conflicts in a multiple, decentralized controller based SDN-based

cloud environments.

• Description of strategies for unassisted resolution of the flow rule conflicts, with

analysis of their benefits and deficiencies.

115

• Present a novel visualization scheme implemented to help the administrators

view flow rule conflicts visually.

• Introduce an address space management framework to generate conflict free

countermeasures while implementing an address hopping based network MTD

solution.

I. System Limitations

As with any prototype, Brew is not without limitations. In its current avatar, it

is unsuitable in a highly dynamic environment because the conflict resolution model

that considers temporal nature of the mapping between different address layers in

a dynamic SDN cloud is abecedarian. Currently, the topology of the environment

is not considered while detecting conflicts, which might be valuable information to

possess while determining conflicts in a multi-tenant environment with similar internal

addressing schemes.

While CaCTuS can ensure generation of conflict free countermeasures, it is cur-

rently limited to address hopping based MTD solution. To make it truly robust, its

functionality needs to be expanded to guaranteeing conflict free countermeasures for

all network based MTD solutions.

II. Future Work

The work completed thus far has enabled us to obtain a solid foundation to having

a platform that can ensure a conflict free security policy implementation across a

distributed SDN environment. However, prior to project maturation, we seek to

address some deficiencies in the work including scalability and usability concerns. We

anticipate on improving Brew in the ways described below.

116

In the short term, making Brew work with SDN controllers other than ODL would

back up one of the design requirements that the framework be SDN controller agnostic.

This would not only help enhance adoption of the framework, but it would help add

controller diversity in an SDN based MTD implementation. Since a dynamic SDN

cloud could have several new flow rules generated every second, we plan on studying

the effect of using multiple analyzers to share the work load to parallelize processing.

However, parallelization would take resources away from the resource constrained

controller. Thus, we would need to find the circumstances which would warrant

parallelization, and its benefits. To increase robustness and to be more complete,

adding the topology as an input into Brew might be able to make the conflict detection

more thorough.

Our current implementation uses eight octet-wise Patricia trie lookup to identify

address space overlap. We plan on investigating the size of flow tables that would

start showing benefits for going this route. Alternately, using hashed Patricia tries, or

other data structures which might be more efficient for lookups will also be considered.

Alternate ways to potentially increase the efficiency of the conflict detection engine to

sub linear running time using more efficient and customized data structures will be

researched.

Next, we plan on integrating results from studies that incorporate stateful func-

tionality into the SDN environment. Evolving from a pure packet filter based security

application to one that can have rules based on connection state would greatly en-

hance the effectiveness of security policy that can be implemented. Research from the

traditional networking environment suggests this may not be very complex [160].

Verifying that new flow policies adhere to organizational security policies is a

twofold problem: a) establish that the newly generated flow rules do not conflict with

existing flow rules; and b) ensure that the conflict-free flow rule table adhere to the

117

high-level organizational policies. Brew addresses the first of these problems. To ensure

compliance with higher level organizational policies, the work in this dissertation

needs to be adapted/extended to work in the area of regulatory compliance. Such

work usually uses a policy specification language based on a restricted subset of First

Order Temporal Logic (FOTL) which can capture the high-level requirements, and

encode what adherence to the policies mean [161, 162]. Combining this work with

FOTL would greatly increase the future applications of the framework.

Further, we plan on considering flow rule optimization based on rule positioning

and examine adaptive prioritization of rules. Including role-based and attribute-based

policy conflicts is a natural extension of this work. Future visualization work includes

upgrades to provide newer features to assist in scalability. A zoom-in/zoom-out

feature aiding in the visualization process and graphs depicting the statistical data

gathered from the switches using the OpenFlow protocol could be added. Since a

one-size fits all solution rarely works, flavors of the Brew framework tailored for host

based SDN firewalls and a mobile (lightweight) solution for tactical clouds would be

a potentially interesting extension of the current work. And finally, using machine

learning algorithms to identify MTD timer thresholds would help CaCTuS deliver

environment-optimized results.

As it stands, Brew is a standalone flow rule conflict detection and resolution

framework. However, work is currently underway to integrate Brew into a MTD

solution, along with CaCTuS to ensure that countermeasures generated do not cause

conflicts in the environment. This would also involve making CaCTuS more robust by

guaranteeing conflict free rules over MTD techniques other than address hopping.

118

REFERENCES

[1] ITU releases 2014 ICT figures, 2014. [Online]. Available: https://www.itu.int/
en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf

[2] “Defense in Depth,” National Security Agency, Tech. Rep. [Online]. Available:
https://www.nsa.gov/ia/ files/support/defenseindepth.pdf

[3] N. C. Damianou, “A Policy Framework for Management of Distributed Systems,”
PhD Dissertation, Imperial College, 2002.

[4] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On Scalability of Software-
Defined Networking,” IEEE Communications Magazine, vol. 51, no. 2, pp.
136–141, 2013.

[5] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteristics of Data
Centers in the Wild,” in Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement (IMC 10). ACM, 2010, pp. 267–280.

[6] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-
manathan, Y. Iwata, H. Inoue, T. Hama, and others, “Onix: A Distributed
Control Platform for Large-Scale Production Networks.” in Proceedings of the
9th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’10), vol. 10. USENIX Association, 2010, pp. 1–6.

[7] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Logically
Centralized?: State Distribution Trade-Offs in Software Defined Networks,” in
Proceedings of the 1st Workshop on Hot Topics in Software Defined Networking
(HotSDN 2012). ACM, 2012, pp. 1–6.

[8] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control Plane for
OpenFlow,” in Proceedings of the 2010 Internet Network Management Work-
shop/Workshop on Research on Enterprise Networking (INM/WREN ’10)).
USENIX Association, 2010, pp. 3–3.

[9] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Towards an
Elastic Distributed SDN Controller,” ACM SIGCOMM Computer Communica-
tion Review, vol. 43, pp. 7–12, 2013.

[10] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict Classification and
Analysis of Distributed Firewall Policies,” IEEE Journal on Selected Areas in
Communications, vol. 23, no. 10, pp. 2069–2084, 2005.

