4,530 research outputs found

    Technology in the 21st Century: New Challenges and Opportunities

    Get PDF
    Although big data, big data analytics (BDA) and business intelligence have attracted growing attention of both academics and practitioners, a lack of clarity persists about how BDA has been applied in business and management domains. In reflecting on Professor Ayre's contributions, we want to extend his ideas on technological change by incorporating the discourses around big data, BDA and business intelligence. With this in mind, we integrate the burgeoning but disjointed streams of research on big data, BDA and business intelligence to develop unified frameworks. Our review takes on both technical and managerial perspectives to explore the complex nature of big data, techniques in big data analytics and utilisation of big data in business and management community. The advanced analytics techniques appear pivotal in bridging big data and business intelligence. The study of advanced analytics techniques and their applications in big data analytics led to identification of promising avenues for future research

    Web-Based Recommendation System for Smart Tourism: Multiagent Technology

    Get PDF
    The purpose of the study is to design and develop a recommended system based on agent and web technologies, which utilizes a hybrid recommendation filtering for the smart tourism industry. A hybrid recommendation system based on agent technology is designed by considering the online communication with other sectors in the tourism industry, such as the tourism supply chain, agency etc. However, online communication between the sectors via agents is designed and developed based on the contract net protocol. Furthermore, the design system is developed on the java agent development framework and implemented as a web application. Case study-based results considering two scenarios involving 100 customers illustrated that the proposed web application improves the rate of the recommendation for the customers. In the first scenario without disturbances, this rate was improved by 20% and the second scenario with disturbances yielded a 30% rate of acceptable recommendation. In addition, based on the second scenario, real time data communication on the system occurred, thus the proposed system supported real time data communication

    An architecture for user preference-based IoT service selection in cloud computing using mobile devices for smart campus

    Get PDF
    The Internet of things refers to the set of objects that have identities and virtual personalities operating in smart spaces using intelligent interfaces to connect and communicate within social environments and user context. Interconnected devices communicating to each other or to other machines on the network have increased the number of services. The concepts of discovery, brokerage, selection and reliability are important in dynamic environments. These concepts have emerged as an important field distinguished from conventional distributed computing by its focus on large-scale resource sharing, delivery and innovative applications. The usage of Internet of Things technology across different service provisioning environments has increased the challenges associated with service selection and discovery. Although a set of terms can be used to express requirements for the desired service, a more detailed and specific user interface would make it easy for the users to express their requirements using high-level constructs. In order to address the challenge of service selection and discovery, we developed an architecture that enables a representation of user preferences and manipulates relevant descriptions of available services. To ensure that the key components of the architecture work, algorithms (content-based and collaborative filtering) derived from the architecture were proposed. The architecture was tested by selecting services using content-based as well as collaborative algorithms. The performances of the algorithms were evaluated using response time. Their effectiveness was evaluated using recall and precision. The results showed that the content-based recommender system is more effective than the collaborative filtering recommender system. Furthermore, the results showed that the content-based technique is more time-efficient than the collaborative filtering technique

    Efficiency and Reliability in Bringing AI into Transport and Smart Cities Solutions

    Get PDF
    capacity and the low cost of the Cloud have facilitated the development of new, powerful algorithms. The efficiency of these algorithms in Big Data processing, Deep Learning and Convolutional Networks is transforming the way we work and is opening new horizons. Thanks to them, we can now analyse data and obtain unimaginable solutions to today’s problems. Nevertheless, our success is not entirely based on algorithms, it also comes from our ability to follow our “gut” when choosing the best combination of algorithms for an intelligent artefact. Their development involves the use of both connectionist and symbolic systems, that is to say data and knowledge. Moreover, it is necessary to work with both historical and real-time data. It is also important to consider development time, costs and the ability to create systems that will interact with their environment, will connect with the objects that surround them and will manage the data they obtain in a reliable manner. In this keynote, the evolution of intelligent computer systems will be examined, especially that of convolutional networks. The need for human capital will be discussed, as well as the need to follow one’s “gut instinct” in problem-solving. Furthermore, the importance of IoT and Blockchain in the development of intelligent systems will be analysed and it will be shown how tools like "Deep Intelligence" make it possible to create computer systems efficiently and effectively. "Smart" infrastructures need to incorporate all added-value resources so they can offer useful services to the society, while reducing costs, ensuring reliability and improving the quality of life of the citizens. The combination of AI with IoT and with blockchain offers a world of possibilities and opportunities. The development of transport, smart cities, urbanizations and leisure areas can be improved through the use of distributed intelligent computer systems. In this regard, edge platforms or fog computing help increase efficiency, reduce network latency, improve security and bring intelligence to the edge of the network, the sensors, users and the environment. Several use cases of intelligent systems will be presented, and it will be analysed how the processes of implementation and use have been optimized by means of different tools

