410 research outputs found

    Selection of the key earth observation sensors and platforms focusing on applications for Polar Regions in the scope of Copernicus system 2020-2030

    Get PDF
    An optimal payload selection conducted in the frame of the H2020 ONION project (id 687490) is presented based on the ability to cover the observation needs of the Copernicus system in the time period 2020–2030. Payload selection is constrained by the variables that can be measured, the power consumption, and weight of the instrument, and the required accuracy and spatial resolution (horizontal or vertical). It involved 20 measurements with observation gaps according to the user requirements that were detected in the top 10 use cases in the scope of Copernicus space infrastructure, 9 potential applied technologies, and 39 available commercial platforms. Additional Earth Observation (EO) infrastructures are proposed to reduce measurements gaps, based on a weighting system that assigned high relevance for measurements associated to Marine for Weather Forecast over Polar Regions. This study concludes with a rank and mapping of the potential technologies and the suitable commercial platforms to cover most of the requirements of the top ten use cases, analyzing the Marine for Weather Forecast, Sea Ice Monitoring, Fishing Pressure, and Agriculture and Forestry: Hydric stress as the priority use cases.Peer ReviewedPostprint (published version

    Relationship between aquarius L-band active and passive multi-year observations over Australia

    Get PDF
    This PFC is focused in evaluating the feasibility of doing a combined changed algorithm to simplify the process of low resolution downscaling using high resolution.The aim of this Thesis is to further our understanding of the geophysical information that can be estimated from active and passive L-band sensors. All data was obtained from NASA's satellite Aquarius durin the period Sept. 2011- August 2014

    Microwave remote sensing from space

    Get PDF
    Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms--soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries

    Guidelines for spaceborne microwave remote sensors

    Get PDF
    A handbook was developed to provide information and support to the spaceborne remote sensing and frequency management communities: to guide sensor developers in the choice of frequencies; to advise regulators on sensor technology needs and sharing potential; to present sharing analysis models and, through example, methods for determining sensor sharing feasibility; to introduce developers to the regulatory process; to create awareness of proper assignment procedures; to present sensor allocations; and to provide guidelines on the use and limitations of allocated bands. Controlling physical factors and user requirements and the regulatory environment are discussed. Sensor frequency allocation achievable performance and usefulness are reviewed. Procedures for national and international registration, the use of non-allocated bands and steps for obtaining new frequency allocations, and procedures for reporting interference are also discussed

    Enabling Big Science in a Small Satellite - The Global L-band Observatory for Water Cycle Studies (GLOWS) Mission

    Get PDF
    The SMOS and SMAP radiometers have demonstrated the ability to monitor soil moisture and sea surface salinity. It is important to maintain data continuity for these science measurements. The proposed instrument concept (Global L-band active/passive Observatory for Water cycle Studies - GLOWS) will enable low-cost L-band data continuity (that includes both L-band radar and radiometer measurements). The objective of this project is to develop key instrument technology to enable L-band observations using an Earth Venture class satellite. Specifically, a new deployable meta-lens antenna is being developed that will enable a smaller EELV Secondary Payload Adapter (ESPA) Grande-class satellite mission to continue the L-band observations at SMAP and SMOS resolution and accuracy at substantially lower cost, size, and weight. The key to maintaining the scientific value of the observations is the retention of the full 6-meter antenna aperture, while packaging that aperture on a small ESPA Grande satellite platform. The meta-lens antenna is lightweight, has a simplified flat deployed surface geometry, and stows in a compact form factor. This dramatic aperture packaging reduction enables the GLOWS sensor to fit on an Earth Venture class satellite