[11] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A Security
Enforcement Kernel for Openflow Networks,” in Proceedings of the 1st Workshop
on Hot Topics in Software Defined Networking (HotSDN 2012). ACM, 2012,
pp. 121–126.

119

https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf
https://www.nsa.gov/ia/_files/support/defenseindepth.pdf

[12] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FlowGuard: Building Robust Firewalls
for Software-Defined Networks,” in Proceedings of the 3rd Workshop on Hot
Topics in Software Defined Networking (HotSDN 2014). ACM, 2014, pp. 97–102.

[13] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A Novel Firewall
Management Toolkit,” in Proceedings of the 1999 IEEE Symposium on Security
and Privacy. IEEE, 1999, pp. 17–31.

[14] S. Pisharody, A. Chowdhary, and D. Huang, “Security Policy Checking in
Distributed SDN based Clouds,” in Proceedings of the 2016 IEEE Conference
on Communications and Network Security (CNS). Philadelphia, USA: IEEE,
Oct. 2016.

[15] K. Ingham and S. Forrest, “A History and Survey of Network Firewalls,” Uni-
versity New Mexico, Technical Report TRCS-2002-37, 2002.

[16] J. Carlin, “Where Business and Cyberterror Collide: The View from the Justice
Department,” Oct. 2016.

[17] S. M. Bellovin, “Distributed Firewalls,” ;login:, vol. 24, no. 5, pp. 37–39, 1999.

[18] M. Sloman, J. Magee, K. Twidle, and J. Kramer, “An Architecture for Managing
Distributed Systems,” in Proceedings of the 4th Workshop on Future Trends of
Distributed Computing Systems. IEEE, Sep. 1993, pp. 40–46.

[19] B. Moore, “Policy Core Information Model (PCIM) Extensions,” IETF, RFC
3460, Jan. 2003. [Online]. Available: https://tools.ietf.org/html/rfc3460

[20] D. C. Verma, “Simplifying Network Administration Using Policy-Based Man-
agement,” IEEE Network, vol. 16, no. 2, pp. 20–26, 2002.

[21] W. Han and C. Lei, “A Survey on Policy Languages in Network and Security
Management,” Computer Networks, vol. 56, no. 1, pp. 477–489, Jan. 2012.

[22] H. Mahon, Y. Bernet, S. Herzog, and J. Schnizlein, “Requirements for a Policy
Management System,” IETF, Internet Draft, 1999.

[23] S. J. Shepard, “Policy-Based Networks: Hype and Hope,” IT Professional, vol. 2,
no. 1, pp. 12–16, Jan. 2000.

[24] Z. Fu, S. F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and C. Xu, “IPSec/VPN
Security Policy: Correctness, Conflict Detection, and Resolution,” in Proceedings
of the International Workshop on Policies for Distributed Systems and Networks
(POLICY 2001), ser. Lecture Notes in Computer Science, vol. 1995. Springer,
2001, pp. 39–56.

[25] F. Caldeira and E. Monteiro, “A Policy-Based Approach to Firewall Manage-
ment,” in Proceedings of the IFIP TC6 / WG6.2 & WG6.7 Conference on
Network Control and Engineering for QoS, Security and Mobility (Net-Con ’02).
Springer, 2003, pp. 115–126.

120

https://tools.ietf.org/html/rfc3460

[26] J. D. Moffett and M. S. Sloman, “Policy Hierarchies for Distributed Systems
Management,” IEEE Journal on Selected Areas in Communications, vol. 11,
no. 9, pp. 1404–1414, 1993.

[27] J. D. Moffett, “Requirements and Policies,” in Proceedings of the Workshop
on Policies for Distributed Systems and Networks (POLICY 1999). UK: HP-
Laboratories Bristol, 1999.

[28] J. Strassner and S. Schleimer, “Policy Framework Definition Language,” IETF,
Internet Draft, Nov. 1998.

[29] J. Bailey, G. Papamarkos, A. Poulovassilis, and P. T. Wood, “An Event-
Condition-Action Language for XML,” in Web Dynamics. Springer, 2004,
pp. 223–248.

[30] S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and L. Ong, “Packet
and Circuit Network Convergence with Openflow,” in Optical Fiber Communi-
cation Conference. Optical Society of America, 2010, p. OTuG1.

[31] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2,
pp. 69–74, 2008.

[32] K. Bakshi, “Considerations for Software-Defined Networking (SDN): Approaches
and Use Cases,” in Proceedings of the 2013 IEEE Aerospace Conference. IEEE,
2013, pp. 1–9.

[33] R. Kawashima, “vNFC: A Virtual Networking Function Container for SDN-
enabled Virtual Networks,” in Proceedings of the 2nd Symposium on Network
Cloud Computing and Applications (NCCA 2012). IEEE, 2012, pp. 124–129.

[34] J. Quittek, T. Zseby, B. Claise, and S. Zander, “Requirements for IP Flow
Information Export (IPFIX),” IETF, RFC 3917, 2004. [Online]. Available:
https://tools.ietf.org/html/rfc3917

[35] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” Proceedings
of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[36] “Open Network Foundation.” [Online]. Available: https://www.opennetworking.
org/sdn-resources/openflow

[37] “Open vSwitch.” [Online]. Available: http://openvswitch.org/

[38] “OpenStack.” [Online]. Available: http://www.openstack.org/

[39] “CloudStack.” [Online]. Available: https://cloudstack.apache.org/

[40] E. Lupu and M. Sloman, “Conflict Analysis for Management Policies,” in
Integrated Network Management V, ser. IFIP - The International Federation for
Information Processing. Springer, 1997, pp. 430–443.

121

https://tools.ietf.org/html/rfc3917
https://www.opennetworking.org/sdn-resources/openflow
https://www.opennetworking.org/sdn-resources/openflow
http://openvswitch.org/
http://www.openstack.org/
https://cloudstack.apache.org/

[41] E. C. Lupu and M. Sloman, “Conflicts in Policy-Based Distributed Systems
Management,” IEEE Transactions on Software Engineering, vol. 25, no. 6, pp.
852–869, 1999.