    Smart territories

    Get PDF
    The concept of smart cities is relatively new in research. Thanks to the colossal advances in Artificial Intelligence that took place over the last decade we are able to do all that that we once thought impossible; we build cities driven by information and technologies. In this keynote, we are going to look at the success stories of smart city-related projects and analyse the factors that led them to success. The development of interactive, reliable and secure systems, both connectionist and symbolic, is often a time-consuming process in which numerous experts are involved. However, intuitive and automated tools like “Deep Intelligence” developed by DCSc and BISITE, facilitate this process. Furthermore, in this talk we will analyse the importance of complementary technologies such as IoT and Blockchain in the development of intelligent systems, as well as the use of edge platforms or fog computing

    Rapid Deployment of Deep AI Models in Engineering Solutions

    Get PDF
    The blockchain system, appeared in 2009 together with the virtual currency bitcoin, is a record of digital transactions based on a huge database in which all financial operations carried out with electronic currency are registered. The Blockchain (or chain of blocks) is a shared database that works as a book for the record of purchase-sale operations or any other transaction. It is the technological base of the operation of bitcoin, for example. It consists of a set of notes that are in a shared online database in which operations, quantities, dates and participants are registered by means of codes. By using cryptographic keys and being distributed by many computers (people), it presents security advantages against manipulation and fraud. A modification in one of the copies would be useless, but the change must be made in all the copies because the database is open and public