    On the correlation between GNSS-R reflectivity and L-band microwave radiometry

    Get PDF
    This work compares microwave radiometry and global navigation satellite systems-reflectometry (GNSS-R) observations using data gathered from airborne flights conducted for three different soil moisture conditions. Two different regions are analyzed, a crops region and a grassland region. For the crops region, the correlation with the I/2 (first Stokes parameter divided by two) was between 0.74 and 0.8 for large incidence angle reflectivity data (30°-50°), while it was between 0.51 and 0.61 for the grassland region and the same incidence angle conditions. For the crops region, the correlation with the I/2 was between 0.64 and 0.69 for lower incidence angle reflectivity data (<;30°), while it was between 0.41 and 0.6 for the grassland region. This indicates that for large incidence angles the coherent scattering mechanism is dominant, while the lower incidence angles are more affected by incoherent scattering. Also a relationship between the reflectivity and the polarization index (PI) is observed. The PI has been used to remove surface roughness effects, but due to its dependence on the incidence angle only the large incidence angle observations were useful. The difference in ground resolution between microwave radiometry and GNSS-R and their strong correlation suggests that they might be combined to improve the spatial resolution of microwave radiometry measurements in terms of brightness temperature and consequently soil moisture retrievals.This work was supported in part by the Spanish Ministry of Science and Innovation, “AROSA-Advanced Radio Ocultations and Scatterometry Applications using GNSS and other opportunity signals,” under Grant AYA2011-29183-C02-01/ESP and “AGORA: Tecnicas Avanzadas en Teledetección Aplicada Usando Señales GNSS y Otras Señales de Oportunidad,” under Grant ESP2015-70014-C2-1-R (MINECO/FEDER), in part by the Monash University Faculty of Engineering 2013 Seed Grant, and in part by the Advanced Remote Sensing Ground-Truth Demo and Test Facilities and Terrestrial Environmental Observatories funded by the German Helmholtz-Association. The work of A. A.-Arroyo was supported by the Fulbright Commission in Spain through a Fulbright grant.Peer ReviewedPostprint (author's final draft

    Frequency requirements for active earth observation sensors

    Get PDF
    The foundation and rationale for the selection of microwave frequencies for active remote sensing usage and for subsequent use in determination of sharing criteria and allocation strategies for the WARC-79 are presented

    RadSTAR L-Band Imaging Scatterometer: Performance Assessment

    Get PDF
    RadSTAR is an instrument development program aimed at combining a radiometer and a scatterometer system into a highly compact configuration that uses a single, electronically scanned antenna to provide co-located and simultaneous measurements of emission and backscatter for airborne and spaceborne applications [I]. The program was designed to map soil moisture and ocean salinity, both important components of the water cycle, and to map sea ice density and thickness, an important factor in ocean-atmosphere heat exchange in Polar Regions. The accuracy in estimation of these and a number of other Earth science parameters can be greatly enhanced by providing the co-aligned radar/radiometer microwave measurements. For instance, radiometer estimates of soil moisture from soil emission are affected by emission from vegetation, and from the roughness of the surface. Complementary measurements using the scatterometer can be used to evaluate the vegetation and surface roughness effects. Hence, the combined observations can provide an improved estimate. As with soil moisture, the ocean salinity is a function of the microwave emission from the sea surface temperature (SST) and sea roughness. There, the addition of radar backscatter measurements of sea roughness enables the correction of the emissivity and provide more accurate estimates of ocean salinity. Similar arguments can be made for other important Earth science parameters. This paper discusses the RadSTAR program, the radar system design, calibration, and digital beamforming techniques, and presents preliminary analysis of the data collected during the test flights. The data sets obtained during the flights and during the radar calibration in the anechoic chamber are also employed to asses the performance of the radar. The paper also discusses the Digital Beamforming Synthetic Aperture Radar (DBSAR) processor, a real-time processor recently developed for the LIS instrument which enables beam synthesis, fine resolutions, and large swaths

    Data Requirements for Oceanic Processes in the Open Ocean, Coastal Zone, and Cryosphere

    Get PDF
    The type of information system that is needed to meet the requirements of ocean, coastal, and polar region users was examined. The requisite qualities of the system are: (1) availability, (2) accessibility, (3) responsiveness, (4) utility, (5) continuity, and (6) NASA participation. The system would not displace existing capabilities, but would have to integrate and expand the capabilities of existing systems and resolve the deficiencies that currently exist in producer-to-user information delivery options
    corecore