[42] D. Eppstein and S. Muthukrishnan, “Internet Packet Filter Management and
Rectangle Geometry,” in Proceedings of the 12th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA ’01). Society for Industrial and Applied
Mathematics, 2001, pp. 827–835.

[43] J. L. Bentley, “Multidimensional Binary Search Trees Used for Associative
Searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[44] A. Hari, S. Suri, and G. Parulkar, “Detecting and Resolving Packet Filter
Conflicts,” in Proceedings of the 19th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2000), vol. 3. IEEE,
2000, pp. 1203–1212.

[45] E. S. Al-Shaer and H. H. Hamed, “Firewall Policy Advisor for Anomaly Dis-
covery and Rule Editing,” in Proceedings of the 8th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2003). IEEE, 2003, pp.
17–30.

[46] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra, “Fireman: A
Toolkit for Firewall Modeling and Analysis,” in Proceedings of the 2006 IEEE
Symposium on Security and Privacy. IEEE, 2006, pp. 15–pp.

[47] H. Hu, G.-J. Ahn, and K. Kulkarni, “Fame: A Firewall Anomaly Management
Environment,” in Proceedings of the 3rd ACM Workshop on Assurable and
Usable Security Configuration (SafeConfig ’10). ACM, 2010, pp. 17–26.

[48] V. Capretta, B. Stepien, A. Felty, and S. Matwin, “Formal Correctness of
Conflict Detection for Firewalls,” in Proceedings of the 2007 ACM Workshop on
Formal Methods in Security Engineering (FMSE ’07). ACM, 2007, pp. 22–30.

[49] L. Kagal, “Rei: A Policy Language for the Me-Centric Project,” HP Laboratories,
Palo Alto, Technical Report, 2002.

[50] G. H. v. Wright, “Deontic Logic,” Mind, vol. 60, no. 237, pp. 1–15, 1951.

[51] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, and C. Pitcher, “Specifications of
a High-Level Conflict-Free Firewall Policy Language for Multi-Domain Networks,”
in Proceedings of the 12th ACM Symposium on Access Control Models and
Technologies (SACMAT ’07). ACM, 2007, pp. 185–194.

[52] S. Pozo, R. Ceballos, and R. M. Gasca, “AFPL, an Abstract Language Model
for Firewall ACLs,” in Proceedings of the 8th International Conference on
Computational Science and Its Applications (ICCSA 2008). Springer, 2008, pp.
468–483.

122

[53] A. Mayer, A. Wool, and E. Ziskind, “Fang: A Firewall Analysis Engine,” in
Proceedings of the 2000 IEEE Symposium on Security and Privacy. IEEE, 2000,
pp. 177–187.

[54] T. Tran, E. S. Al-Shaer, and R. Boutaba, “PolicyVis: Firewall Security Policy
Visualization and Inspection,” in LISA, vol. 7, 2007, pp. 1–16.

[55] F. Mansmann, T. Gbel, and W. Cheswick, “Visual Analysis of Complex Fire-
wall Configurations,” in Proceedings of the 9th International Symposium on
Visualization for Cyber Security. ACM, 2012, pp. 1–8.

[56] “Floodlight.” [Online]. Available: http://www.projectfloodlight.org/floodlight/

[57] T. Javid, T. Riaz, and A. Rasheed, “A Layer2 Firewall for Software Defined
Network,” in Proceedings of the 2014 Conference on Information Assurance and
Cyber Security (CIACS). IEEE, 2014, pp. 39–42.

[58] M. Suh, S. H. Park, B. Lee, and S. Yang, “Building Firewall Over the Software-
Defined Network Controller,” in Proceedings of the 16th International Conference
on Advanced Communication Technology (ICACT2014). IEEE, 2014, pp. 744–
748.

[59] A. Shieha, “Application Layer Firewall Using OpenFlow,” Master’s Thesis,
University of Aleppo, 2014.

[60] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-Guard: Scalable and
Vigilant Switch Flow Management in Software-Defined Networks,” in Proceedings
of the 20th ACM Conference on Computer and Communications Security. ACM,
2013, pp. 413–424.

[61] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX: Detecting
Security Attacks in Software-Defined Networks.” in Proceedings of the Network
and Distributed System Security Symposium 2015 (NDSS 15). ISOC, 2015.

[62] L. Cholvy and F. Cuppens, “Analyzing Consistency of Security Policies,” in
Proceedings of the 1997 IEEE Symposium on Security and Privacy. IEEE, 1997,
pp. 103–112.

[63] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder Policy Speci-
fication Language,” in Proceedings of the International Workshop on Policies
for Distributed Systems and Networks (POLICY 2001), ser. Lecture Notes in
Computer Science, vol. 1995. Springer, 2001, pp. 18–38.

[64] E. Al-Shaer and S. Al-Haj, “Flowchecker: Configuration Analysis and Verification
of Federated Openflow Infrastructures,” in Proceedings of the 3rd ACM Workshop
on Assurable and Usable Security Configuration (SafeConfig ’10). ACM, 2010,
pp. 37–44.

[65] S. Hazelhurst, “Algorithms for Analysing Firewall and Router Access
Lists,” CoRR, vol. cs.NI/0008006, 2000. [Online]. Available: http:
//arxiv.org/abs/cs.NI/0008006

123

http://www.projectfloodlight.org/floodlight/
http://arxiv.org/abs/cs.NI/0008006
http://arxiv.org/abs/cs.NI/0008006

[66] Y. Gu, A. McCallum, and D. Towsley, “Detecting Anomalies in Network Traffic
Using Maximum Entropy Estimation,” in Proceedings of the 5th ACM SIG-
COMM Conference on Internet Measurement (IMC 05). USENIX Association,
2005, p. 32.

[67] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker, and others, “Composing
Software-Defined Networks,” in Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’13). USENIX
Association, 2013, pp. 1–13.