    Adaptive learning-based resource management strategy in fog-to-cloud

    Get PDF
    Technology in the twenty-first century is rapidly developing and driving us into a new smart computing world, and emerging lots of new computing architectures. Fog-to-Cloud (F2C) is among one of them, which emerges to ensure the commitment for bringing the higher computing facilities near to the edge of the network and also help the large-scale computing system to be more intelligent. As the F2C is in its infantile state, therefore one of the biggest challenges for this computing paradigm is to efficiently manage the computing resources. Mainly, to address this challenge, in this work, we have given our sole interest for designing the initial architectural framework to build a proper, adaptive and efficient resource management mechanism in F2C. F2C has been proposed as a combined, coordinated and hierarchical computing platform, where a vast number of heterogeneous computing devices are participating. Notably, their versatility creates a massive challenge for effectively handling them. Even following any large-scale smart computing system, it can easily recognize that various kind of services is served for different purposes. Significantly, every service corresponds with the various tasks, which have different resource requirements. So, knowing the characteristics of participating devices and system offered services is giving advantages to build effective and resource management mechanism in F2C-enabled system. Considering these facts, initially, we have given our intense focus for identifying and defining the taxonomic model for all the participating devices and system involved services-tasks. In any F2C-enabled system consists of a large number of small Internet-of-Things (IoTs) and generating a continuous and colossal amount of sensing-data by capturing various environmental events. Notably, this sensing-data is one of the key ingredients for various smart services which have been offered by the F2C-enabled system. Besides that, resource statistical information is also playing a crucial role, for efficiently providing the services among the system consumers. Continuous monitoring of participating devices generates a massive amount of resource statistical information in the F2C-enabled system. Notably, having this information, it becomes much easier to know the device's availability and suitability for executing some tasks to offer some services. Therefore, ensuring better service facilities for any latency-sensitive services, it is essential to securely distribute the sensing-data and resource statistical information over the network. Considering these matters, we also proposed and designed a secure and distributed database framework for effectively and securely distribute the data over the network. To build an advanced and smarter system is necessarily required an effective mechanism for the utilization of system resources. Typically, the utilization and resource handling process mainly depend on the resource selection and allocation mechanism. The prediction of resources (e.g., RAM, CPU, Disk, etc.) usage and performance (i.e., in terms of task execution time) helps the selection and allocation process. Thus, adopting the machine learning (ML) techniques is much more useful for designing an advanced and sophisticated resource allocation mechanism in the F2C-enabled system. Adopting and performing the ML techniques in F2C-enabled system is a challenging task. Especially, the overall diversification and many other issues pose a massive challenge for successfully performing the ML techniques in any F2C-enabled system. Therefore, we have proposed and designed two different possible architectural schemas for performing the ML techniques in the F2C-enabled system to achieve an adaptive, advance and sophisticated resource management mechanism in the F2C-enabled system. Our proposals are the initial footmarks for designing the overall architectural framework for resource management mechanism in F2C-enabled system.La tecnologia del segle XXI avança ràpidament i ens condueix cap a un nou món intel·ligent, creant nous models d'arquitectures informàtiques. Fog-to-Cloud (F2C) és un d’ells, i sorgeix per garantir el compromís d’acostar les instal·lacions informàtiques a prop de la xarxa i també ajudar el sistema informàtic a gran escala a ser més intel·ligent. Com que el F2C es troba en un estat preliminar, un dels majors reptes d’aquest paradigma tecnològic és gestionar eficientment els recursos informàtics. Per fer front a aquest repte, en aquest treball hem centrat el nostre interès en dissenyar un marc arquitectònic per construir un mecanisme de gestió de recursos adequat, adaptatiu i eficient a F2C.F2C ha estat concebut com una plataforma informàtica combinada, coordinada i jeràrquica, on participen un gran nombre de dispositius heterogenis. La seva versatilitat planteja un gran repte per gestionar-los de manera eficaç. Els serveis que s'hi executen consten de diverses tasques, que tenen requisits de recursos diferents. Per tant, conèixer les característiques dels dispositius participants i dels serveis que ofereix el sistema és un requisit per dissenyar mecanismes eficaços i de gestió de recursos en un sistema habilitat per F2C. Tenint en compte aquests fets, inicialment ens hem centrat en identificar i definir el model taxonòmic per a tots els dispositius i sistemes implicats en l'execució de tasques de serveis. Qualsevol sistema habilitat per F2C inclou en un gran nombre de dispositius petits i connectats (conegut com a Internet of Things, o IoT) que generen una quantitat contínua i colossal de dades de detecció capturant diversos events ambientals. Aquestes dades són un dels ingredients clau per a diversos serveis intel·ligents que ofereix F2C. A més, el seguiment continu dels dispositius participants genera igualment una gran quantitat d'informació estadística. En particular, en tenir aquesta informació, es fa molt més fàcil conèixer la disponibilitat i la idoneïtat dels dispositius per executar algunes tasques i oferir alguns serveis. Per tant, per garantir millors serveis sensibles a la latència, és essencial distribuir de manera equilibrada i segura la informació estadística per la xarxa. Tenint en compte aquests assumptes, també hem proposat i dissenyat un entorn de base de dades segura i distribuïda per gestionar de manera eficaç i segura les dades a la xarxa. Per construir un sistema avançat i intel·ligent es necessita un mecanisme eficaç per a la gestió de l'ús dels recursos del sistema. Normalment, el procés d’utilització i manipulació de recursos depèn principalment del mecanisme de selecció i assignació de recursos. La predicció de l’ús i el rendiment de recursos (per exemple, RAM, CPU, disc, etc.) en termes de temps d’execució de tasques ajuda al procés de selecció i assignació. Adoptar les tècniques d’aprenentatge automàtic (conegut com a Machine Learning, o ML) és molt útil per dissenyar un mecanisme d’assignació de recursos avançat i sofisticat en el sistema habilitat per F2C. L’adopció i la realització de tècniques de ML en un sistema F2C és una tasca complexa. Especialment, la diversificació general i molts altres problemes plantegen un gran repte per realitzar amb èxit les tècniques de ML. Per tant, en aquesta recerca hem proposat i dissenyat dos possibles esquemes arquitectònics diferents per realitzar tècniques de ML en el sistema habilitat per F2C per aconseguir un mecanisme de gestió de recursos adaptatiu, avançat i sofisticat en un sistema F2C. Les nostres propostes són els primers passos per dissenyar un marc arquitectònic general per al mecanisme de gestió de recursos en un sistema habilitat per F2C.Postprint (published version
    corecore