[68] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and
D. Walker, “Frenetic: A Network Programming Language,” in Proceedings of
the 16th ACM SIGPLAN International Conference on Functional Programming
(ICFP ’11), vol. 46. ACM, 2011, pp. 279–291.

[69] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul, “Enforcing
Network-Wide Policies in the Presence of Dynamic Middlebox Actions Using
Flowtags,” in Proceedings of the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’14). USENIX Association, 2014.

[70] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and M. Tyson,
“FRESCO: Modular Composable Security Services for Software-Defined Net-
works.” in Proceedings of the Network and Distributed System Security Sympo-
sium 2013 (NDSS 13). ISOC, Feb. 2013.

[71] S. Natarajan, X. Huang, and T. Wolf, “Efficient Conflict Detection in Flow-Based
Virtualized Networks,” in Proceedings of the 2012 International Conference on
Computing, Networking and Communications (ICNC 2012). IEEE, 2012, pp.
690–696.

[72] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
Verifying Network-Wide Invariants in Real Time,” in Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
’13). USENIX Association, 2013, pp. 15–27.

[73] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and S. Whyte,
“Real Time Network Policy Checking Using Header Space Analysis,” in Pro-
ceedings of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’13). USENIX Association, 2013, pp. 99–111.

[74] P. Kazemian, G. Varghese, and N. McKeown, “Header Space Analysis: Static
Checking for Networks,” in Proceedings of the 9th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI ’12). USENIX Association,
2012, pp. 113–126.

[75] S. H. Yeganeh and Y. Ganjali, “Kandoo: A Framework for Efficient and Scalable
Offloading of Control Applications,” in The Beacon Openflow Controller. ACM,
2012, pp. 19–24.

124

[76] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed SDN Controllers
in a Multi-Domain Environment,” in Proceedings of the 2014 IEEE Network
Operations and Management Symposium (NOMS 2014). IEEE, May 2014, pp.
1–2.

[77] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow, and others, “ONOS: Towards an Open,
Distributed SDN OS,” in Proceedings of the 3rd Workshop on Hot Topics in
Software Defined Networking (HotSDN 2014). ACM, 2014, pp. 1–6.

[78] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani, R. Ahmed, and
R. Boutaba, “Dynamic Controller Provisioning in Software-Defined Networks,”
in Proceedings of the 9th International Conference on Network and Service
Management (CNSM 2013). IEEE, 2013, pp. 18–25.

[79] G. Yao, J. Bi, Y. Li, and L. Guo, “On the Capacitated Controller Placement
Problem in Software-Defined Networks,” IEEE Communications Letters, vol. 18,
no. 8, pp. 1339–1342, Aug. 2014.

[80] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
Internet Topology Zoo,” IEEE Journal on Selected Areas in Communications,
vol. 29, no. 9, pp. 1765–1775, Oct. 2011.

[81] P. Xiao, W. Qu, H. Qi, Z. Li, and Y. Xu, “The SDN Controller Placement Prob-
lem for WAN,” in Proceedings of the 2014 IEEE/CIC International Conference
on Communications in China (ICCC). IEEE, 2014, pp. 220–224.

[82] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On the Placement of
Controllers in Software-Defined Networks,” The Journal of China Universities
of Posts and Telecommunications, vol. 19, pp. 92–171, 2012.

[83] ——, “Reliability-aware controller placement for Software-Defined Networks,”
in Proceedings of the 13th IFIP/IEEE International Symposium on Integrated
Network Management (IM 2013). IEEE, May 2013, pp. 672–675.

[84] V. V. Vazirani, Approximation Algorithms. Springer Science & Business Media,
2013.

[85] N. Beheshti and Y. Zhang, “Fast Failover for Control Traffic in Software-Defined
Networks,” in Proceedings of the 2012 IEEE Global Communications Conference
(GLOBECOM 2012). IEEE, Dec. 2012, pp. 2665–2670.

[86] “OpenFlow Switch Specification v1.3.1,” Open Network-
ing Foundation, Tech. Rep., Sep. 2012. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf

[87] J. Liu, Y. Li, H. Wang, D. Jin, L. Su, L. Zeng, and T. Vasilakos, “Leveraging
Software-Defined Networking for Security Policy Enforcement,” Information
Sciences, vol. 327, pp. 288–299, 2016.

125

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf

[88] D. A. Joseph, A. Tavakoli, and I. Stoica, “A Policy-Aware Switching Layer for
Data Centers,” in Proceedings of the 2008 ACM Conference on Special Interest
Group on Data Communication (SIGCOMM ’08). ACM, 2008.

[89] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi, “The Middlebox
Manifesto: Enabling Innovation in Middlebox Deployment,” in Proceedings of
the 10th ACM Workshop on Hot Topics in Networks (HotNets-X). ACM, 2011,
p. 21.

[90] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar,
“Making Middleboxes Someone Else’s Problem: Network Processing as a Cloud
Service,” ACM SIGCOMM Computer Communication Review, vol. 42, no. 4,
pp. 13–24, 2012.

[91] J. Lee, J. Tourrilhes, P. Sharma, and S. Banerjee, “No More Middlebox: Integrate
Processing into Network,” ACM SIGCOMM Computer Communication Review,
vol. 40, pp. 459–460, 2010.

[92] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward Software-Defined
Middlebox Networking,” in Proceedings of the 11th ACM Workshop on Hot
Topics in Networks (HotNets-XI). ACM, 2012, pp. 7–12.

[93] I. Alsmadi and D. Xu, “Security of Software Defined Networks: A Survey,”
Computers & Security, vol. 53, pp. 79–108, 2015.

[94] J. G. V. Pena and W. E. Yu, “Development of a Distributed Firewall Using
Software Defined Networking Technology,” in Proceedings of the 4th International
Conference on Information Science and Technology (ICIST 2014). IEEE, 2014,
pp. 449–452.

[95] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “SIMPLE-fying
Middlebox Policy Enforcement Using SDN,” in Proceedings of the 2013 ACM
Conference on Special Interest Group on Data Communication (SIGCOMM ’13).
ACM, 2013, pp. 27–38.

[96] X. Liu, H. Xue, X. Feng, and Y. Dai, “Design of the Multi-Level Security
Network Switch System Which Restricts Covert Channel,” in Proceedings of the
IEEE 3rd International Conference on Communication Software and Networks
(ICCSN 2011). IEEE, 2011, pp. 233–237.

[97] J. Franois, L. Dolberg, O. Festor, and T. Engel, “Network Security Through
Software Defined Networking: A Survey,” in Proceedings of the 7th Conference
on Principles, Systems and Applications of IP Telecommunications (IPTComm
2014). ACM, 2014, p. 6.

[98] P. A. Porras, S. Cheung, M. W. Fong, K. Skinner, and V. Yegneswaran, “Securing
the Software Defined Network Control Layer,” in Proceedings of the Network
and Distributed System Security Symposium 2015 (NDSS 15). ISOC, 2015.

126

[99] M. Kuniar, P. Pereni, and D. Kosti, “What You Need to Know About SDN
Flow Tables,” in International Conference on Passive and Active Network
Measurement. Springer, 2015, pp. 347–359.

[100] J. D. Guttman, A. L. Herzog, J. D. Ramsdell, and C. W. Skorupka, “Verifying
Information Flow Goals in Security-Enhanced Linux,” Journal of Computer
Security, vol. 13, no. 1, pp. 115–134, 2005.

[101] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in Software Defined
Networks: A Survey,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4,
pp. 2317–2346, 2015.

[102] A. Chowdhary, S. Pisharody, and D. Huang, “SDN Based Scalable MTD
Solution in Cloud Network,” in Proceedings of the 3rd ACM Workshop on Moving
Target Defense (MTD 2016), ser. MTD ’16. New York, NY, USA: ACM, 2016,
pp. 27–36. [Online]. Available: http://doi.acm.org/10.1145/2995272.2995274

[103] J. Yackoski, H. Bullen, X. Yu, and J. Li, “Applying Self-Shielding Dynamics to
the Network Architecture,” in Moving Target Defense II. Springer, 2013, pp.
97–115.

[104] C. Basile, A. Cappadonia, and A. Lioy, “Algebraic Models to Detect and
Solve Policy Conflicts,” in Proceedings of the 7th International Conference
on Mathematical Methods, Models, and Architectures for Computer Network
Security (MMM-ACNS 2007). Springer, 2007, pp. 242–247.

[105] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, “Overview and
Principles of Internet Traffic Engineering,” IETF, RFC 3272, 2002. [Online].
Available: https://tools.ietf.org/html/rfc3272

[106] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A Roadmap for Traffic
Engineering in SDN-Openflow Networks,” Computer Networks, vol. 71, pp. 1–30,
Oct. 2014.

[107] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “Balanceflow: Controller
Load Balancing for Openflow Networks,” in Proceedings of the 2012 IEEE 2nd
International Conference on Cloud Computing and Intelligent Systems (CCIS
2012), vol. 2. IEEE, 2012, pp. 780–785.

[108] D. Erickson, “The Beacon Openflow Controller,” in Proceedings of the 2nd
Workshop on Hot Topics in Software Defined Networking (HotSDN 2013). ACM,
2013, pp. 13–18.

[109] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hedera:
Dynamic Flow Scheduling for Data Center Networks,” in Proceedings of the 7th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
’10), vol. 10. USENIX Association, 2010, pp. 19–19.

127

http://doi.acm.org/10.1145/2995272.2995274
https://tools.ietf.org/html/rfc3272

[110] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-Overhead Datacenter
Traffic Management Using End-Host-Based Elephant Detection,” in Proceed-
ings of the 30th International IEEE Conference on Computer Communications
(INFOCOM 2011). IEEE, 2011, pp. 1629–1637.

[111] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine Grained Traffic
Engineering for Data Centers,” in Proceedings of the Seventh Conference on
Emerging Networking Experiments and Technologies (CoNEXT ’11). ACM,
2011, p. 8.

[112] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “DevoFlow: Scaling Flow Management for High-Performance
Networks,” ACM SIGCOMM Computer Communication Review, vol. 41, pp.
254–265, 2011.

[113] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable Flow-Based Net-
working with DIFANE,” ACM SIGCOMM Computer Communication Review,
vol. 40, no. 4, pp. 351–362, 2010.

[114] A. Chowdhary, S. Pisharody, A. Alshamrani, and D. Huang, “Dynamic
Game Based Security Framework in SDN-enabled Cloud Networking
Environments,” in Proceedings of the 2017 ACM International Workshop on
Security in Software Defined Networks & Network Function Virtualization
(SDN-NFV Security ’17). ACM, 2017, pp. 53–58. [Online]. Available:
http://doi.acm.org/10.1145/3040992.3040998

[115] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying NOX to
the Datacenter,” in Proceedings of the 8th ACM Workshop on Hot Topics in
Networks (HotNets-VIII). ACM, 2009.

[116] “Wire Speed to PPS.” [Online]. Available: https://kb.juniper.net/InfoCenter/
index?page=content&id=KB14737

[117] Y. Jimenez, C. Cervello-Pastor, and A. J. Garcia, “On the Controller Placement
for Designing a Distributed SDN Control Layer,” in Proceedings of the 2014
IFIP Networking Conference (Networking 2014). IEEE, 2014, pp. 1–9.

[118] S. Sezer, S. Scott-Hayward, P.-K. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, “Are We Ready for SDN? Implementation
Challenges for Software-Defined Networks,” IEEE Communications Magazine,
vol. 51, no. 7, pp. 36–43, 2013.

[119] “DragonFlow.” [Online]. Available: https://wiki.openstack.org/wiki/Dragonflow

[120] P. K. Khatkar, “Firewall Rule Set Analysis and Visualization,” Master’s Thesis,
Arizona State University, 2014.

[121] J. G. Alfaro, N. Boulahia-Cuppens, and F. Cuppens, “Complete Analysis of Con-
figuration Rules to Guarantee Reliable Network Security Policies,” International
Journal of Information Security, vol. 7, no. 2, pp. 103–122, Apr. 2008.

128

http://doi.acm.org/10.1145/3040992.3040998
https://kb.juniper.net/InfoCenter/index?page=content&id=KB14737
https://kb.juniper.net/InfoCenter/index?page=content&id=KB14737
https://wiki.openstack.org/wiki/Dragonflow

[122] F. B. Schneider, “Least Privilege and More,” IEEE Security & Privacy, vol. 1,
no. 5, pp. 55–59, 2003.

[123] H. Joh and Y. K. Malaiya, “Defining and Assessing Quantitative Security Risk
Measures Using Vulnerability Lifecycle and CVSS Metrics,” in Proceedings of the
10th International Conference on Security and Management (SAM ’11), 2011,
pp. 10–16.

[124] R. P. Lippmann, J. Riordan, T. Yu, and K. Watson, “Continuous Security
Metrics for Prevalent Network Threats: Introduction and First Four Metrics,”
Massachusetts Institute of Institute of Technology Lincoln Laboratory, Tech.
Rep. MIT-LL-IA-3, May 2012.

[125] D. Raymond, G. Conti, T. Cross, and M. Nowatkowski, “Key Terrain in Cy-
berspace: Seeking the High Ground,” in Proceedings of the 6th International
Conference on Cyber Conflict (CyCon 2014). IEEE, 2014, pp. 287–300.

[126] J. Natarajan, “Analysis and Visualization of OpenFlow Rule Conflicts,” Master’s
Thesis, Arizona State University, 2016.

[127] M. M. Coulombe, H. Singh, E. Karlson, and M. Venugopal, “OpenDaylight
dlux,” Sep. 2013. [Online]. Available: https://wiki.opendaylight.org/view/
OpenDaylight dlux:Main

[128] D. R. Morrison, “PATRICIA - Practical Algorithm to Retrieve Information
Coded in Alphanumeric,” Journal of the ACM (JACM), vol. 15, no. 4, pp.
514–534, 1968.

[129] P. Gupta and N. McKeown, “Algorithms for Packet Classification,” IEEE
Network, vol. 15, no. 2, pp. 24–32, 2001.

[130] K. Poornaselvan, S. Suresh, D. Chidambaram, and C. Gayathri, “Efficient
IP Lookup Algorithm,” in Special Topics in Computing and ICT Research -
Strengthening the Role of ICT in Development, 2007, vol. 3, pp. 111–122.

[131] “OpenDaylight,” 2010. [Online]. Available: https://www.opendaylight.org/

[132] “The Linux Foundation.” [Online]. Available: https://www.linuxfoundation.org/

[133] “OpenDaylight Project Repository,” May 2014. [Online]. Available: https:
//github.com/opendaylight/l2switch

[134] B. Pfaff and B. Davie, “The Open vSwitch Database Management Protocol,”
IETF, RFC 7047, 2013. [Online]. Available: https://tools.ietf.org/html/rfc7047

[135] “Apache Karaf.” [Online]. Available: http://karaf.apache.org/

[136] A. Bierman, M. Bjorklund, and K. Watsen, “RESTCONF Protocol,” IETF,
RFC 8040, Jan. 2017. [Online]. Available: https://tools.ietf.org/html/rfc8040

[137] “Postman,” 2013. [Online]. Available: https://www.getpostman.com/

129

https://wiki.opendaylight.org/view/OpenDaylight_dlux:Main
https://wiki.opendaylight.org/view/OpenDaylight_dlux:Main
https://www.opendaylight.org/
https://www.linuxfoundation.org/
https://github.com/opendaylight/l2switch
https://github.com/opendaylight/l2switch
https://tools.ietf.org/html/rfc7047
http://karaf.apache.org/
https://tools.ietf.org/html/rfc8040
https://www.getpostman.com/

[138] M. Bostock, “D3,” 2016. [Online]. Available: https://d3js.org/

[139] “JSON.” [Online]. Available: http://www.json.org/

[140] D. Holten, “Hierarchical Edge Bundles: Visualization of Adjacency Relations in
Hierarchical Data,” IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 5, pp. 741–748, 2006.

[141] E. M. Reingold and J. S. Tilford, “Tidier Drawings of Trees,” IEEE Transactions
on Software Engineering, no. 2, pp. 223–228, 1981.

[142] “Mininet.” [Online]. Available: http://mininet.org

[143] “Cisco Data Center Infrastructure 2.5 Design Guide,” in Cisco Validated Design
I. Cisco Systems, Inc, 2007.

[144] “Trustworthy Cyberspace: Strategic Plan for the Federal Cybersecurity Research
and Development Program,” White House, Tech. Rep., 2011.

[145] B. Schmerl, J. Cmara, G. A. Moreno, D. Garlan, and A. Mellinger, “Architecture-
Based Self-Adaptation for Moving Target Defense,” Technical Report CMU-ISR-
14-109. Carnegie Mellon University, Tech. Rep., 2014.

[146] D. Evans, A. Nguyen-Tuong, and J. Knight, “Effectiveness of Moving Target
Defenses,” in Moving Target Defense. Springer, 2011, pp. 29–48.

[147] R. Saha and A. Agarwal, “SDN Approach to Large Scale Global Data Centers,”
Proceedings of the Open Networking Summit, Santa Clara, California, USA,
2012.

[148] C.-J. Chung, T. Xing, D. Huang, D. Medhi, and K. Trivedi, “SeReNe: On
Establishing Secure and Resilient Networking Services for an SDN-Based Multi-
Tenant Datacenter Environment,” in Proceedings of the 2015 IEEE International
Conference on Dependable Systems and Networks Workshops (DSN-W). IEEE,
2015, pp. 4–11.

[149] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow Random Host Mutation:
Transparent Moving Target Defense Using Software Defined Networking,” in
Proceedings of the 1st Workshop on Hot Topics in Software Defined Networking
(HotSDN 2012). ACM, 2012, pp. 127–132.

[150] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “NICE: Network
Intrusion Detection and Countermeasure Selection in Virtual Network Systems,”
IEEE Transactions on Dependable and Secure Computing, vol. 10, no. 4, pp.
198–211, 2013.

[151] T. Hobson, H. Okhravi, D. Bigelow, R. Rudd, and W. Streilein, “On the
Challenges of Effective Movement,” in Proceedings of the 1st ACM Workshop
on Moving Target Defense (MTD 2014). ACM, 2014, pp. 41–50.

130

https://d3js.org/
http://www.json.org/
http://mininet.org

[152] J. Xu, P. Guo, M. Zhao, R. F. Erbacher, M. Zhu, and P. Liu, “Comparing
Different Moving Target Defense Techniques,” in Proceedings of the 1st ACM
Workshop on Moving Target Defense (MTD 2014). ACM, 2014, pp. 97–107.

[153] D. Kewley, R. Fink, J. Lowry, and M. Dean, “Dynamic Approaches to Thwart
Adversary Intelligence Gathering,” in DARPA Information Survivability Confer-
ence & Exposition II, 2001. DISCEX’01. Proceedings, vol. 1. IEEE, 2001,
pp. 176–185.

[154] M. Atighetchi, P. Pal, F. Webber, and C. Jones, “Adaptive Use of Network-
Centric Mechanisms in Cyber-Defense,” in Object-Oriented Real-Time Dis-
tributed Computing, 2003. Sixth IEEE International Symposium on. IEEE,
2003, pp. 183–192.

[155] M. Krzywinski, “Port Knocking from the Inside Out,” SysAdmin Magazine,
vol. 12, no. 6, pp. 12–17, 2003.

[156] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis, “Defending
Against Hitlist Worms Using Network Address Space Randomization,” Computer
Networks, vol. 51, no. 12, pp. 3471–3490, Aug. 2007.

[157] E. Al-Shaer, “Toward Network Configuration Randomization for Moving Target
Defense,” in Moving Target Defense. Springer, 2011, pp. 153–159.

[158] Q. Duan, E. Al-Shaer, and H. Jafarian, “Efficient Random Route Mutation
Considering Flow and Network Constraints,” in Proceedings of the 2013 IEEE
Conference on Communications and Network Security (CNS). IEEE, 2013, pp.
260–268.

[159] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic Storage
Allocation: A Survey and Critical Review,” in Memory Management. Springer,
1995, pp. 1–116.

[160] L. Buttyn, G. Pk, and T. V. Thong, “Consistency Verification of Stateful
Firewalls Is Not Harder Than the Stateless Case,” Infocommunications Journal,
vol. 64, no. 1, pp. 2–8, 2009.

[161] O. Chowdhury, A. Gampe, J. Niu, J. von Ronne, J. Bennatt, A. Datta, L. Jia, and
W. H. Winsborough, “Privacy Promises That Can Be Kept: A Policy Analysis
Method with Application to the HIPAA Privacy Rule,” in Proceedings of the
18th ACM Symposium on Access Control Models and Technologies (SACMAT
’13). ACM, 2013, pp. 3–14.

[162] Y. Shvartzshnaider, S. Tong, T. Wies, P. Kift, H. Nissenbaum, L. Subrama-
nian, and P. Mittal, “Crowdsourced, Actionable and Verifiable Contextual
Informational Norms,” CoRR, vol. abs/1601.04740.

131

APPENDIX A

FLOW RULE MATCH FIELDS

132

The following lists all the default match fields for a rule in OpenFlow v1.3.1 [86].

Argument Description Required Field?

OFPXMT_OFB_IN_PORT Switch input port 3
OFPXMT_OFB_IN_PHY_PORT Switch physical input port
OFPXMT_OFB_METADATA Metadata passed between tables
OFPXMT_OFB_ETH_DST Ethernet destination address 3
OFPXMT_OFB_ETH_SRC Ethernet source address 3
OFPXMT_OFB_ETH_TYPE Ethernet frame type 3
OFPXMT_OFB_VLAN_VID VLAN ID
OFPXMT_OFB_VLAN_PCP VLAN priority
OFPXMT_OFB_IP_DSCP IP DSCP (6 bits in ToS field)
OFPXMT_OFB_IP_ECN IP ECN (2 bits in ToS field)
OFPXMT_OFB_IP_PROTO IP protocol 3
OFPXMT_OFB_IPV4_SRC IPv4 source address 3
OFPXMT_OFB_IPV4_DST IPv4 destination address 3
OFPXMT_OFB_TCP_SRC TCP source port 3
OFPXMT_OFB_TCP_DST TCP destination port 3
OFPXMT_OFB_UDP_SRC UDP source port 3
OFPXMT_OFB_UDP_DST UDP destination port 3
OFPXMT_OFB_SCTP_SRC SCTP source port
OFPXMT_OFB_SCTP_DST SCTP destination port
OFPXMT_OFB_ICMPV4_TYPE ICMP type
OFPXMT_OFB_ICMPV4_CODE ICMP code
OFPXMT_OFB_ARP_OP ARP opcode
OFPXMT_OFB_ARP_SPA ARP source IPv4 address
OFPXMT_OFB_ARP_TPA ARP target IPv4 address
OFPXMT_OFB_ARP_SHA ARP source hardware address
OFPXMT_OFB_ARP_THA ARP target hardware address
OFPXMT_OFB_IPV6_SRC IPv6 source address 3
OFPXMT_OFB_IPV6_DST IPv6 destination address 3
OFPXMT_OFB_IPV6_FLABEL IPv6 Flow Label
OFPXMT_OFB_ICMPV6_TYPE ICMPv6 type
OFPXMT_OFB_ICMPV6_CODE ICMPv6 code
OFPXMT_OFB_IPV6_ND_TARGET Target address for ND
OFPXMT_OFB_IPV6_ND_SLL Source link-layer for ND
OFPXMT_OFB_IPV6_ND_TLL Target link-layer for ND
OFPXMT_OFB_MPLS_LABEL MPLS label
OFPXMT_OFB_MPLS_TC MPLS TC
OFPXMT_OFP_MPLS_BOS MPLS BoS bit
OFPXMT_OFB_PBB_ISID PBB I-SID
OFPXMT_OFB_TUNNEL_ID Logical Port Metadata
OFPXMT_OFB_IPV6_EXTHDR IPv6 Extension Header

Table A.1: Flow Table Match Fields.

133

APPENDIX B

FLOW RULE MATCH FIELDS

134

The following is a list of actions that may be associated with flow entries in

OpenFlow v1.3.1 [86].

Argument Description

OFPAT_OUTPUT Output to switch port
OFPAT_COPY_TTL_OUT Copy TTL “outwards”from next-to-outermost to outermost
OFPAT_COPY_TTL_IN Copy TTL “inwards”from outermost to next-to-outermost
OFPAT_SET_MPLS_TTL MPLS TTL
OFPAT_DEC_MPLS_TTL Decrement MPLS TTL
OFPAT_PUSH_VLAN Push a new VLAN tag
OFPAT_POP_VLAN Pop the outer VLAN tag
OFPAT_PUSH_MPLS Push a new MPLS tag
OFPAT_POP_MPLS Pop the outer MPLS tag
OFPAT_SET_QUEUE Set queue id when outputting to a port
OFPAT_GROUP Apply group
OFPAT_SET_NW_TTL IP TTL
OFPAT_DEC_NW_TTL Decrement IP TTL
OFPAT_SET_FIELD Set a header field using OXM TLV format
OFPAT_PUSH_PBB Push a new PBB service tag (I-TAG)
OFPAT_POP_PBB Pop the outer PBB service tag (I-TAG)
OFPAT_EXPERIMENTER Experimenter defined

Table B.1: Flow Table Actions.

135

APPENDIX C

LIST OF ABBREVIATIONS

136

The following is a complete list of various abbreviations and acronyms used
throughout this dissertation listed alphabetically.

AAA Authentication, Authorization
and Accounting

PBB Provider Backbone Bridge

API Application Programming In-
terface

PCEP Path Computation Element
Protocol

ARP Address Resolution Protocol PCIM Policy Core Information
Model

BGP Border Gateway Protocol PDP Policy Decision Point
BDD Binary Decision Diagrams PEP Policy Enforcement Point
BYOD Bring Your Own Device PM Policy Manager
CAPWAP Control And Provisioning of

Wireless Access Points
PR Policy Repository

CKT Cyber Key Terrain QoS Quality of Service
CLI Command Line Interface REST Representational State Trans-

fer
CRUD Create, Read, Update and

Delete
SaaS Security-as-a-Service

CSV Comma Separated Values SDN Software-Defined Networks
DDoS Distributed Denial-of-Service SEK Security Enforcement Kernel
DHCP Dynamic Host Configuration

Protocol
SLA Service Level Agreement

DPI Deep Packet Inspection SNMP Simple Network Management
Protocol

DTO Data Transfer Object TCP Transmission Control Protocol
ECA Event-Condition-Action TE Traffic Engineering
FPA Firewall Policy Advisor TTL Time to Live
GUI Graphical User Interface UI User Interface
IaaS Infrastructure-as-a-Service VM Virtual Machine
IDS Intrusion Detection System VLAN Virtual Local-Area Network
IETF Internet Engineering Task

Force
VPN Virtual Private Network

IPFIX IP Flow Information eXport
IPS Intrusion Prevention System
MDL Model Definition Language
MPLS Multi Protocol Label Switching
MTD Moving Target Defense
NAT Network Address Translation
NIC Network Interface Card
ODL OpenDaylight
ONF Open Network Foundation
OSGi Open Service Gateway Initia-

tive
OSI Open Systems Interconnection
OVS Open Virtual Switch

137

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Research Objectives & Contributions
	Dissertation Organization

	Background and State of the Art
	Evolution of Security Infrastructures
	Security Policy Management
	Software-Defined Networks (SDN)
	OpenFlow
	Open Virtual Switch (OVS)

	Related Work
	Firewall Rule Conflicts
	SDN Security & SDN Policy Management
	Distributed SDN Environments

	Flow Rule Conflicts
	Flow Rules
	Flow Rule Model
	Security Policies using Flow Rules
	Flow Rule Management Challenges
	Motivating Scenarios
	Case Study 1: Moving Target Defense (MTD)
	Case Study 2: VPN Services
	Case Study 3: Load Balancing & IDS

	Flow Rule Conflicts
	Problem Setup
	Conflict Classes
	Cross-layer Policy Conflicts
	Traffic Engineering Flow Rules

	Distributed SDN Controller Considerations
	Challenges in Multiple-Controller Domain
	Controller Decentralization Model
	Clustered Controllers
	Host-based Partitioning
	Hierarchical Controllers
	Application-based Partitioning
	Heterogeneous Partitioning

	Flow Rule Conflict Resolution
	Conflict Severity Classification
	Tier-1 Conflicts
	Tier-2 Conflicts
	Tier-3 Conflicts

	Conflict Resolution Model
	Intelligible Conflicts
	Interpretative Conflicts

	BREW: A Security Policy Management Framework in Distributed SDN Environments
	System Overview & Models
	Design Requirements & Assumptions
	Operating Environment
	Security Model

	System Architecture
	System Modules
	OFAnalyzer Module
	OFProcessor Module

	Implementation
	OpenDaylight (ODL)
	Flow Extraction Engine
	Flow Prepping Engine
	Conflict Detection Engine
	Conflict Resolution Engine
	Visualization Engine

	Evaluation
	Theoretical Evaluation
	Correctness Verification
	Performance Overhead
	Scalability Evaluation
	Effect of Decentralization Strategies

	Conflict-free Countermeasure Generation for MTD in Distributed SDN Clouds
	Problem Statement
	Moving Target Defense (MTD)
	System Model
	System Assumptions
	System Components

	Implementation
	Evaluation of CaCTuS

	Conclusion
	System Limitations
	Future Work

	REFERENCES
	Flow Rule Match Fields
	Flow Rule Match Fields
	List of Abbreviations

